化工热力学习题解答第二四章
- 格式:ppt
- 大小:9.02 MB
- 文档页数:74
第一章 绪论一、选择题(共3小题,3分)1、(1分)关于化工热力学用途的下列说法中不正确的是( ) A.可以判断新工艺、新方法的可行性。
B.优化工艺过程。
C.预测反应的速率。
D.通过热力学模型,用易测得数据推算难测数据;用少量实验数据推算大量有用数据。
E.相平衡数据是分离技术及分离设备开发、设计的理论基础。
2、(1分)关于化工热力学研究特点的下列说法中不正确的是( ) (A )研究体系为实际状态。
(B )解释微观本质及其产生某种现象的内部原因。
(C )处理方法为以理想态为标准态加上校正。
(D )获取数据的方法为少量实验数据加半经验模型。
(E )应用领域是解决工厂中的能量利用和平衡问题。
3、(1分)关于化工热力学研究内容,下列说法中不正确的是( )A.判断新工艺的可行性。
B.化工过程能量分析。
C.反应速率预测。
D.相平衡研究参考答案一、选择题(共3小题,3分) 1、(1分)C 2、(1分)B 3、(1分)C第二章 流体的PVT 关系一、选择题(共17小题,17分)1、(1分)纯流体在一定温度下,如压力低于该温度下的饱和蒸汽压,则此物质的状态为( )。
A .饱和蒸汽 B.饱和液体 C .过冷液体 D.过热蒸汽2、(1分)超临界流体是下列 条件下存在的物质。
A.高于T c 和高于P c B.临界温度和临界压力下 C.低于T c 和高于P c D.高于T c 和低于P c3、(1分)对单原子气体和甲烷,其偏心因子ω,近似等于 。
A. 0 B. 1 C. 2 D. 34、(1分)0.1Mpa ,400K 的2N 1kmol 体积约为__________A 3326LB 332.6LC 3.326LD 33.263m5、(1分)下列气体通用常数R 的数值和单位,正确的是__________AK kmol m Pa ⋅⋅⨯/10314.833 B 1.987cal/kmol K C 82.05 K atm cm /3⋅ D 8.314K kmol J ⋅/6、(1分)超临界流体是下列 条件下存在的物质。
习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。
而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。
因此,流体的p –V –T 关系的研究是一项重要的基础工作。
2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。
严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。
理想气体状态方程是最简单的状态方程:2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。
实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r srTp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。
但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=s r p 这一点。
对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。
Pitzer 把这一差值定义为偏心因子ω,即任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。
2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。
由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。
化工原理第四章习题答案在编写化工原理习题答案时,我们通常会先了解具体的习题内容,然后给出详细的解答步骤和最终答案。
不过,由于您没有提供具体的习题内容,我将提供一个通用的解答化工原理习题的框架和一些可能的解题思路。
# 化工原理第四章习题答案习题一:流体力学基础题目描述:假设一个水平管道中流动的流体,其流速为2m/s,管道直径为0.1m。
求管道的流量。
解题步骤:1. 确定流体力学的相关公式,通常使用连续性方程,即Q=Av,其中Q 为流量,A为截面积,v为流速。
2. 计算管道截面积A,A = π(D/2)^2,其中D为管道直径。
3. 将流速v和截面积A代入公式,计算流量Q。
答案:A = π(0.1/2)^2 = 0.00785 m²Q = 2 m/s × 0.00785 m² = 0.0157 m³/s习题二:伯努利方程题目描述:在一个垂直的管道系统中,流体从高处H1=10m处自由落体到H2=5m处,忽略摩擦损失。
求H2处的流速。
解题步骤:1. 应用伯努利方程,P1 + 0.5ρv1² + ρgh1 = P2 + 0.5ρv2² +ρgh2,其中P为压强,ρ为流体密度,v为流速,g为重力加速度,h 为高度。
2. 由于是自由落体,P1=P2,且忽略摩擦损失,方程简化为0.5ρv1²+ ρgh1 = 0.5ρv2² + ρgh2。
3. 代入已知数值,解方程求v2。
答案:由于没有给出流体的密度ρ和压强P,我们只能表示v2的表达式。
设ρ和P为已知量,则:v2 = sqrt((2g(H1-H2)))习题三:泵的功率计算题目描述:已知一个泵的效率为80%,流量为0.05 m³/s,扬程为20m,求泵的功率。
解题步骤:1. 确定泵功率的计算公式,P = ηQHρg / 100,其中P为功率,η为效率,Q为流量,H为扬程,ρ为流体密度,g为重力加速度。
【精品】化工热力学第二章习题解答化工热力学第二章习题解答1.一个理想气体在恒定温度下,其压强与体积的关系如下所示:P = A / V^2其中P是压强,V是体积,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于恒温过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A / V^2代入上式,得到Cdt = dq - (A / V^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A / V^2)dV。
即Ct = q - A / V + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - A / V + B。
2.一个气体在等体过程中,其压强与温度的关系如下所示:P = A * T^2其中P是压强,T是温度,A是常数。
求该气体的热力学过程方程。
解答:根据热力学第一定律,对于等体过程,有dU = dq + dw = dq - PdV,其中U是内能,q是热量,w是对外界做的功。
由于该气体是理想气体,可以假设其内能只与温度有关,即dU = Cdt,其中C 是常数,t是温度。
将上式代入热力学第一定律中,得到Cdt = dq - PdV。
根据理想气体状态方程PV = nRT,其中n为物质的量,R为气体常数,T为温度。
将P = A * T^2代入上式,得到Cdt = dq - (A * T^2)dV。
对上式两边同时积分,得到∫Cdt = ∫dq - ∫(A * T^2)dV。
即Ct = q - (A / 3)T^3 + B,其中B为常数。
综上所述,该气体的热力学过程方程为Ct = q - (A / 3)T^3 + B。
《工程热力学》(第四版)习题提示及答案02章习题提示与答案习题提示与答案第二章热力学第一定律2-1 一辆汽车在1.1 h 内消耗汽油37.5 L ,已知通过车轮输出的功率为64 kW ,汽油的发热量为44 000 kJ/kg ,汽油的密度为0.75 g/cm 3,试求汽车通过排气、水箱散热及机件的散热所放出的热量。
提示:汽车中汽油燃烧放出的热量除了转换成通过车轮输出的功率外,其余通过排气、水箱及机件放给外界。
答案:kJ 1084.952?-=Q。
2-2 一台工业用蒸汽动力装置,每小时能生产11 600 kg 蒸汽,而蒸汽在汽轮机中膨胀作功输出的功率为3 800 kW 。
如果该装置每小时耗煤1 450 kg ,煤的发热量为30 000 kJ/kg ,而在锅炉中水蒸气吸收的热量为2 550 kJ/kg 。
试求:(1)锅炉排出废烟气带走的能量;(2)汽轮机排出乏汽带走的能量。
提示:(1)废气带走的热量和锅炉中水蒸气吸热量之和等于煤燃烧放出的热量。
(2) 水蒸气在锅炉中的吸热量等于汽轮机输出功量与汽轮机乏汽带走的能量之和。
答案: kJ/h 10392.17g ?-=Q,kJ/h 1059.17w ?-=Q 。
2-3 夏日室内使用电扇纳凉,电扇的功率为0.5 kW ,太阳照射传入的热量为0.5 kW 。
当房间密闭时,若不计人体散出的热量,试求室内空气每小时热力学能的变化。
提示:取密闭房间内的物质为热力学系统。
答案:ΔU =3 600 kJ/h 。
2-4 某车间中各种机床的总功率为100 kW ,照明用100 W 电灯50盏。
若车间向外散热可忽略不计,试求车间内物体及空气每小时热力学能的变化。
提示:取密闭车间内的物质为热力学系统。
答案:ΔU =3.78×105 kJ/h 。
2-5 人体在静止情况下每小时向环境散发的热量为418.68 kJ 。
某会场可容纳500人,会场的空间为4 000 m 3。
已知空气的密度1.2 kg/m 3,空气的比热容为1.0 kJ/(kg ·K)。
习 题1. 如附图所示。
某工业炉的炉壁由耐火砖λ1=1.3W/(m·K)、绝热层λ2=0.18W/(m·K)及普通砖λ3=0.93W/(m·K)三层组成。
炉膛壁内壁温度1100o C ,普通砖层厚12cm ,其外表面温度为50 oC 。
通过炉壁的热损失为1200W/m 2,绝热材料的耐热温度为900 oC 。
求耐火砖层的最小厚度及此时绝热层厚度。
设各层间接触良好,接触热阻可以忽略。
已知:λ1=1.3W/m·K ,λ2=0.18W/m·K ,λ3=0.93W/m·K,T 1=1100 o C ,T 2=900 o C ,T 4=50o C ,3δ=12cm ,q =1200W/m 2,Rc =0求: 1δ=?2δ=?解: ∵δλT q ∆=∴1δ=m qTT 22.0120090011003.1211=-⨯=-λ又∵33224234332322λδλδδλδλ+-=-=-=T T T T T T q∴W K m q T T /579.093.012.01200509002334222⋅=--=--=λδλδ得:∴m 10.018.0579.0579.022=⨯==λδ习题1附图习题2附图2. 如附图所示。
为测量炉壁内壁的温度,在炉外壁及距外壁1/3厚度处设置热电偶,测得t 2=300 oC ,t 3=50 o C 。
求内壁温度t 1。
设炉壁由单层均质材料组成。
已知:T 2=300o C ,T 3=50o C 求: T 1=? 解: ∵δλδλ31323T T TT q -=-=∴T 1-T 3=3(T 2-T 3)T 1=2(T 2-T 3)+T 3=3×(300-50)+50=800 oC 3. 直径为Ø60×3mm 的钢管用30mm 厚的软木包扎,其外又用100mm 厚的保温灰包扎,以作为绝热层。
现测得钢管外壁面温度为–110o C ,绝热层外表面温度10oC 。
第二章习题解答2-13. 某反应器容积为31.213m ,内装有温度为0227C 的乙醇45.40kg 。
现请你试用以下三种方法求取该反应器的压力,并与实验值(2.75M Pa )比较误差。
(1)用理想气体方程;;(2)用RK 方程;(3)用普遍化状态方程。
解:(1)用理想气体方程 M P a Vn R T P 38.310213.115.50010314.8987.063=⨯⨯⨯⨯==误差:%9.22 (2)用R-K 方程乙醇:K T C 2.516=, M P a P C 38.6= 765.2625.22108039.21038.62.51610314.842748.042748.0⨯=⨯⨯⨯⨯==CCP T R a0583.01038.62.51610314.808664.008664.063=⨯⨯⨯⨯==CCP RT b3229.1987.0213.1m V ==/mol()()MPab V V Ta bV RT P 76.2109247.7105519.30583.0229.1229.115.500108039.20583.0229.115.50010314.85625.0735.0=⨯-⨯=⨯+⨯--⨯⨯=+--=误差:%36.0(3)用三参数普遍化关联 (2<r V 用普压法关联,MPa P 7766.2=) 设P=2.75MPa查图2-12~2-13:82.00=Z, 055.01-=Z7845.0055.0645.082.01=⨯-=+=Z Z Z ω误差:%64.32-16. 乙烷是重要的化工原料,也可以作为冷冻剂。
现装满290 K 、2.48 MPa 乙烷蒸气的钢瓶,不小心接近火源被加热至478 K ,而钢瓶的安全工作压力为4.5 MPa ,问钢瓶是否会发生爆炸? (用RK 方程计算)解:(1)先根据290 K 、2.48 MPa ,求摩尔体积v=7.729×10-4m3/mol 过程略。
第1章绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
(错。
和,如一体积等于2V的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T,P的理想气体,右侧是T温度的真空。
当隔板抽去后,由于Q=W=0,,,,故体系将在T,2V,0.5P状态下达到平衡,,,)2. 封闭体系的体积为一常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程P=P(T,V)的自变量中只有一个强度性质,所以,这与相律有矛盾。
(错。
V也是强度性质)7. 封闭体系的1mol气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T1和T2,则该过程的;同样,对于初、终态压力相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
)9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T的1mol理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V表示)或(以P表示)。
4. 封闭体系中的1mol理想气体(已知),按下列途径由T1、P1和V1可逆地变化至P ,则2mol ,温度为A 等容过程的 W = 0 ,Q = ,U = ,H =。