数据挖掘(分类算法的研究)
- 格式:doc
- 大小:35.00 KB
- 文档页数:4
第1篇一、实验概述本次数据挖掘实验以Apriori算法为核心,通过对GutenBerg和DBLP两个数据集进行关联规则挖掘,旨在探讨数据挖掘技术在知识发现中的应用。
实验过程中,我们遵循数据挖掘的一般流程,包括数据预处理、关联规则挖掘、结果分析和可视化等步骤。
二、实验结果分析1. 数据预处理在实验开始之前,我们对GutenBerg和DBLP数据集进行了预处理,包括数据清洗、数据集成和数据变换等。
通过对数据集的分析,我们发现了以下问题:(1)数据缺失:部分数据集存在缺失值,需要通过插补或删除缺失数据的方法进行处理。
(2)数据不一致:数据集中存在不同格式的数据,需要进行统一处理。
(3)数据噪声:数据集中存在一些异常值,需要通过滤波或聚类等方法进行处理。
2. 关联规则挖掘在数据预处理完成后,我们使用Apriori算法对数据集进行关联规则挖掘。
实验中,我们设置了不同的最小支持度和最小置信度阈值,以挖掘出不同粒度的关联规则。
以下是实验结果分析:(1)GutenBerg数据集在GutenBerg数据集中,我们以句子为篮子粒度,挖掘了林肯演讲集的关联规则。
通过分析挖掘结果,我们发现:- 单词“the”和“of”在句子中频繁出现,表明这两个词在林肯演讲中具有较高的出现频率。
- “and”和“to”等连接词也具有较高的出现频率,说明林肯演讲中句子结构较为复杂。
- 部分单词组合具有较高的置信度,如“war”和“soldier”,表明在林肯演讲中提到“war”时,很可能同时提到“soldier”。
(2)DBLP数据集在DBLP数据集中,我们以作者为单位,挖掘了作者之间的合作关系。
实验结果表明:- 部分作者之间存在较强的合作关系,如同一研究领域内的作者。
- 部分作者在多个研究领域均有合作关系,表明他们在不同领域具有一定的学术影响力。
3. 结果分析和可视化为了更好地展示实验结果,我们对挖掘出的关联规则进行了可视化处理。
通过可视化,我们可以直观地看出以下信息:(1)频繁项集的分布情况:通过柱状图展示频繁项集的分布情况,便于分析不同项集的出现频率。
数据挖掘的概念1 数据挖掘数据挖掘(Data Mining,简称DM),是指从⼤量的数据中,挖掘出未知的且有价值的信息和知识的过程2 机器学习与数据挖掘与数据挖掘类似的有⼀个术语叫做”机器学习“,这两个术语在本质上的区别不⼤,如果在书店分别购买两本讲数据挖掘和机器学习的书籍,书中⼤部分内容都是互相重复的。
具体来说,⼩的区别如下:机器学习这个词应该更侧重于技术⽅⾯和各种算法,⼀般提到机器学习就会想到语⾳识别,图像视频识别,机器翻译,⽆⼈驾驶等等各种其他的模式识别,甚⾄于⾕歌⼤脑等AI,这些东西的⼀个共同点就是极其复杂的算法,所以说机器学习的核⼼就是各种精妙的算法。
数据挖掘则更偏向于“数据”⽽⾮算法,⽽且包括了很多数据的前期处理,⽤爬⾍爬取数据,然后做数据的清洗,数据的整合,数据有效性检测,数据可视化(画图)等等,最后才是⽤⼀些统计的或者机器学习的算法来抽取某些有⽤的“知识”。
前期数据处理的⼯作⽐较多。
所以,数据挖掘的范畴要更⼴泛⼀些。
3 数据挖掘所覆盖的学科数据挖掘是⼀门交叉学科,覆盖了统计学、计算机程序设计、数学与算法、数据库、机器学习、市场营销、数据可视化等领域的理论和实践成果4 数据挖掘的误区算法⾄上论:数据挖据是某些对⼤量数据操作的算法,这些算法能够⾃动地发现新的知识。
技术⾄上论:数据挖据需要⾮常⾼深的分析技能,需要精通⾼深的数据挖掘算法,需要熟练程序开发设计这两种认知都是有问题的,实际上,数据挖掘是⼈们处理商业问题的某些⽅法,通过适量的数据挖掘来获得有价值的结果,最好的数据挖掘⼯程师往往是那些熟悉和理解业务的⼈。
5 数据挖掘能解决什么问题商业上的问题多种多样,例如:“如何能降低⽤户流失率?”“某个⽤户是否会响应本次营销活动?“"如何细分现有⽬标市场?"“如何制定交叉销售策略以提升销售额?”“如何预测未来销量?”从数据挖掘的⾓度看,都可以转换为五类问题:分类,聚类,回归,关联和推荐。
数据挖掘常用方法
常用的数据挖掘方法包括以下几种:
1. 关联规则挖掘:通过发现数据中的频繁项集和关联规则来揭示数据中的关联关系。
2. 分类算法:根据已有的特征和标签,训练分类模型以预测未知数据的标签。
3. 聚类算法:将数据分为不同的群组,使得同一群组内的数据相似度较高,不同群组间的数据差异较大。
4. 预测建模:通过建立数学模型来预测未来事件或未知数据的数值结果。
5. 时间序列分析:通过分析时间序列数据的趋势和周期性,预测未来的数据趋势。
6. 异常检测:通过发现与正常数据差异较大的数据点或数据模式来检测异常行为。
7. 文本挖掘:通过分析和提取文本数据中的信息,如关键词、主题、情感等,来揭示文本数据的隐含信息。
8. 图挖掘:通过分析和挖掘网络结构和节点之间的关系,揭示图数据中的模式和规律。
9. 基于规则的挖掘:通过定义和挖掘一些领域专家制定的规则,揭示数据中的潜在知识。
10. 基于统计的挖掘:利用统计方法和模型,从数据中发现统计规律和相关性。
这些方法可以单独应用于不同的数据挖掘任务,也可以结合使用以获得更好的结
果。
具体选择哪种方法取决于具体的数据集和研究目标。
掌握银行工作中的数据挖掘和分析方法在当今信息爆炸的时代,各行各业都离不开数据的运用和分析。
银行作为金融行业的重要组成部分,更是对数据的处理和分析有着极高的要求。
数据挖掘和分析方法的掌握,不仅可以帮助银行更好地理解客户需求、识别潜在风险,还可以提高银行整体运营效率。
本文将介绍银行工作中常用的数据挖掘和分析方法。
一、数据挖掘在银行业的应用数据挖掘是一种从大量数据中发现潜在信息和规律的技术。
在银行业,数据挖掘可以应用于客户关系管理、风险控制、市场营销等多个领域。
1.客户关系管理(CRM)银行拥有大量客户数据,如个人信息、交易记录等。
通过数据挖掘技术,可以发现客户的消费习惯、购买倾向等信息,从而更好地进行客户分类和定制化服务,提高客户满意度和忠诚度。
2.风险控制银行业务中存在着各种风险,如信用风险、市场风险等。
数据挖掘可以应用于风险评估和控制,通过分析大量历史数据,预测未来的风险情况,提前采取相应措施,降低风险损失。
3.市场营销银行可以通过数据挖掘技术了解客户的购买喜好、消费能力等信息,有针对性地进行产品推荐和市场营销。
例如,通过分析客户的购买历史和偏好,可以向其推荐适合的理财产品或信用卡。
二、数据挖掘方法数据挖掘的方法多种多样,下面介绍几种在银行工作中常用的方法。
1.分类算法分类算法是数据挖掘中常用的方法之一,它可以将一系列数据分为不同的类别。
在银行业中,可以使用分类算法识别信用卡欺诈交易、客户违约等风险情况。
常用的分类算法有决策树、朴素贝叶斯、支持向量机等。
2.聚类算法聚类算法是将一组数据划分为不同的组别或簇的方法。
在银行业中,可以利用聚类算法将客户划分为不同的群组,提供个性化的产品和服务。
常用的聚类算法有K均值算法、层次聚类算法等。
3.关联规则挖掘关联规则挖掘可以发现数据中的相关性。
在银行业中,可以应用于发现不同产品之间的关联规则,进行跨销售和市场推广。
例如,通过分析客户购买某一产品的同时购买其他产品的规律,可以提高跨产品销售的机会。
第1篇一、实验背景随着大数据时代的到来,数据挖掘技术逐渐成为各个行业的重要工具。
数据挖掘是指从大量数据中提取有价值的信息和知识的过程。
本实验旨在通过数据挖掘技术,对某个具体领域的数据进行挖掘,分析数据中的规律和趋势,为相关决策提供支持。
二、实验目标1. 熟悉数据挖掘的基本流程,包括数据预处理、特征选择、模型选择、模型训练和模型评估等步骤。
2. 掌握常用的数据挖掘算法,如决策树、支持向量机、聚类、关联规则等。
3. 应用数据挖掘技术解决实际问题,提高数据分析和处理能力。
4. 实验结束后,提交一份完整的实验报告,包括实验过程、结果分析及总结。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据挖掘库:pandas、numpy、scikit-learn、matplotlib四、实验数据本实验选取了某电商平台用户购买行为数据作为实验数据。
数据包括用户ID、商品ID、购买时间、价格、商品类别、用户年龄、性别、职业等。
五、实验步骤1. 数据预处理(1)数据清洗:剔除缺失值、异常值等无效数据。
(2)数据转换:将分类变量转换为数值变量,如年龄、性别等。
(3)数据归一化:将不同特征的范围统一到相同的尺度,便于模型训练。
2. 特征选择(1)相关性分析:计算特征之间的相关系数,剔除冗余特征。
(2)信息增益:根据特征的信息增益选择特征。
3. 模型选择(1)决策树:采用CART决策树算法。
(2)支持向量机:采用线性核函数。
(3)聚类:采用K-Means算法。
(4)关联规则:采用Apriori算法。
4. 模型训练使用训练集对各个模型进行训练。
5. 模型评估使用测试集对各个模型进行评估,比较不同模型的性能。
六、实验结果与分析1. 数据预处理经过数据清洗,剔除缺失值和异常值后,剩余数据量为10000条。
2. 特征选择通过相关性分析和信息增益,选取以下特征:用户ID、商品ID、购买时间、价格、商品类别、用户年龄、性别、职业。
数据挖掘的四种基本方法
数据挖掘是当前互联网领域中非常关键的一个技术,它为企业提供了更多的洞
察力来把握市场趋势。
它可以有效分析客户的行为,以期找到令人信服的结论来决策。
简单地说,它是一种找出可以识别和理解数据的方法,以挖掘其潜在的价值的技术过程。
同时,数据挖掘也是一种发现隐藏在数据中深层模式、未知结构、异常值和其他有用信息的方法。
数据挖掘有四种基本方法,分别是关联规则挖掘,分类与分析,聚类技术和异
常检测。
关联规则挖掘就是通过确定信息之间潜在规律,来推断有意义的关系,最常用
的算法是Apriori算法和FP-growth算法,它们可以发现频繁项集并做出相应的规则,如“当顾客买了电视就可能会买它的支架”。
分类与分析挖掘方法是衡量变量之间影响的程度,主要包括回归分析、决策树
分析等,用于识别连续和分类属性之间的关系,如“电视价格如何影响人们的消费行为?”
聚类技术是一种无监督的技术,一般用K-Means,EM和DBSCAN等算法来处理,它的任务是将大量的数据划分为几类,以确认未知的隐藏结构,如“电视的消费者可以划分为几个具有共同特征的群体”。
异常检测是根据数据的特定度量,识别非正常值的过程,最常用的技术是密度
聚类和抽样检测,它可以帮助企业发现数据中未预料的突发性变化,如“电视停止销售的原因”。
总之,数据挖掘是一项技术,能够从信息中挖掘出有价值的发现和见解,它的
四种基本方法分别是关联规则挖掘,分类与分析,聚类技术和异常检测,是企业发掘商机和确立竞争优势的重要工具。
只有通过合理利用这些基本方法,企业才能获得真正有效的市场信息,从而获得竞争优势。
数据挖掘的理论与应用数据是当今社会的重要资源之一,随着互联网时代的到来,数据变得越来越庞大且多样化。
这时,数据挖掘的概念诞生了。
数据挖掘是指将大量的数据,经过一系列处理和分析,抽取出有用的信息和知识的过程。
本文将介绍数据挖掘的理论和应用。
一、数据挖掘的理论1. 数据预处理:数据预处理是指在对数据集进行分析前,进行数据清洗、数据集成、数据变换和数据规约等处理。
这些处理能够提高数据挖掘算法的效率和准确率。
例如,通过数据清洗可以清除数据中的异常值和缺失值,提高数据的准确性。
2. 数据挖掘算法:数据挖掘算法是指在数据集上进行特点分析和处理的一系列计算方法。
常用的算法有决策树、聚类、神经网络、关联规则等。
这些算法根据不同的数据类型和目的,选用不同的算法和技术,通过反复迭代,得到合适的模型和预测结果。
3. 模型评估和优化:数据挖掘的目的是挖掘出有用的知识和信息,但是,不同的算法会得到不同的预测结果。
如何对不同的模型进行评估和优化,是数据挖掘的一大难点。
评估方法包括交叉验证、准确率、精度、召回率等,通过模型的比较和优化,可以选出最优的模型。
二、数据挖掘的应用1. 金融风控:金融领域是数据挖掘的重要应用领域之一。
通过对用户的行为、交易记录等数据进行分析,可以预测用户的信用风险,提高金融机构的贷款准入率和贷款违约率。
2. 市场营销:在现代市场经济中,市场营销是企业提高市场占有率和定义竞争优势的重要手段之一。
通过对消费者的购买记录、偏好等数据进行分析,可以在理解他们的消费行为的基础上,更好的对他们进行定向营销。
3. 医疗健康:在医疗健康领域,数据挖掘可以应用于医疗保险、疾病诊断、药物治疗等方面。
例如,通过对患者的基因信息、病症、诊断结果等进行分析,可以预测疾病的发生概率和治疗效果。
4. 人工智能:数据挖掘是人工智能的基础,人工智能领域的很多应用都需要大量的数据,并且需要基于数据和模型实现智能决策和行为。
例如,自然语言处理、图像识别、推荐系统等。
数据挖掘的模型数据挖掘(Data Mining)是指从大量的数据中寻找隐藏在其中的有价值的信息,并将其转化为可理解的形式,以支持决策和预测。
数据挖掘的模型则是实现数据挖掘技术的基础,它们用来描述和分析数据的特征、关系和规律,从而揭示出数据的潜在知识。
一、分类模型分类模型用于将数据划分到不同的预定义类别中。
常见的分类模型包括决策树、朴素贝叶斯、支持向量机等。
决策树是一种树状结构,通过判断数据的特征值按照一定条件分支,最终到达叶子节点预测其所属类别。
朴素贝叶斯模型基于贝叶斯定理,通过计算条件概率来预测类别。
支持向量机则使用超平面在特征空间中对数据进行分类。
二、回归模型回归模型用于预测和估计数值型数据的输出。
它适用于分析因变量与一个或多个自变量之间的关系。
线性回归模型是最简单的回归模型,它假设自变量和因变量之间存在线性关系。
除了线性回归模型外,还有多项式回归、岭回归等模型。
三、聚类模型聚类模型将数据根据其相似性分为不同的类别或群组。
常见的聚类算法有K均值聚类、层次聚类、DBSCAN等。
K均值聚类是一种迭代算法,将数据分为K个簇,使得同一簇内的数据点更加相似。
层次聚类将数据根据相似性构建层次化的聚类结果。
DBSCAN则是一种基于密度的聚类算法,将密度相连的数据点划分为一个簇。
四、关联规则模型关联规则模型用于发现数据中的相互关联性,即数据项之间的频繁关系。
常见的关联规则算法有Apriori算法和FP-Growth算法。
Apriori算法基于频繁项集的性质,通过逐层搜索,找到频繁项集和关联规则。
FP-Growth算法则通过构建FP树来挖掘频繁项集和关联规则。
五、时序模型时序模型用于处理数据的时序性,可以进行时间序列预测、序列模式挖掘等任务。
常见的时序模型有ARIMA模型、LSTM模型等。
ARIMA模型是一种基于时间序列的预测模型,通过分析时间序列的自相关性和滞后关系,来预测未来的趋势。
LSTM模型则是一种递归神经网络,能够学习序列数据中的长期依赖关系。
数据分析中的聚类和分类算法数据分析在当今社会中扮演着越来越重要的角色,它能帮助我们发现数据中隐藏的模式、规律和趋势。
在数据分析的过程中,聚类和分类算法是两种常用的技术,它们可以帮助我们对数据进行归类和组织,为后续的数据挖掘和决策提供有价值的信息。
1. 聚类算法聚类算法是一种将数据对象划分为不同组别的技术。
它通过测量数据对象之间的相似性来实现聚类。
常见的聚类算法包括K均值聚类、DBSCAN和层次聚类等。
1.1 K均值聚类K均值聚类是一种基于距离度量的聚类算法。
它将数据对象划分为K个不同的组别,并且最小化组内对象的平均距离。
算法的核心思想是通过不断迭代更新每个数据对象所属的组别,直到达到收敛条件。
K均值聚类算法简单有效,广泛应用于数据分析领域。
1.2 DBSCANDBSCAN是一种基于密度的聚类算法。
它将数据对象划分为核心对象、边界对象和噪声对象三类,并且根据对象之间的密度关系进行聚类。
DBSCAN算法通过设置距离阈值和密度阈值,可以灵活地识别不同形状和大小的簇。
1.3 层次聚类层次聚类是一种自底向上的聚类算法。
它首先将每个数据对象视为一个单独的簇,然后逐步合并相邻的簇,直到所有数据对象组成一个大的簇。
层次聚类算法可以通过不同的合并策略和距离度量来得到不同的聚类结果。
2. 分类算法分类算法是一种将数据对象分配到预定义类别或标签的技术。
它通过学习已知类别的样本数据来建立分类模型,并用该模型对新的未知数据进行预测。
常见的分类算法包括决策树、朴素贝叶斯和支持向量机等。
2.1 决策树决策树是一种基于树形结构的分类算法。
它通过判断数据对象在特征空间上的取值来进行分类。
决策树的每个内部节点表示对一个特征的判断,每个叶子节点表示一个类别的预测。
决策树算法具有解释性强、易于理解和应用的特点。
2.2 朴素贝叶斯朴素贝叶斯是一种基于概率统计的分类算法。
它假设特征之间相互独立,并通过计算每个类别的后验概率来进行分类。
朴素贝叶斯算法简单高效,适用于处理大规模的数据集。
数据挖掘最常用的算法
数据挖掘最常用的算法包括:
1.分类算法(如决策树、朴素贝叶斯、支持向量机、K-近邻等):用于根据已有数据的标签或类别对新数据进行分类。
2.聚类算法(如K-均值、层次聚类等):用于对未标记数据进行分组或聚类。
3.关联规则算法(如Apriori算法等):用于发现数据之间的关联规律,比如购物篮分析中发现购买了X商品的人更容易购买Y商品。
4.回归算法(如线性回归、逻辑回归等):用于建立变量之间的映射关系,例如根据历史销售数据预测未来销售额。
5.人工神经网络算法(如多层感知器、卷积神经网络、循环神经网络等):通过模拟神经网络的结构和功能,对数据进行分析和学习。
数据挖掘技术一.数据挖掘的含义和作用数据仓库的出现,带来了"数据丰富,但信息贫乏"的状况。
因此迫切需要一种新技术实现从企业海量的数据中发现有用的信息或知识,从而出现了数据挖掘(Data Mining)技术。
数据挖掘(Data Mining)就是应用一系列技术从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
提取的知识表示为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。
这些数据可以是结构化的,如关系数据库中的数据,也可以是半结构化的,如文本,图形,图像数据,甚至是分布在网络上的异构型数据。
发现知识的方法可以是数学的,也可以是非数学的,可以是演绎的,也可以是归纳的。
发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以进行数据自身的维护。
数据挖掘借助了多年来数理统计技术和人工智能以及知识工程等领域的研究成果构建自己的理论体系,是一个交叉学科领域,可以集成数据数据库、人工智能、数理统计、可视化、并行计算等技术。
还有一个定义:数据挖掘就是从海量的数据中挖掘出可能有潜在价值的信息的技术。
这些信息是可能有潜在价值的,支持决策,可以为企业带来利益,或者为科学研究寻找突破口。
二、数据挖掘的目的它的目标是将大容量数据转化为有用的知识和信息。
数据挖掘并不专用于特定领域,它需要凝结各种技术和创造力去探索可能隐藏在数据中的知识。
在很多情况下,应用数据挖掘技术是为了实现以下三种目的:。
发现知识:知识发现的目标是从数据库存储的数据中发现隐藏的关系、模式和关联例如,在商业应用中数据挖掘可用于发现分割、分类、关联、喜好四种知识。
发现分割知识可以将客户记录分组,策划为客户度身定做的推销活动。
发现分类知识可以将输入的数据分配到预定义的类别中,发现和理解趋势以及对文本文档的进行分类等。
发现交叉销售的机会是一种关联知识,以及发现大部分客户的喜好的知识[4]。
数据挖掘之分类方法的研究
摘要:对分类算法中需要解决的关键问题进行了分析;综述了不同分
类算法的思想和特性,决策树分类算法能够很好地处理噪声数据,但
只能对规模较小的训练样本集有效;贝叶斯分类算法精度高、速度快、
错误率低、但分类不够准确;并且针对决策树分类算法的缺点进行了
改进。
关键字:数据挖掘,分类算法,决策树
数据挖掘的主要分类算法综述
数据挖掘的分类算法有多种,本文重点描述决策树、贝叶斯分类
算法的特性及其新发展。
2.1 决策树分类算法
决策树分类算法也称为贪心算法,采用自顶向下的分治方式构
造,它从一组无次序、无规则的事例中推理出决策树表示形式的分类
规则,是以实例为基础的归纳学习方法。决策树分类算法对噪声数据
有很好的健壮性,能够学习析取表达式,是最为广泛使用的分类算法
之一[1]。决策树的每个内部节点(非叶节点)表示在一个属性上的测
试,每个分枝代表一个测试输出,每个叶节点代表类或类分布,树的
顶层节点是根节点。决策树算法通过将样本的属性值与决策树相比
较,来对未知样本进行分类。
首先根据训练数据集来构建决策树,建立决策树模型,这实际上
是一个从数据中获取知识,进行机器学习的过程[2]。树代表训练样本
的单个根节点开始,使用分类属性(如果是量化属性,则需要进行离
散化),递归地通过选择相应的测试属性来划分样本,一旦一个属性
出现在一个节点上,就不在该节点的任何后代上出现,测试属性是根
据某种启发信息或者是统计信息来进行选择(如信息增益)。第二个阶
段是树剪枝,树剪枝试图检测和剪去训练数据中的噪声和孤立点,尽
量消除模型中的异常。剪枝后的树变小、复杂度降低,在正确地对独
立检验数据分类时效果更快更好。
决策树的优点:
1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树
所表达的意义。
2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术
往往要求先把数据一般化,比如去掉多余的或者空白的属性。
3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属
性的单一。
4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所
产生的决策树很容易推出相应的逻辑表达式。
5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的
可信度。
6、在相对短的时间内能够对大型数据源做出可行且效果良好的结
果。
7、可以对有许多属性的数据集构造决策树。
8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据
库的大小。
决策树的缺点:
1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益
的结果偏向于那些具有更多数值的特征。
2、决策树处理缺失数据时的困难。
3、过度拟合问题的出现。
4、忽略数据集中属性之间的相关性。
2.2 贝叶斯分类算法
贝叶斯( Beyes) 分类算法基于概率统计学的贝叶斯定理,是一
种在先验概率与类条件概率已知的情况下,预测类成员关系可能性的
模式分类算法,如计算一个给定样本属于一个特定类的概率,并选定
其中概率最大的一个类别作为该样本的最终类别。
贝叶斯分类算法的关键是使用概率表示各种形式的不确定性。对
于大型数据集,从理论上讲,精确度高,运算速度快,具有最小的错
误率,是贝叶斯算法的最大优点,但实际情况下,因其假定的不准确
性,导致缺乏可用的数据,就需要足够大的样本。针对该缺陷,出现
了一些降低独立性假设的贝叶斯改进分类算法,如半朴素贝叶斯算
法、压缩候选的贝叶斯信念网络构造算法、TAN 算法等[5]。贝叶斯分
类算法还可以用来对不直接使用贝叶斯定理的其他分类算法提供理
论判据。基于聚类分析思想,提出一种合理性、可信度都优于朴素贝
叶斯缺损数据的修补算法。利用贝叶斯和决策树分类算法的优点,将
贝叶斯的先验信息法与决策树分类的信息增益法相结合的混合分类
算法,在处理不一致或者不完整数据时,比单纯使用贝叶斯或决策树
进行的分类运算速度更快,准确率更高。
2.5 其他分类算法
除上述分类算法,常用的还有粗糙集、遗传算法、神经网络等分类算
法。粗糙集算法以发现不准确数据或噪声数据内的结构联系,其知识
表示是产生式规则。遗传算法基于生物进化思想,通过模拟自然进化
过程搜索最优解,是现代智能计算中的关键技术之一。神经网络是一
组连接的I /O 单元,其中每个连接都与一个权重相关联。神经网络
分类中最流行的算法是BP( Back propagation) 算法、Hopfield 算
法和后向传播分类算法。目前,研究者将神经网络算法与遗传算法、
粗糙集算法、粒子群优化算法、蚁群算法相结合,如将粗糙集理论应
用到CBA 算法中,以提高分类关联规则的生成效率和准确度。
5 结束语
本文主要针对数据挖掘的几种分类算法进行阐述,详细讨论了决
策树、贝叶斯分类算法的研究发展,并着重分析了决策树分类方法的
优点及存在的缺陷。在数据挖掘应用中,用户要根据数据的特点,选
择合适的分类算法或混合交互分类算法。在今后的工作中,为进一步
提高分类的准确率、降低计算复杂度,更应该综合多领域技术,将分
类算法与多学科相互交叉相互渗透,使之向着更多样化方向发展。
最后,感谢两个月来陶老师对我们的谆谆教诲,她带我们走进了
一个新的学科领域,为我今后对数据挖掘的研究打下了坚实的基础。