语音识别-矢量量化
- 格式:ppt
- 大小:825.00 KB
- 文档页数:41
简述语音信号处理的关键技术语音信号处理是一门研究如何对语音信号进行分析、合成、增强、压缩等处理的学科。
在语音通信、语音识别、语音合成等领域都有广泛的应用。
本文将以简述语音信号处理的关键技术为标题,介绍语音信号处理的几个关键技术。
一、语音信号的数字化语音信号是一种连续的模拟信号,为了进行数字化处理,首先需要对其进行采样和量化。
采样是指在一定时间间隔内对语音信号进行测量,将其离散化;量化是指将采样得到的连续幅值值域离散化为一组有限的幅值级别。
通过采样和量化,将语音信号转换为离散的数字信号,为后续的数字信号处理提供了基础。
二、语音信号的预处理语音信号中可能存在噪声、回声等干扰,需要对其进行预处理。
常用的预处理方法有滤波和语音增强。
滤波是通过滤波器对语音信号进行去噪处理,常用的滤波器有陷波滤波器、带通滤波器等。
语音增强是通过增强语音信号中的有用信息,提高语音信号的质量。
常用的语音增强方法有谱减法、波束形成等。
三、语音信号的特征提取语音信号中包含了大量的特征信息,如频率、能量等。
为了方便后续的分析和处理,需要对语音信号进行特征提取。
常用的特征提取方法有短时能量、过零率、倒谱系数等。
这些特征可以用来描述语音信号的时域和频域特性,为语音识别等任务提供基础。
四、语音信号的压缩与编码语音信号具有较高的数据量,为了减少存储和传输的开销,需要对语音信号进行压缩与编码。
语音信号压缩是指通过一系列的算法和技术,将语音信号的冗余信息去除或减少,从而减小信号的数据量。
常用的语音信号压缩算法有线性预测编码(LPC)、矢量量化、自适应差分编码等。
五、语音信号的识别与合成语音识别是指将语音信号转换为对应的文字或命令,是语音信号处理的一个重要应用。
语音识别技术可以分为基于模型的方法和基于统计的方法。
基于模型的方法是指通过建立声学模型和语言模型,利用模型的匹配程度来进行识别。
基于统计的方法是指通过统计分析语音信号和文本之间的关系,利用统计模型进行识别。
语音识别技术简介我想大家都听过阿里巴巴与四十大盗的故事,阿里巴巴的“芝麻开门”就是一个语音识别的例子,可见语音识别是很早就启蒙了。
今天我就和大家一起来学习一下语音识别技术。
让机器听懂人类的语音,这是人们长期以来梦寐以求的事情。
伴随计算机技术发展,语音识别己成为信息产业领域的标志性技术,在人机交互应用中逐渐进入我们日常的生活,并迅速发展成为“改变未来人类生活方式厅的关键技术之一”。
语音识别技术以语音信号为研究对象,是语音信号处理的一个重要研究方向。
其最终目标是实现人与机器进行自然语言通信。
语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。
主要包括特征提取技术、模式匹配准则及模型训练技术三个方面,所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等。
今天主要讲的内容有:语音识别的发展历史、系统分类、基本方法、系统结构、面临问题以及前景展望。
语音识别发展历史1952年贝尔研究所Davis等人研究成功了世界上第一个能识别10个英文数字发音的实验系统。
1960年英国的Denes等人研究成功了第一个计算机语音识别系统。
大规模的语音识别[3]研究是在进入了70年代以后,在小词汇量、孤立词的识别方面取得了实质性的进展。
进入80年代以后,研究的重点逐渐转向大词汇量、非特定人连续语音识别。
在研究思路上也发生了重大变化,即由传统的基于标准模板匹配的技术思路开始转向基于统计模型(HMM)的技术思路。
此外,再次提出了将神经网络技术引入语音识别问题的技术思路。
进入90年代以后,在语音识别的系统框架方面并没有什么重大突破。
但是,在语音识别技术的应用及产品化方面出现了很大的进展。
我国语音识别研究工作起步于五十年代,但近年来发展很快。
研究水平也从实验室逐步走向实用。
我国语音识别技术的研究水平已经基本上与国外同步,在汉语语音识别技术上还有自己的特点与优势,并达到国际先进水平。
带你了解语音识别技术作者:邵建勋倪俊杰来源:《中国信息技术教育》2021年第21期编者按:语音识别技术在生活中的应用已经非常广泛,如在车载导航、智能家居、日常办公等领域都有涉及,给人们生活带来了很多便利。
由于语音交互是一种更便利、更自然、更高效的沟通形式,所以它必定成为未来最主要的人机交互接口之一。
那么,你真的了解语音识别技术吗?它的发展历程和技术原理又是怎样的?我们一起来了解。
语音识别技术又称ASR技术(Automatic Speech Recognition),指机器自动将语音转成文字。
语音识别技术属于人工智能方向的一个重要分支,涉及许多学科,如信号处理、计算机科学、语言学、声学、生理学、心理学等,是人机自然交互技术中的关键环节。
语音识别技术诞生半个多世纪以来,由于缺乏突破性进展,在技术上存在较大缺陷,一直处在实验室研究阶段,没有在实际应用中得到认可。
2009年是一个转折点,深度学习和人工神经网络的兴起,使得语音识别技术在常见词汇场景下识别率超过了95%,这意味着语音识别技术具备了与人类相仿的语言识别能力。
但不可否认的是,即使到现在,语音识别技术还是存在着很多不足,如对强噪声、超远场、强干扰、多语种、大词汇等场景下的语音识别还有很大的提升空间。
国内某机构发布的《2018—2022年中国智能语音行业深度调研及投资前景预测报告》显示,我国智能语音市场整体处于启动期,智能车载、智能家居、智能可穿戴等垂直领域处于爆发前夜。
因此,我们有必要深入了解一下它的发展历程和技术原理。
语音识别技术的发展历程最早在1952年,著名的贝尔实验室首次实现Aurdrey英文数字识别实验系统(6英尺高),该系统有两个特点:①可以识别0~9单个数字的发音;②对熟人的发音识别准确度高达90%以上。
同时期,美国麻省理工学院的林肯实验室开发了针对十个元音的非特定人语音识别系统,普林斯顿大学的RCA实验室也开发了单音节识别系统,能够识别特定人的十个单音节词中所包含的不同音节。
语音识别技术是什么_语音识别技术应用领域介绍语音识别技术,也被称为自动语音识别AutomaTIc Speech RecogniTIon,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。
与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。
语音识别系统提示客户在新的场合使用新的口令密码,这样使用者不需要记住固定的口令,系统也不会被录音欺骗。
文本相关的声音识别方法可以分为动态时间伸缩或隐马尔可夫模型方法。
文本无关声音识别已经被研究很长时间了,不一致环境造成的性能下降是应用中的一个很大的障碍。
其工作原理:动态时间伸缩方法使用瞬间的、变动倒频。
1963年Bogert et al出版了《回声的时序倒频分析》。
通过交换字母顺序,他们用一个含义广泛的词汇定义了一个新的信号处理技术,倒频谱的计算通常使用快速傅立叶变换。
从1975年起,隐马尔可夫模型变得很流行。
运用隐马尔可夫模型的方法,频谱特征的统计变差得以测量。
文本无关语音识别方法的例子有平均频谱法、矢量量化法和多变量自回归法。
平均频谱法使用有利的倒频距离,语音频谱中的音位影响被平均频谱去除。
使用矢量量化法,语者的一套短期训练的特征向量可以直接用来描绘语者的本质特征。
但是,当训练向量的数量很大时,这种直接的描绘是不切实际的,因为存储和计算的量变得离奇的大。
所以尝试用矢量量化法去寻找有效的方法来压缩训练数据。
Montacie et al在倒频向量的时序中应用多变量自回归模式来确定语者特征,取得了很好的效果。
想骗过语音识别系统要有高质量的录音机,那不是很容易买到的。
一般的录音机不能记录声音的完整频谱,录音系统的质量损失也必须是非常低的。
对于大多数的语音识别系统,模仿的声音都不会成功。
用语音识别来辨认身份是非常复杂的,所以语音识别系统会结合个人身份号码识别或芯片卡。
目录摘要 (1)正文 (1)1、语音识别技术概述 (1)2、发展历史 (1)3、语音识别原理 (2)4、语音识别系统简介 (3)5、语音识别的系统类型 (4)5.1、限制用户的说话方式 (4)5.2、限制用户的用词范围 (5)5.3、限制系统的用户对象 (5)6、语音识别的几种主要研究方法 (5)6.1、动态时间规整(DTW) (5)6.2、矢量量化(VQ) (5)6.3、隐马尔可夫模型(HMM) (6)6.5、支持向量机(SVM) (6)7、语音识别的发展趋势 (6)7.1、提高可靠性。
(7)7.2、增加词汇量。
(7)7.3、应用拓展。
(8)7.4、降低成本减小体积。
(8)8、语音识别所面临的问题 (9)9、值得研究方向 (9)10、语音识别技术的前景展望 (10)参考文献 (11)浅谈语音识别技术摘要:语音识别是一门交叉学科。
近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。
人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。
语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。
很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。
语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。
关键词:语音识别,矢量化,人工神经元网络,动态时间规整正文1、语音识别技术概述语音识别是解决机器“听懂”人类语言的一项技术。
作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。
如今,随着语音识别技术研究的突破,其对计算机发展和社会生活的重要性日益凸现出来。
以语音识别技术开发出的产品应用领域非常广泛,如声控电话交换、信息网络查询、家庭服务、宾馆服务、医疗服务、银行服务、工业控制、语音通信系统等,几乎深入到社会的每个行业和每个方面。
语音识别技术概述语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。
与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。
语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。
语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音到语音的翻译。
语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。
历史早在计算机发明之前,自动语音识别的设想就已经被提上了议事日程,早期的声码器可被视作语音识别及合成的雏形。
而1920年代生产的"Radio Rex"玩具狗可能是最早的语音识别器,当这只狗的名字被呼唤的时候,它能够从底座上弹出来。
最早的基于电子计算机的语音识别系统是由A T&T贝尔实验室开发的Audrey语音识别系统,它能够识别10个英文数字。
其识别方法是跟踪语音中的共振峰。
该系统得到了98%的正确率。
到1950年代末,伦敦学院(Colledge of London)的Denes已经将语法概率加入语音识别中。
1960年代,人工神经网络被引入了语音识别。
这一时代的两大突破是线性预测编码Linear Predictive Coding (LPC),及动态时间弯折Dynamic Time Warp技术。
语音识别技术的最重大突破是隐含马尔科夫模型Hidden Markov Model的应用。
从Baum提出相关数学推理,经过Labiner等人的研究,卡内基梅隆大学的李开复最终实现了第一个基于隐马尔科夫模型的大词汇量语音识别系统Sphinx。
[1]。
此后严格来说语音识别技术并没有脱离HMM框架。
语音辨别技术综述语音辨别技术综述电子信息工程2010 级 1 班郭珊珊【纲要】跟着计算机办理能力的快速提升,语音辨别技术获得了飞快发展,该技术的发展和应用改变了人们的生产和生活方式,正逐渐成为计算机办理技术中的要点技术。
语音技术的应用已经成为一个拥有竞争性的新兴高技术家产。
【要点词】语音辨别;语音辨别原理;语音辨别发展;产品语音辨别是以语音为研究对象,经过语音信号办理和模式辨别让机器人自动辨别和理解人类口述的语言。
语音辨别技术就是让机器经过辨别和理解过程把语音信号转变成相应的命令或文本的高新技术。
1语音识其余原理语音辨别系统本质是一种模式辨别系统,包含特色提取、模式般配、参照模式库等三个基本单位元。
未知语音经过话筒变换成电信号后加载识别系统的输入端,第一经过预办理,再依据人的语音特色成立语音模型,对输入的语音信号进行剖析,并抽取所需特色,在此基础上成立语音辨别所需的模板。
计算机在辨别过程中要依据语音识其余模型,将计算机中寄存的语音模板与输入的语音信号的特色进行比较,依据必定的搜寻和般配策略,找出一系列最优的与输入语音般配的模板。
而后依据此模板的定义,经过查表可给出计算机的辨别结果。
这类最优的结果与特色的选择、语音模型的利害、模板能否正确都有直接的关系。
2语音辨别系统的分类语音辨别系统能够依据对输入语音的限制加以分类。
2.1 从说话者与辨别系统的有关性考虑能够将辨别系统分为 3 类: (1) 特定人语音辨别系统:仅考虑关于专人的话音进行识别; (2) 非特定人语音系统:识其余语音与人没关,往常要用大批不一样人的语音数据库对识别系统进行学习; (3) 多人的辨别系统:往常能辨别一组人的语音,或许成为特定组语音辨别系统,该系统仅要求对要识其余那组人的语音进行训练。
2.2 从说话的方式考虑也能够将辨别系统分为 3 类: (1) 孤立词语音辨别系统:孤立词辨别系统要求输入每个词后要停留; (2) 连结词语音辨别系统:连结词输入系统要求对每个词都清楚发音,一些连音现象开始出现; (3) 连续语音辨别系统:连续语音输入是自然流畅的连续语音输入,大批连音和变音会出现。