2017-2018学年度最新人教版初中数学七年级下册《实数》检测题1-精品试卷
- 格式:docx
- 大小:27.88 KB
- 文档页数:6
绝密★启用前2017-2018人教版七年级下册数学第6章实数单元试卷温馨提示:亲爱的同学们,考试只是检查我们对知识的掌握情况,希望你不要慌张,平心静气,不要急于下结论;下笔时,把字写得规矩些,让自己和老师都看得舒服,祝你成功!1.(本题3 )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间 2.(本题3分)4的算术平方根是( ) A .±2 B .2 C .﹣2 D . 3.(本题3分)下列说法不正确的是( )A.125的平方根是15± B. -9是81的一个平方根 C. 0.2的算术平方根是0.04 D. 0.04的算术平方根是0.24.(本题3的平方根是( ) A. ±4 B. ±2 C. -2 D. 25.(本题3分)若x 、y 分别是5的整数部分与小数部分,则2xy+y 2的值为( )A. 2B.5C.8D. 1 6.(本题3分)在实数32-, 7,0,-3π中,最小的实数是( ).A .32-B .7C .0D .-3π7.(本题3分)如图,已知数轴上的点A 、B 、C 、D 分别表示数-2、1、2、3,则表示数3P 应落在线段( )…外………○………………A. AO上B. OB上C. BC上D. CD上8.(本题3分)已知a、b是两个连续的整数,且a<<b,则a+b等于()A.5 B.6 C.7 D.6.59.(本题3分)下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A. 0个B. 1个C. 2个D. 3个10.(本题3分)已知6y=,则x y+的立方根是()A. 2B. -2C. 2± D. 8二、填空题(计32分)11.(本题4分) 0.01的平方根是_____,-27的立方根是______,1是__.12.(本题4.13.(本题4分)在-,0,0.010010001…,2π,﹣0.333…,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有__个.14.(本题4分)若410,则满足条件的整数a有__________个.15.(本题4分)如果252=x,那么=x;如果()932=-x,那么=x.16.(本题4分)若a、b为实数,且a+4+∣b-2∣=0,则a b=________________ .17.(本题42,0,ab a b==<-=且则.18.(本题4分)已知在纸面上有一数轴(如图所示),折叠纸面,使﹣1表示的点与3____________表示的点重合.三、解答题(计58分)19.(本题8分)小丽想在一块面积为36m2正方形纸片上,沿着边的方向裁出一块形纸片裁出符合要求的长方形纸片,为什么? 20.(本题8分)计算下列各题 (1)(﹣1)+(﹣8)﹣(﹣7)(2).21.(本题8分)求式子中x 的值: (1)25(x+2)2﹣36=0;(2)(2x+1)3+1=0. 22.(本题8分)(1)利用如图4×4方格,作出面积为8平方单位的正方形;(2)已知43-m 与m 47-是N 的平方根,求-2-N 的立方根. 23.(本题8分)已知3a +b ﹣1的立方根是3,2a +1的算术平方根是5,求a +b 的平方根.24.(本题9分)已知数a 满足2016a a -+=,求22016a -.求x,y的值.参考答案1.C【解析】试题解析:4 5.∴<<故选C.2.B【解析】试题分析:根据开方运算,可得一个数的算术平方根.解:4的算术平方根是2,故选:B.3.C【解析】试题解析:A15±,故A选项正确;B、−,故B选项正确;C0.04≠,故C选项错误;D,故D选项正确;故选C.【点睛】本题考查了立方根,平方运算是求平方根的关键,立方运算是解立方根的关键.4.B【解析】试题解析:,2±的平方根是±2故选B.5.D【解析】试题分析:先估算出5在哪两个整数之间,即可得到x、y的值,从而得到结果。
人教版七年级数学下册第六章实数素质检测卷一.选择题(共10 小题)1.4的值是()A.2B. -2C.± 2D.42.算术平方根等于它相反数的数是()A.0B.1C.0 或 1D.0 或± 13.以下实数是无理数的是()1A. -2B.πC.3D.164.以下说法正确的选项是()A.16 的平方根是 4B.8 的立方根是± 2C. -27 的立方根是 -3D.49 =±75.若3x3 y =0,则x与y的关系是()A. x=y=0B. x=yC. x 与 y 互为相反数D. x 与 y 互为倒数16 的平方根之和是()6.-64的立方根与A.0B. -6C. -2D.-6 或 -27.在实数中,立方根等于它自己的数有()A.1 个B.2 个C.3 个D.无数个8.绝对值大于不大于 6的整数有 ()个.A.5B. 10C. 6D. 139.关于非零的两个实数 a,b,规定 a※b=am –bn.若 3※ (–5)=15, (–1)※ 2 = –13,则 4※ (–7)的值为()A.?28B.28C. ?2D.210.如图,数轴上的点A,B,C,D,E对应的数分别为-1,0,1,2,3,那么与实数11 2 对应的点在()A.线段 AB 上B.线段 BC上C.线段 CD上D.线段 DE 上二.填空题(共 6 小题)11. 9 的平方根是; 的立方根是 .12.有一个数值变换器,原理如图:当输入的 x=4 时,输出的 y 等于.13.小于5 的最大整数是.14.数轴上从左到右挨次有A 、B 、C 三点表示的数分别为a 、b 、 10, 此中 b 为整数,且满足|a+3|+|b-2|=b-2, 则 b-a= .15.已知 |a|= 4, 3 b=2,ab<0,则a b 的值为.16.将一组数 按下边的方式进行摆列:2,2, 6,2 2, 10;2 3, 14,4,32,2 5;若 2 2 的地点记为(1,4), 26 的地点记为(3,3),则这组数中最大的有理数的地点记为.三.解答题(共 6 小题)4 |364| ( 3)23 12517.计算:27918.求以下各式中 x 的值:(1)(x+2)2-36=0;(2)64(x+1)3=27.19.已知 a 的平方根是它自己, b 是 2a+8 的立方根,求 ab+b 的算术平方根.20.已知5a1b 1 =0,求a2017(a b )2018的值.21.小丽想在一块面积为 640 cm2的正方形纸片中,沿着边的方向裁出一块面积为420 cm2的长方形的纸片,使它的长与宽之比为3:2,小丽能用这块纸片裁出切合要求的纸片吗?请简要说明原因.22.如图,面积为30 的长方形OABC的边 OA 在数轴上, O 为原点, OC=5,将长方形OABC 沿数轴水平挪动 ,O,A,B,C 挪动后的对应点分别记为O,A, B , C ,挪动后的长方形OABC 与11111111原长方形 OABC重叠部分的面积记为S.(1)当 S恰巧等于原长方形面积的一半时,数轴上点A1表示的数是多少?(2)设点 A 的挪动距离AA=x.1①当 S=10 时,求 x 的值;D1E1OE=1OO,D E②为线段 AA 的中点,点在线段 OO上,且当点所表示的数互为相反数31,时,求 x 的值.答案:1-5AABCC6-10 DCBBC11.人教版七年级数学下册第六章实数单元检测卷人教版七年级数学下册第六章实数单元检测卷(含答案)一、选择题1.81 的算术平方根是 ( A )A.9 B .±9 C .3 D .±32.以下说法正确的选项是 ( D )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.假如一个数有立方根,那么它必定有平方根D.与互为相反数3.预计 20 的算术平方根的大小在 ( C )A.2 与3 之间B.3与4之间C.4 与5 之间D.5与6之间4.若一个数的算术平方根等于它的相反数,则这个数是 ( D )5.若一个数的立方根是 -3, 则该数为 ( B )6.以下运算中,正确的有( A )①-=-;②=± 4;③=;④=-=-3.A.1 个B.2 个C.3 个D.4 个7.假如一个正数的两个平方根为x+1和x-,那么x 的值是( C )3A.4 B.2 C .1 D.±28.若一个数的一个平方根是 8,则这个数的立方根是(D)A. ±2B.±4C.2D.49..有以下说法:①实数和数轴上的点一一对应;②不带根号的数必定是有理数,带根号的数都是无理数;③是分数;④负数没有平方根;⑤无穷小数都是无理数,无理数都是无穷小数;⑥- 2 是 4 的平方根.此中正确的有几个( B)A.2B.3C.4D.5 10.以下各数中是无理数的为 ( A )1A. 2 B .0 C. 2017 D .-1二、填空题11.16的算术平方根是答案: 212.立方根等于自己的数为 __________.答案: 0,-1 ,113.如图是一个简单的数值运算程序,若输入x 的值为,则输出的数值为____________;答案: 214. 化简- ( 5+7) - | 5-7| 的结果为 ________.答案:- 2715.17的整数部分是 __________,小数部分是 ________.答案: 417-416.16 的平方根与﹣ 8 的立方根的和是 _______.答案:2或﹣6三、解答题17.计算:(1)2+3 2-5 2;(2)2( 7- 1) +7;(3) 0.36 ×431 121÷8;(4)| 3-2| +| 3-2| -| 2-1| ;(5) 1-0.64 -3- 8+4-| 7-3|.25解: (1) 原式= (1 +3-5) ×2=- 2.(2)2( 7-1) +7=2 7-2+7=3 7-2.213212(3) 原式= 0.6 ×11÷2=5×11×2=55.(4) 原式=3-2+2-3-2+ 1= 3- 2 2.2(5)原式= 0.6 -( -2) +5-3+ 7= 7.18.求以下各式的值:24222(1)1+25;(2) 25-24;(3) (- 3) .解: (人教版七年级数学下册第六章实数单元综合检测卷一、选择题(每题 3 分,共 30 分)1、若 a 的算术平方根存心义,则 a 的取值范围是()A、全部数B、正数C、非负数D、非零数2、以下各组数中,互为相反数的组是()A、-2 与( 2)2B、-2 和38C、-1与2D、︱- 2︱和 2 23、以下说法不正确的选项是()A、1的平方根是1B、- 9 是 81 的一个平方根255C、0.2 的算术平方根是 0.04D、- 27 的立方根是- 34、以下运算中,错误的选项是()① 12515,②( 4)2 4 ,③3131④1111916254520 14412A、 1个B、 2个C、 3个D、 4个5、以下说法正确的选项是()A、有理数都是有限小数B、无穷小数都是无理数C、无理数都是无穷小数D、有限小数是无理数6、若 m是169 的算术平方根,n 是121 的负的平方根,则(+)2的平方根为(A、 2)B、4C、±2D、±47、若k90 k1(k 是整数 ),则k=()A、6B、7C、8D、 98、以下各式建立的是()A、B、C、9.有一个数值变换器,原理以下图:当输入的=64 时,输出的D、y 等于()A、2B、8C、3D、 210、若均正整数,且,,的最小是()A、3B、4C、5D、6二、填空(每小 3 分,共 24 分)11、 4 的平方根是 _________;4的算平方根是 __________.12、比大小:________ .(填“>”,“<”或“=”)13、已知a 5 + b 3,那么.14、在中, ________是无理数 .15、的立方根的平方是 ________.16、若 5+ 的小数部分是, 5-的小数部分是 b, +5b=.17、数、b,定运算☆以下:☆ b=比如 2☆3=.算 [2☆( -4) ] ×[(-4)☆( -2) ]=.18、若a、 b 互相反数,c、 d 互倒数,=_______.三、解答(共 46 分)219. ( 6 分)算:( 2)3( 4)2 3 (4)31327220.(8 分)求以下各式中的 x.(1)(x-2)2-4=0;(2)(x+3)3+27=0.21.( 6 分)求出切合以下条件的数:(1)小于的全部整数之和;(2)小于的全部整数.22.把以下各数填入相的大括号内.3 33 2,-2,-8,0.5,2π,3.141 592 65,-|-25|,1.103 030 030 003⋯ (两个 3 之挨次多一个0).①有理数会合②无理数会合③正数会合④ 数会合{{{{⋯ } ;⋯ } ;⋯} ;⋯ } .23.( 6 分)已知 m 是313的整数部分, n 是13的小数部分,求 m-n 的。
人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是()A.33B.-33 C. 3 D.132.下列实数中无理数是()A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±206.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a23<b,且a、b是两个连续的整数,则|a+b|= .5.若的值在两个整数a与a+1之间,则a=.6.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.7.请写出一个大于8而小于10的无理数:.8.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题(38分)1.(6分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.2.(6分)已知,求的算术平方根.3.(6分)计算:(1)9×(﹣32)+4+|﹣3|(2) .4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{ …}; 无理数集合:{ …}; 正实数集合:{ …}; 整数集合:{ …}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-42.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y 0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算|1|++-19.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于。
一、选择题1.下列各数中比3-小的数是( ) A .2-B .1-C .12-D .02.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S3.下列各数中无理数共有( ) ①–0.21211211121111,②3π,③227,④8,⑤39.A .1个B .2个C .3个D .4个4.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A 31B .13C .23D 32 581 )A .3B .﹣3C .±3D .66.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★abb;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .①B .②C .①②D .①②③7.85 ) A .4B .5C .6D .7 8.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-9.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数10.若将2-711分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定11.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个 B .2个 C .3个 D .4个 12.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题13.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-14.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值. 15.计算:(1238127(5)-- (2)03(0)8|32|π--+ (3)解方程:4x 2﹣9=0.16.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.17.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号) 18.计算:(1)(1)|2|3-⨯-+ (2)2111(3)162⎛⎫-+--- ⎪⎝⎭19.若一个正数的平方根是21a -和5a -,则这个正数是______. 20.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.三、解答题21.计算:(1)82(22)-+ (2)()238272+--22.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________; (2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.23.(1)小明解方程2x 1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-,求x-y 的值. 24.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-25.“*”是规定的一种运算法则:a*b=a 2-3b . (1)求2*5的值为 ; (2)若(-3)*x=6,求x 的值;26.已知52a +的立方根是3,31a b +-的算术平方根是4,c 11的整数部分. (1)求a ,b ,c 的值; (2)求3a b c -+的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A【分析】根据实数比较大小的方法分析得出答案即可. 【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0> 故选:A . 【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.B解析:B 【分析】【详解】 ∵23<<,∴Q .故选:B . 【点睛】3.C解析:C 【分析】根据无理数的概念确定无理数的个数即可解答. 【详解】解:无理数有3π3个. 故答案为C .本题主要考查了无理数的定义,无理数主要有以下三种①带根号且开不尽方才是无理数,②无限不循环小数为无理数,③π的倍数.4.C解析:C 【分析】首先根据表示1A 、点B 可以求出线段AB 的长度,然后根据点B 和点C 关于点A 对称,求出AC 的长度,最后可以计算出点C 的坐标. 【详解】解:∵表示1A 、点B , ∴AB−1,∵点B 关于点A 的对称点为点C , ∴CA =AB ,∴点C 的坐标为:1−1)= 故选:C . 【点睛】本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.5.A解析:A 【分析】9,再利用算术平方根的定义求出答案. 【详解】 ∵9,∴3,故选:A . 【点睛】.6.A解析:A 【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立; ③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时, a a b b ★, b a ab★, ∴=a b b a ★★;a b <时,a b b a ★, b b aa★, ∴=a b b a ★★; ∴①符合题意.②由①,可得:=a b b a ★★, 当a b ≥时,∴()()()()22a b b a a b a a a b b b ba b ====★★★★, ∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b b b b a a a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立, ∴②不符合题意.③当a b ≥时,0a >,0b >,∴1ab≥,∴(12a b a b a b ab ++====≥≥★★,当a b <时,∴(12a b a b a b ab ++====≥≥★★,∴12a ba b+<★★不成立,∴③不符合题意,∴说法中正确的有1个:①.故选:A.【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.7.B解析:B【分析】直接利用估算无理数的大小的方法得出23<<,进而得出答案.【详解】解:459<<,<<23<<,83882∴-<<-,586∴<,8∴5.故选:B.【点睛】8.D解析:D【分析】根据算术平方根、立方根的定义逐项判断即可得.【详解】A0,没有意义,此项错误;B3==,此项错误;C2=,此项错误;D12=-,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根,熟练掌握算术平方根、立方根是解题关键.9.D解析:D 【分析】根据实数与数轴上的点是一一对应关系,即可得出. 【详解】解:根据实数与数轴上的点是一一对应关系. 故选:D . 【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.10.B解析:B 【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数. 【详解】 ∵221,23<<,34<<而墨迹覆盖的范围是1-3 ∴故选B. 【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.11.B解析:B 【分析】根据无理数的定义、立方根与平方根、实数与数轴的关系逐个判断即可得. 【详解】(12=是有理数,说法错误; (2)立方根等于本身的数是0和±1,说法错误; (3)当a -为非负数时,a -有平方根,说法错误; (4)实数与数轴上的点是一一对应的,说法正确;(50=,说法错误;(6)由正方形的面积公式得:a =是无理数,说法正确;综上,说法正确的有2个, 故选:B . 【点睛】本题考查了无理数、实数的运算、立方根与平方根,掌握理解各概念和运算法则是解题关键.12.A解析:A 【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x 与y 的值即可. 【详解】解:∵|x |=2,y 2=9,且xy <0, ∴x=2或-2,y=3或-3, 当x=2,y=-3时,x+y=2-3=-1; 当x=-2,y=3时,原式=-2+3=1, 故选:A . 【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.二、填空题13.数轴见解析<<0<<【分析】根据用数轴表示数的方法在数轴上先表示出各数再由数轴上右边的数总比左边的数大把这些数用<连接即可【详解】解:在数轴上表示各数如图:∴<<0<<【点睛】本题主要考查了实数的大解析:数轴见解析,13-< 1.5-<0<38<4-. 【分析】根据用数轴表示数的方法,在数轴上先表示出各数,再由“数轴上右边的数总比左边的数大”把这些数用“<”连接即可. 【详解】解:在数轴上表示各数如图:∴13 1.5-<0384-. 【点睛】本题主要考查了实数的大小比较的方法,掌握利用数轴比较实数的大小是解题的关键.14.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =. 【分析】(1)由新定义的运算法则进行计算,即可得到答案; (2)由新定义列出方程,解方程即可得到答案. 【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=; (2)由题意,则 ∵(2)*36x -=,∴(2)*333(2)6x x -=--=, 解得:1x =. 【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题.15.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可; (2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解. 【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-= (3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.16.4【分析】首先根据平方根的定义求出m 值再根据立方根的定义求出n 代入-n+2m 求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵解析:4 【分析】首先根据平方根的定义,求出m 值,再根据立方根的定义求出n ,代入-n+2m ,求出这个值的算术平方根即可. 【详解】解:∵一个正数的两个平方根分别是m+3和2m-15, ∴m+3+2m-15=0,解得:m=4,∵n的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m、n值,然后再求-n+2m的算术平方根.17.②【分析】根据有理数近似数字平方根立方根等概念即可判断【详解】解:①正有理数负有理数和零统称为有理数故原说法错误;②根据四舍五入可知近似数170所表示的准确数的范围是说法正确;③的平方根是原说法错误解析:②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;②根据四舍五入可知,近似数1.70所表示的准确数a的范围是1.695 1.705a<,说法正确;4=的平方根是2±,原说法错误;④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.18.(1)1;(2)【分析】(1)先计算绝对值再计算乘法最后计算加法;(2)先同时计算乘方减法化简算术平方根再计算乘法最后计算加减法【详解】(1)==-2+3=1;(2)===【点睛】此题考查有理数的混解析:(1)1;(2)1 112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法;(2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112. 【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.19.9【分析】由于一个正数的两个平方根互为相反数得:2a-1+a-5=0解方程即可求出a 然后依据平方根的定义求解即可【详解】解:由题可知:2a-1+a-5=0解得:a=2这个正数为=(2-5)2=9故答解析:9【分析】由于一个正数的两个平方根互为相反数,得:2a-1+ a-5=0,解方程即可求出a ,然后依据平方根的定义求解即可.【详解】解:由题可知:2a-1+ a-5=0,解得:a=2.这个正数为=(2-5)2=9.故答案为:9.【点睛】本题主要考查的是平方根的定义,熟练掌握平方根的定义和性质是解题的关键. 20.【分析】计算x 的立方根:当x=2727的立方根为3再把x=3代入得到它是无理数于是得到输出的值为【详解】解:当x=27时=33是有理数当x=3时为无理数所以输出的值为故答案为【点睛】本题考查了立方根【分析】计算x 的立方根:当x=27,27的立方根为3,再把x=3,它是无理数,于是.【详解】解:当x=27=3,3是有理数,当x=3..【点睛】本题考查了立方根:若一个数的立方等于a ,那么这个数叫a三、解答题21.(1)-2;(2)【分析】(1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2- 2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.22.(1);(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m = ∴12130m +=+=>,12110m -=-=< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.23.(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数.24.()22012>-->>-->>- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.25.(1)-11;(2)x=1.【分析】(1)根据新运算的规则,把新运算转化成普通有理数的计算,再按有理数相关计算法则计算即可;(2)根据新运算的规则,把等式左边的新运算转化成普通有理数运算,从而把等式转化成一元一次方程,再解一元一次方程即可.【详解】(1)∵ a ∗b= 23a b -,∴ 2∗5=223541511-⨯=-=- ;(2)∵ a ∗b=23a b -,∴ (−3)∗x=()23393x x --=- 即936x -=解此方程得:1x =.【点睛】本题考察有关新运算的问题,首先要弄清把新运算转化为普通运算的规则,然后根据规则把新运算部分转化为普通运算,再按普通运算的相关计算法则计算即可.26.(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =;∵3114<<,c 11的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316-+=-+=,16的平方根是4±a b c-+的平方根是4±.∴3a b c【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
一、选择题1.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为()A.﹣40 B.﹣32 C.18 D.102.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等3.81的算术平方根是()A.3 B.﹣3 C.±3 D.64.估算481的值()A.在7和8之间B.在6和7之间C.在5和6之间D.在4和5之间5.下列各式中,正确的是( )A.16=±4 B.±16=4 C.3273-=-D.2(4)4-=-6.数轴上表示下列各数的点,能落在A,B两个点之间的是()A.3B7C11D137.下列选项中,属于无理数的是()A.πB.227-C4D.08.估计50的立方根在哪两个整数之间()A.2与3B.3与4C.4与5D.5与6 9.下列各数中,属于无理数的是()A.227B.3.1415926 C.2.010010001 D.π3-10.一个正方体的体积为16,那么它的棱长在()之间A.1和2 B.2和3 C.3和4 D.4和5 11.下列计算正确的是()A.21155⎛⎫-=⎪⎝⎭B.()239-=C42=±D.()515-=-12.下列各组数中都是无理数的为()A .0.07,23,π; B .0.7•,π,2; C .2,6,π;D .0.1010101……101,π,3二、填空题 13.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 14.计算. (1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3)311256273⎛⎫+-+- ⎪ ⎪⎝⎭ (4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦15.把下列各数的序号填入相应的括号内①-3,②π,③327-,④-3.14,⑤2,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …}, 负分数集合{ …}, 正有理数集合{ …}, 无理数集合{ …}.16.若[x ]表示实数x 的整数部分,例如:[3.5]=3,则[17]=___. 17.若|2|0x x y -++=,则12xy -=_____. 18.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______. 19.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是________________.20.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎣=8→82⎡=⎣→2⎤⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题21.已知一个正数的平方根是3a +和215a -. (1)求这个正数.(2的平方根和立方根.22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-0,4-23.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.24.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14=141=0.1732=1.732,=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= . 25.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x26.设2+x 、y ,试求x 、y 的值与1x -的立方根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D.【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.2.C解析:C【分析】根据实数的定义和运算法则、绝对值的意义进行分析.【详解】A),故错误;B、实数与数轴上的点一一对应,故错误;C、垂线段最短,正确;D、如果两个实数的绝对值相等,那么这两个实数相等或互为相反数;故选:C.【点睛】本题考查实数的定义和运算法则、绝对值的意义等,熟练掌握基础知识是关键.3.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】. 4.C解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C.【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.5.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4=,此项错误;B、4=±,此项错误;C3=-,此项正确;D4==,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.6.B解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A点对应的数是1,B点对应的数是3,A.-2<<-1,不符合题意;B.2<3,符合题意;C、34,不符合题意;D. 34,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.7.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数;B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.8.B解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B.【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.9.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x,由题意可知316x=,解得x=,∵332163<<,∴23<,那么它的棱长在2和3之间.故选:B.【点睛】的范围.11.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.12.C解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误;B.0.7是有理数,故该选项错误;C,π都是无理数,故该选项正确;D.0.1010101……101是有理数,故该选项错误.故选:C.【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题13.【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键解析:10102021【分析】利用裂项法计算即可. 【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭11122021⎛⎫=⨯- ⎪⎝⎭1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键.14.(1);(2)-1;(3);(4)9【分析】(1)运用乘法分配律去括号再进行乘法运算最后进行加减运算即可得到答案;(2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根再进行加解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】(1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案; (4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案. 【详解】 解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭=33231(8)()()()44343-⨯-+-⨯+-⨯- =11624-+=354; (2)178(4)4(5)-÷-+⨯- =17+2-20 =-1;(3163⎫-⎪⎪⎭=115+()633-+- =5+0-6 =-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.15.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析. 【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得. 【详解】3=-,16.4【分析】根据无理数的估算可得即可求解【详解】解:∵∴∴故答案为:4【点睛】本题考查无理数的估算掌握无理数的估算方法是解题的关键解析:4 【分析】根据无理数的估算可得45<<,即可求解. 【详解】解:∵161725<<, ∴45<<,∴4=,故答案为:4. 【点睛】本题考查无理数的估算,掌握无理数的估算方法是解题的关键.17.2【分析】根据非负数的性质进行解答即可【详解】解:故答案为:2【点睛】本题考查了非负数的性质掌握几个非负数的和为0这几个数都为0是解题的关键解析:2 【分析】根据非负数的性质进行解答即可. 【详解】解:|2|0x -=,20x ∴-=,0x y +=, 2x ∴=,2y =-,∴112(2)222xy -=-⨯⨯-=,故答案为:2. 【点睛】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.18.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键解析:43-【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可. 【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=, ∵()3*2*2x =-, ∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键.19.【分析】计算x 的立方根:当x=2727的立方根为3再把x=3代入得到它是无理数于是得到输出的值为【详解】解:当x=27时=33是有理数当x=3时为无理数所以输出的值为故答案为【点睛】本题考查了立方根【分析】计算x 的立方根:当x=27,27的立方根为3,再把x=3,它是无理数,于是.【详解】解:当x=27=3,3是有理数,当x=3..【点睛】本题考查了立方根:若一个数的立方等于a ,那么这个数叫a 20.255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1得出前面的一个数最大是3再向前推一步取整的最大整数为15依此可得出答案【详解】解:(1)由题意得:64→=8→→=解析:255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.三、解答题21.(1)441或49;(2)30±,330或2±,34 【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数; (2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a =,则1230a +=,30的平方根是30±,立方根是330;若4a =,则12164a +==,4的平方根是2±,立方根是34.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法. 22.数轴见解析,13-< 1.5-<0<38<4-.【分析】根据用数轴表示数的方法,在数轴上先表示出各数,再由“数轴上右边的数总比左边的数大”把这些数用“<”连接即可.【详解】解:在数轴上表示各数如图:∴13 1.5-<0384-.【点睛】本题主要考查了实数的大小比较的方法,掌握利用数轴比较实数的大小是解题的关键. 23.(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 24.(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵=2.154=4.642, ∴=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.25.(1)1-(2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.26.4x =,2y =,1x -. 【分析】根据无理数的估算、立方根的定义即可得.【详解】因为469<<,所以23<<,所以22223+<++,即425<+,所以24,小数部分是242+=,即4x =,2y =,== 【点睛】本题考查了无理数的估算、立方根,熟练掌握无理数的估算方法是解题关键.。
人教版七年级数学下册第六章实数单元测试题一、选择题1.立方根是-0.2的数是( D )A.0.8 B.0.08 C.-0.8 D.-0.0082.与最接近的整数是( B )A.0 B.2 C.4 D.53.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±14.如果是实数,则下列一定有意义的是( D )A.B.C.D.5.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个6.若x-3是4的平方根,则x的值为( C )A.2B.±2C.1或5D.167.化简:人教版七年级数学下册第六章实数质量评估试卷一、选择题(每小题3分,共30分)1.-3的绝对值是()A.33B.-33C. 3 D.1 32.在实数-227,9,π,38中,是无理数的是()A.-227B.9C.πD.3 83.下列四个数中,最大的一个数是() A.2 B. 3 C.0 D.-24.某正数的平方根为a5和4a-255,则这个数为()A.1 B.2C.4 D.95.下面实数比较大小正确的是()A.3>7 B.3> 2C.0<-2 D.22<36.实数a在数轴上的位置如图1所示,则下列说法不正确的是()图1A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<07.如图2,在数轴上点A表示的数为3,点B表示的数为6.2,点A,B之间表示整数的点共有()图2A.3个B.4个C.5个D.6个8.|5-6|=()A.5+ 6 B.5- 6C.-5- 6 D.6- 59.若x-1+(y+1)2=0,则x-y的值为()A.-1 B.1C.2 D.310. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2C.547.7 D.±547.7二、填空题(每小题4分,共20分)11.比较大小:3-2>-23(填“>”“<”或“=”).12.计算:9-14+38-|-2|=.13.3-5的相反数为,4-17的绝对值为,绝对值为327的数为.14.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1,例如8*9=+1=4,那么15*196= .15.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是.三、解答题(共70分)16.(6分)求下列各式的值.(1)252-242×32+42;(2)2014-130.36-15×900;(3)|a-π|+|2-a|(2<a<π).(精确到0.01)17.(8分)求下列各式中x的值.(1)x2-5=4;(2)(x-2)3=-0.125.18.(8分)已知实数a,b满足a-14+|2b+1|=0,求b a的值.19.(8分)芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm,宽为2 dm,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号).(2)芳芳能否在长方形纸板上截出两个完整的,且面积分别为2 dm2和3 dm2的正方形纸板?判断并说明理由.(提示:2≈1.414,3≈1.732人教版七年级下册第六章实数单元同步测试一、选择题1、下列说法正确的是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.如果一个数有立方根,则它必有平方根D.不为0的任何数的立方根,都与这个数本身的符号同号2、下列语句中正确的是()A.-9的平方根是-3B.9的平方根是3C.9的算术平方根是3D.9的算术平方根是33、下列说法中正确的是()A 、若a 为实数,则0≥aB 、若a 为实数,则a 的倒数为a1 C 、若x,y 为实数,且x=y ,则y x = D 、若a 为实数,则02≥a4、估算728-的值在A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间5、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、1000、1000B 、2、3、5C 、2225,4,3D 、38,327,3646、下列说法中,正确的个数是( )(1)-64的立方根是-4;(2)49的算术平方根是7±;(3)271的立方根为31;(4)41是161的平方根。
2018学年新人教版七年级数学下册《第6章实数》单元测试卷(含答案)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(共12小题)1.9的平方根是()A.3 B.﹣3 C.±3 D.812.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>03.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与24.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数5.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间7.下列计算正确的是()A.2+4=6B.=4 C.÷=3 D.=﹣38.在实数0,π,,,中,无理数的个数有()A.1个 B.2个 C.3个 D.4个9.若m=﹣4,则估计m的值所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<510.如图数在线的A、B、C三点所表示的数分别为a、b、c.根据图中各点位置,判断下列各式何者正确()A.(a﹣1)(b﹣1)>0 B.(b﹣1)(c﹣1)>0 C.(a+1)(b+1)<0 D.(b+1)(c+1)<011.已知,那么值是()A.B.C.D.或112.用计算器求23值时,需相继按“2”,“∧”,“3”,“=”键,若小红相继按“”,“2”,“∧”,“4”,“=”键,则输出结果是()A.4 B.5 C.6 D.16二.填空题(共8小题)13.9的算术平方根是.14.已知a、b为两个连续的整数,且,则a+b=.15.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.16.数轴上实数b的对应点的位置如图所示,比较大小:b+10.17.的整数部分是.18.根据下面的运算程序,若输入x=1﹣时,输出的结果y=.19.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)20.把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.三.解答题(共8小题)21.实数a,b,c,在数轴上的位置如图所示,化简|c|﹣|a|+|﹣b|+|﹣a|.22.把下列各数填在相应的表示集合的大括号内.﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,,π,1.1010010001…整数{ …};分数{ …};无理数{ …}.23.(1)计算:(2)化简:24.解下列方程:(1);(2)﹣27(2x﹣1)3=﹣64.25.已知一个正数的平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?26.已知和互为相反数,求的值.27.已知是m+n+3的算术平方根,是m+2n的立方根,求B﹣A的立方根.28.先观察下列等式,再回答下列问题:①;②;③.(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).2018学年新人教版七年级数学下册《第6章实数》单元测试卷(含答案)参考答案与试题解析一.选择题(共12小题)1.9的平方根是()A.3 B.﹣3 C.±3 D.81【解答】解:∵(±3)2=9,∴9的平方根是±3.故选:C.2.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.3.下列各组数中,互为相反数的一组是()A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选A.4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数【解答】解:根据实数与数轴上的点是一一对应关系.故选:D.5.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵2=<=3,∴3<<4,故选B.6.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【解答】解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.7.下列计算正确的是()A.2+4=6B.=4 C.÷=3 D.=﹣3【解答】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.8.在实数0,π,,,中,无理数的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:π,是无理数,故选:B.9.若m=﹣4,则估计m的值所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5【解答】解:∵36<40<49,∴6<<7,∴2<﹣4<3.故选B.10.如图数在线的A、B、C三点所表示的数分别为a、b、c.根据图中各点位置,判断下列各式何者正确()A.(a﹣1)(b﹣1)>0 B.(b﹣1)(c﹣1)>0 C.(a+1)(b+1)<0 D.(b+1)(c+1)<0【解答】解:根据数轴可知c<﹣1<0<a<1<b,A、∵a﹣1<0,b﹣1>0,∴(a﹣1)(b﹣1)<0,故选项错误;B、∵b﹣1>0,c﹣1<0,∴(b﹣1)(c﹣1)<0,故选项错误;C、a+1>0,b+1>0,∴(a+1)(b+1)>0,故选项错误;D、b+1>0,c+1<0,∴(b+1)(c+1)<0,故选项正确.故选D.11.已知,那么值是()A.B.C.D.或1【解答】解:∵,则=1+|a|>0,故0<a<1,原式可化为﹣a=1,+|a|===中,∴=.故选A.12.用计算器求23值时,需相继按“2”,“∧”,“3”,“=”键,若小红相继按“”,“2”,“∧”,“4”,“=”键,则输出结果是()A.4 B.5 C.6 D.16【解答】解:由题意知,按“2”,“∧”,“3”,表示求23值,∴按“”,“2”,“∧”,“4”,“=”键表示求的4次幂,结果为4.故选A.二.填空题(共8小题)13.9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.已知a、b为两个连续的整数,且,则a+b=11.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.15.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.16.数轴上实数b的对应点的位置如图所示,比较大小:b+1>0.【解答】解:如图所示,b>﹣2,∴b>﹣1,∴b+1>0.故答案是:>.17.的整数部分是3.【解答】解:∵9<13<16,∴3<<4,∴的整数部分是3.故答案是:3.18.根据下面的运算程序,若输入x=1﹣时,输出的结果y=﹣1﹣.【解答】解:∵1﹣<0,∴将其代入y=x﹣2(x<0)计算,∴y=1﹣﹣2=﹣1﹣.故答案为:﹣1﹣.19.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)【解答】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n ﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.20.把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为±.【解答】解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.三.解答题(共8小题)21.实数a,b,c,在数轴上的位置如图所示,化简|c|﹣|a|+|﹣b|+|﹣a|.【解答】解:由题意得:b<c<﹣1<0<1<a,∴原式=﹣c﹣a﹣b+a=﹣c﹣b.22.把下列各数填在相应的表示集合的大括号内.﹣1,﹣,﹣|﹣3|,0,,﹣0.3,1.7,,π,1.1010010001…整数{ …};分数{ …};无理数{ …}.【解答】解:整数{﹣1,﹣|﹣3|,0};分数{﹣,,﹣0.3,1.7};无理数{,π,1.1010010001…}.23.(1)计算:(2)化简:【解答】解:(1)原式=;(2)原式=.24.解下列方程:(1);(2)﹣27(2x﹣1)3=﹣64.【解答】解:(1)∵2(x﹣1)2=8,∴(x﹣1)2=4,∴x﹣1=2或x﹣1=﹣2,∴x=3或x=﹣1;(2)∵,∴,∴,∴,∴.25.已知一个正数的平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?【解答】解:(1)∵m+3和2m﹣15是同一个正数的平方根,则这两个数互为相反数.即:(m+3)+(2m﹣15)=0解得m=4.则这个正数是(m+3)2=49.(2)=3,则它的平方根是±.26.已知和互为相反数,求的值.【解答】解:由题意可得,3y﹣1+1﹣2x=0,则3y=2x,所以=.27.已知是m+n+3的算术平方根,是m+2n的立方根,求B﹣A的立方根.【解答】解:∵是m+n+3的算术平方根,∴m﹣n=2,∵是m+2n的立方根,∴m﹣2n+3=3,∴联立得到方程组解这个方程组得:m=4,n=2.∴A=3,B=2,所以B﹣A的立方根为﹣1.28.先观察下列等式,再回答下列问题:①;②;③.(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).【解答】解:(1),验证:=;(2)(n为正整数).。
2017-2018学年七年级数学下册实数单元检测题一、选择题:1、在3.14、、﹣、、、0.2020020002这六个数中,无理数有()A.1个B.2个C.3个D.4个2、下列说法正确的是( )A.64的平方根是8B.﹣1的平方根是±1C.﹣8是64的平方根D.(﹣1)2没有平方根3、若a2=25,|b|=3,则a+b的值是( )A.﹣8B.±8C.±2D.±8或±24、下列各式中,正确的是()A. B.﹣()2=4 C. D.5、的平方根是()A.±3B.3C.±9D.96、的立方根是()A.8B.±2C.4D.27、若用a表示的整数部分,则在数轴上与2+a最接近的数所表示的点是()A. AB. BC. CD. D8、一个正方体的水晶砖,体积为100cm3,它的棱长大约在()A. 4cm~5cm之间B. 5cm~6cm之间C. 6cm~7cm之间D. 7cm~8cm之间9、下列结论中正确的是()A.数轴上任何一个点都表示唯一的有理数B.两个无理数的乘积一定是无理数C.两个无理数之和一定是无理数D.数轴上的点和实数是一一对应的10、若实数a满足则()A.2aB.0C.-2aD.-a11、已知=1.147,=2.472,=0.5325,则的值是()A.24.72B.53.25C.11.47D.114.712、估算的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题:13、的平方根是;14、=________15、已知一个表面积为12dm2的正方体,则这个正方体的棱长为 .16、已知某正数有两个平方根分别是a+3与2a﹣15,则a= ,这个正数为 .17、实数a、b在数轴上的位置如图,则化简= .18、已知a是小于的整数,且|2﹣a|=a﹣2,那么a的所有可能值是 .三、解答题:19、求x的值:(x+5)=16 20、求x的值:(x-2)2=16;21、求x的值:; 22、求x的值:(x﹣1)3=125.23、计算:. 24、计算:.25、已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分,求3a-b+c的平方根.26、已知某正数的两个平方根分别是和,的立方根是-2,求的算术平方根.27、若y=3,(4x+3y)3=-8,求x+y的立方根.x428、阅读理解:∵,即,∴.∴的整数部分为1,小数部分为.解决问题:已知是的整数部分,是的小数部分,求的平方根.参考答案1、B2、C3、D4、A5、A6、D7、B8、A9、D10、C11、C12、C13、答案为:±2;14、答案为:-2/315、答案为:.16、答案为:4,49.17、答案为:﹣2a.18、答案为:2、3、4、5.19、答案为:x=-9或X=-120、答案为:6或-221、答案为:x=-222、答案为:x=6.23、解:原式=9+(-4)-15=-1024、解:原式=0.25、解:由题意,解得a=5,b=2,c=3,∴3a-b+c=16 .∴3a-b+c的平方根为.26、2;27、-128、由题意,得,,所以即的平方根为.。
2018年七年级数学下册实数单元测试卷一、选择题:1、下列数中:﹣8,2.7,0.66666…,0,2,9.181181118…是无理数的有()A.0个B.1个C.2个D.3个2、下列说法正确的是()A.任何数都有算术平方根;B.只有正数有算术平方根;C.0和正数都有算术平方根;D.负数有算术平方根。
3、下列语句正确的是()A.9的平方根是﹣3B.﹣7是﹣49的平方根C.﹣15是225的平方根D.(﹣4)2的平方根是﹣44、的立方根是( )A.-1B.OC.1D. ±15、下列各数中,与数最接近的数是().A.4.99B.2.4C.2.5 D .2.36、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根;其中正确的有()A.3个B.2个C.1个D.0个7、的立方根是()A.2B. 2C.8D.-88、若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59、已知实数,满足,则等于()A.3B.-3C.1D.-110、如图,数轴上的点A、B、C、D分别表示数﹣1、1、2、3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上11、若,则估计的值所在的范围是()A. B. C. D.12、若,则=()A.﹣1B.1C.D.二、填空题:13、的平方根是.14、一个数的平方根和它的立方根相等,则这个数是 .15、己知,则________;16、若某数的平方根为a+3和2a-15,则这个数是 .17、已知|a+1|+=0,则a﹣b= .18、定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0,其中正确结论的序号是.(在横线上填上你认为所有正确的序号)三、解答题:19、计算:; 20、计算:.21、计算:22、求y的值:(2y﹣3)2﹣64=0; 23、64(x+1)3=27.24、实数a、b在数轴上的位置如图所示,请化简:.25、设a、b为实数,且=0,求a2﹣2的值.26、3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.27、已知和互为相反数,求x+4y的平方根。
一、选择题1.下列各组数中,互为相反数的是( )A .2-与2B .2-与12-C .()23-与23-D .38-与38- 2.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A .0个B .1个C .2个D .3个 3.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A .31-B .13-C .23-D .32- 4.下列说法正确的是( )A .2的平方根是2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D .无理数21的整数部分是55.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 136.下列实数是无理数的是( )A . 5.1-B .0C .1D .π 7.30.31,3π,27-912-38 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1 B .2C .3D .4 8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 9.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定 10.在0,3π5227,9 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ).A .1个B .2个C .3个D .4个11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7 12.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π3二、填空题13.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(42231131227-+-14.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.15.若()22210b a b -++-=,求()2020a b +的值.16.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.17.计算:(1)﹣12327-﹣(﹣2)9(2331)+32|18.计算:(12)-+(219.比较大小:12___________1220.-64的立方根是____,9的平方根是_____,16的算术平方根是__________.三、解答题21.计算:(12)-+(222.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”.(1)试举一个例子来判断上述结论的猜测是否成立?(21-的值.23.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根. 24.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=925.解方程:(1)24(1)90--=x(2)31(1)7x +-=-26.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意;C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键. 2.D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D .【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.3.C解析:C【分析】首先根据表示1A 、点B 可以求出线段AB 的长度,然后根据点B 和点C 关于点A 对称,求出AC 的长度,最后可以计算出点C 的坐标.【详解】解:∵表示1A 、点B ,∴AB−1,∵点B 关于点A 的对称点为点C ,∴CA =AB ,∴点C 的坐标为:1−1)=故选:C .【点睛】本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离. 4.B解析:B【分析】根据平方根的定义,算术平方根的定义,近似数的定义及无理数的估算方法分别计算可判定求解.【详解】解:A.2的平方根是,故错误;B.(﹣4)2的算术平方根是4,故正确;C.近似数35万精确到万位,故错误;D.∵4<5,∴4,故错误.故选:B.【点睛】本题考查了平方根,算术平方根,近似数,无理数,掌握相关概念及性质是解题的关键.5.B解析:B【分析】首先确定A,B对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A点对应的数是1,B点对应的数是3,A.-2<<-1,不符合题意;B.2<3,符合题意;C、34,不符合题意;D. 34,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.6.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】-是分数,是有理数,故选项不符合题意;解:A、 5.1B、0是整数,是有理数,故选项不符合题意;C、1是整数,是有理数,故选项不符合题意;D、π是无理数,故选项符合题意.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.C解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.B解析:B【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数.【详解】∵221,23<<,34<<而墨迹覆盖的范围是1-3∴故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.10.C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得. 【详解】22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),共有3个,故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.11.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x 与y 的值即可.【详解】解:∵|x |=2,y 2=9,且xy <0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A .【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.12.C解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题13.(1)-2;(2)360;(3)4;(4)【分析】(1)先去括号和绝对值再进行混合运算即可(2)先将括号内通分运算再将除法改为乘法最后计算即可(3)先去括号再将除法改为乘法最后计算即可(4)分别计算解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-=4(4+=1=-5314=3【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.14.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a)的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a的值根据平方运算可得答案【详解】解:(1)∵x的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a)的值,求解可得答案;,相等或互为相反数,列式求解可得a的值,根据平方运算,可得(2)根据题意可知x y答案.【详解】解:(1)∵x的算术平方根是3,∴1-a=9,∴a=-8;(2)x,y都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a)=(1-2)2=1,当a=4时,(1-a)=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解.15.1【分析】根据平方的非负性开平方的非负性求出ab的值代入计算即可【详解】解:∵∴解得:∴【点睛】此题考查平方的非负性开平方的非负性有理数的混合运算正确理解平方的非负性开平方的非负性是解题的关键解析:1【分析】根据平方的非负性、开平方的非负性求出a、b的值,代入计算即可.解:∵()220b -+=,∴20b -+=,210a b +-=,解得:2b =,3a =-,∴()()20202020321a b +=-+=.【点睛】此题考查平方的非负性、开平方的非负性,有理数的混合运算,正确理解平方的非负性、开平方的非负性是解题的关键. 16.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则 解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题. 17.(1)﹣9;(2)5【分析】(1)先计算立方根和算术平方根再进行加减运算即可;(2)先计算乘法和绝对值再相加即可【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=3解析:(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.18.(1)-2;(2)【分析】(1)原式去括号合并即可得到结果;(2)首先计算开方然后从左向右依次计算求出算式的值是多少即可【详解】解:(1)原式=(2)原式【点睛】此题主要考查了实数的运算要熟练掌握解解析:(1)-2;(2)【分析】(1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.<【分析】利用作差法比较两个数的大小【详解】解:∵1<3<4∴1<<2∴1-1<-1<2-1∴0<-1<1∴<故答案为:<【点睛】本题考查了实数的大小比较此题的难点是利用夹逼法推知的取值范围解析:<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1<2-1∴0<1∴12<12.故答案为:<.【点睛】本题考查了实数的大小比较,此题的难点是利用“夹逼法”20.【分析】根据立方根平方根算术平方根的等于即可得答案【详解】∵(-4)3=-64∴-64的立方根是-4∵(±3)2=9∴9的平方根是±3∵(±4)2=164>0∴16的算术平方根是4∵=9∴的平方根是-3±43±解析:4【分析】根据立方根、平方根、算术平方根的等于即可得答案.【详解】∵(-4)3=-64,∴-64的立方根是-4,∵(±3)2=9,∴9的平方根是±3,∵(±4)2=16,4>0,∴16的算术平方根是4,∵,∴±3,故答案为:-4,±3,4,±3【点睛】本题考查立方根、平方根、算术平方根,熟练掌握定义是解题关键.三、解答题21.(1)-2;(2)【分析】(1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-=-2(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.22.(1)见解析;(2)13-=-【分析】(10=,则2与﹣2互为相反数进行说明.(2)利用(1)的结论,列出方程(3﹣2x)+(x+5)=0,从而解出x的值,代入可得出答案.【详解】解:(10=,则2与﹣2互为相反数;(2)由已知,得(3﹣2x)+(x+5)=0,解得x=8,∴1=1=1﹣4=﹣3.【点睛】本题考查立方根的知识,难度一般,注意一个数的立方根有一个,它和这个数正负一致,本题的结论同学们可以记住,以后可直接运用.23.【分析】先根据算术平方根的定义求得2x的值,再根据算术平方根的定义求出y,根据立方根的定义求z,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x+1的算术平方根是0,∴2x+1=0,∴2x=﹣1,∵=4,∴y=16,∵z是﹣27的立方根,∴z=﹣3,∴2x+y+z=﹣1+16﹣3=12,∴2x+y+z的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.24.(1)x=23-;(2)x=43或x=23-【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:38 27x=,23x=;(2)解:313x-=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键. 25.(1)152x =,212x =-;(2)x =﹣1. 【分析】(1)方程整理后,利用平方根性质计算即可求出解;(2)方程整理后,利用立方根性质计算即可求出解.【详解】解:(1)24(1)90--=x 方程整理得:2(1)9=4x -, 开方得:321=x -±解得,152x =,212x =-; (2)31(1)7x +-=-方程整理得:(x ﹣1)3=﹣8,开立方得:x ﹣1=﹣2,解得:x =﹣1.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解本题的关键. 26.(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题.。
七年级数学第六章实数检测题
班级: 姓名:
一、选择题(每小题3分,共24分)
1、立方根为4的数是 ··················································································· ( )
A、512 B、64 C、2 D、±2
2、已知正数m满足条件m2=39,则m的整数部分为 ········································ ( )
A、9 B、8 C、7 D、6
3、下列各式正确的是 ··················································································· ( )
A、16=±4 B、364=4 C、-9=-3 D、16 19=413
4、一个数的平方根和它的立方根相等,则这个数是 ············································ ( )
A、1 B、0 C、1或0 D、1或0或-1
5、已知x+10+y-13=0,则x+y的值是 ················································· ( )
A、13 B、3 C、-3 D、23
6、两个连续自然数,前一个数的算术平方根是x,则后一个数的算术平方根是 ········ ( )
A、x+1 B、x2+1 C、x+1 D、x2+1
7、若3x+3y=0,则x与y的关系是 ···························································· ( )
A、x=y=0 B、x与y的值相等 C、x与y互为倒数 D、 x与y互为相反数
8、如果323.7=2.872,323700=28.72,则30.0237= ·································· ( )
A、0.2872 B、28.72 C、2.872 D、0.02872
二、填空题(每空3分,共30分)
9、7表示 的算术平方根;
10、127的立方根为 ;
11、±25= ,3-8= ;
12、写出两个负无理数: ;
13、比较大小:π 3.14, -2 -1.5;
14、在5与26之间,整数个数是 个;
15、在数轴上一个点到原点距离为22,则这个数为 ;
16、如果x的平方根是±2,那么x= ,364的平方根是 ;
17、观察下列各式:32-12=2×4 ,42-12=3×5 ,52-12=4×6 ,……,则
102-12= ;
18、如果x2=9,则x= ,x3=-8,则x= 。
三、解答题(共66分)
19、计算:(每题4分,共16分)
(1)81 (2)43
(3)-1 916 (4)3827+19
20、(6分)琳琳家有一个面积为30m2的正方形活动室,那么请你求出这个正方形活动室的边长,并
判断边长是不是有理数,为什么?
21、(8分)在-13,π,0,2,-22,2.121121112…(两个2之间依次多一个1),0.3·。
(1)是有理数的有: ;
(2)是无理数的有: ;
(3)是整数的有: ;
(4)是分数的有: 。
22、计算(每小题5分,共10分)
(1) -122×()-22-327÷3-133 (2) ||1-2+||2-3+…+||99-100
23、(8分)一个正方体木块的体积是64cm3,其棱长数值与另一个正方体木块的一个侧面积的数值
相等,求它们的体积比。
24、(6分)跳伞运动员跳离飞机,在未打开降落伞前,下降的高度d(米)与下降的时间t(秒)之间有
关系式:t=
d
5
,(不计空气阻力)
(1)填表:
下降高度d(米) 20 80 245 320
下降时间t(秒)
(2)若共下降2000米,则前500米与后1500米所用的时间分别是多少?
25、(12分)如图,纸上有5个边长为1的小正方形组成的纸片,可以把它剪下一块并拼成一个正方
形。
(1)拼成的正方形的面积与边长分别是多少?
(2)在数轴上作出表示5、-25的点。
(3)你能在3×3的正方形方格图中,连接四个点组成面积为5的正方形吗?
备用图