2018年高考数学二轮复习数学思想领航三分类与整合思想专题突破讲义文
- 格式:doc
- 大小:145.54 KB
- 文档页数:5
思想方法训练2分类讨论思想能力突破训练1.已知函数f(x)=若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是()A.(-∞,2)B.(-∞,4)C.[2,4]D.(2,+∞)2.在△ABC中,内角A,B,C所对的边分别是a,b,c,若b2+c2-a2=bc,且b=a,则下列关系一定不成立的是()A.a=cB.b=cC.2a=cD.a2+b2=c23.若a>0,且a≠1,p=log a(a3+1),q=log a(a2+1),则p,q的大小关系是()A.p=qB.p<qC.p>qD.当a>1时,p>q;当0<a<1时,p<q4.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x,则该双曲线的离心率为()A.B.C.D.5.已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N,=λ,其中λ为常数,则动点M的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线6.若x>0,且x≠1,则函数y=lg x+log x10的值域为()A.RB.[2,+∞)C.(-∞,-2]D.(-∞,-2]∪[2,+∞)7.设S n是等比数列{a n}的前n项和,S3,S9,S6成等差数列,且a2+a5=2a m,则m等于()A.6B.7C.8D.108.已知三棱锥S-ABC的所有顶点都在球O的球面上,AB=BC=CA=3,SA=SB=SC,球心O到平面ABC的距离为1,则SA与平面ABC所成角的大小为()A.30°B.60°C.30°或60°D.45°或60°9.已知函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是.10.已知函数f(x)=|ln x|,g(x)=则方程|f(x)+g(x)|=1实根的个数为.11.已知函数f(x)=2a sin2x-2a sin x cos x+a+b(a≠0)的定义域为,值域为[-5,1],求常数a,b的值.12.设a>0,函数f(x)=x2-(a+1)x+a(1+ln x).(1)求曲线y=f(x)在(2,f(2))处与直线y=-x+1垂直的切线方程;(2)求函数f(x)的极值.思维提升训练13.若直线l过点P且被圆x2+y2=25截得的弦长是8,则直线l的方程为()A.3x+4y+15=0B.x=-3或y=-C.x=-3D.x=-3或3x+4y+15=014.已知函数f(x)=则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是(注:e为自然对数的底数)()A.(-1,0]B.C.(-1,0]∪D.15.已知a为实数,函数f(x)=|x2-ax|在区间[0,1]上的最大值记为g(a).当a=时,g(a)的值最小.16.已知函数f(x)=a ln x+x2(a为实数).(1)求函数f(x)在区间[1,e]上的最小值及相应的x值;(2)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.17.设函数f(x)=αcos 2x+(α-1)(cos x+1),其中α>0,记|f(x)|的最大值为A.(1)求f'(x);(2)求A;(3)证明|f'(x)|≤2A.参考答案思想方法训练2分类讨论思想能力突破训练1.B解析当-<1时,显然满足条件,即a<2;当a≥2时,-1+a>2a-5,即2≤a<4.综上知,a<4,故选B.2.B解析在△ABC中,由余弦定理得cos A=,则A=又b=a,由正弦定理,得sin B=sin A=,则B=或B=当B=时,△ABC为直角三角形,选项C,D成立;当B=时,△ABC为等腰三角形,选项A成立,故选B.3.C解析当0<a<1时,y=a x和y=log a x在其定义域上均为减函数,∴a3+1<a2+1.∴log a(a3+1)>log a(a2+1),即p>q.当a>1时,y=a x和y=log a x在其定义域上均为增函数,∴a3+1>a2+1,∴log a(a3+1)>log a(a2+1),即p>q.综上可得p>q.4.C解析焦点在x轴上时,,此时离心率e=;焦点在y轴上时,,此时离心率e=,故选C.5.C解析不妨设|AB|=2,以AB中点O为原点,AB所在直线为x轴建立平面直角坐标系xOy,则A(-1,0),B(1,0),设M(x,y),则N(x,0),=(0,-y),=(x+1,0),=(1-x,0),代入已知式子得λx2+y2=λ,当λ=1时,曲线为A;当λ=2时,曲线为B;当λ<0时,曲线为D,所以选C.6.D解析当x>1时,y=lg x+log x10=lg x+2=2;当0<x<1时,y=lg x+log x10=--2=-2.故函数的值域为(-∞,-2]∪[2,+∞).7.C解析∵S3,S9,S6成等差数列,∴2S9=S3+S6.若公比q=1,显然有2S9≠S3+S6,因此q≠1,从而2,2q9-q6-q3=0,即2q6-q3-1=0,∴q3=-或q3=1(舍去).∵a2+a5=2a m,∴a2(1+q3-2q m-2)=0,1+q3-2q m-2=0,∴q m-2=,∴m=8.8.C解析球心位置有以下两种情况:球心在三棱锥内部;球心在三棱锥外部.球心在三棱锥内部时,三棱锥为正三棱锥,设O'为△ABC的中心,在△ABC中,可求得O'A=,所以可得OA=2,SO'=3,SA与平面ABC所成的角即为∠SAO',由tan∠SAO'=,得∠SAO'=60°.同理可得第二种情况中所成角为30°.9解析当a>1时,y=a x在区间[1,2]上递增,故a2-a=,得a=;当0<a<1时,y=a x在区间[1,2]上递减,故a-a2=,得a=故a=或a=10.4解析f(x)=g(x)=(1)当0<x≤1时,方程化为|-ln x+0|=1,解得x=或x=e(舍去).所以此时方程只有1个实根(2)当1<x<2时,方程可化为|ln x+2-x2|=1.设h(x)=ln x+2-x2,则h'(x)=-2x=因为1<x<2,所以h'(x)=<0,即函数h(x)在区间(1,2)上单调递减.因为h(1)=ln1+2-12=1,h(2)=ln2+2-22=ln2-2,所以h(x)∈(ln2-2,1).又ln2-2<-1,故当1<x<2时方程只有1解.(3)当x≥2时,方程可化为|ln x+x2-6|=1.记函数p(x)=ln x+x2-6,显然p(x)在区间[2,+∞)上单调递增.故p(x)≥p(2)=ln2+22-6=ln2-2<-1.又p(3)=ln3+32-6=ln3+3>1,所以方程|p(x)|=1有2个解,即方程|ln x+x2-6|=1有2个解.综上可知,方程|f(x)+g(x)|=1共有4个实根.11.解f(x)=a(1-cos2x)-a sin2x+a+b=-2a sin+2a+b.∵x,∴2x+,∴-sin1.因此,由f(x)的值域为[-5,1],可得或解得12.解(1)由已知x>0,f'(x)=x-(a+1)+因为曲线y=f(x)在(2,f(2))处切线的斜率为1,所以f'(2)=1,即2-(a+1)+=1,所以a=0,此时f(2)=2-2=0,故曲线f(x)在(2,f(2))处的切线方程为x-y-2=0.(2)f'(x)=x-(a+1)+①当0<a<1时,若x∈(0,a),则f'(x)>0,函数f(x)单调递增;若x∈(a,1),则f'(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f'(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-a2+a ln a,极小值是f(1)=-②当a=1时,若x∈(0,1),则f'(x)>0,若x=1,则f'(x)=0,若x∈(1,+∞),则f'(x)>0,所以函数f(x)在定义域内单调递增,此时f(x)没有极值点,也无极值.③当a>1时,若x∈(0,1),则f'(x)>0,函数f(x)单调递增;若x∈(1,a),则f'(x)<0,函数f(x)单调递减;若x∈(a,+∞),则f'(x)>0,函数f(x)单调递增,此时x=1是f(x)的极大值点,x=a是f(x)的极小值点,函数f(x)的极大值是f(1)=-,极小值是f(a)=-a2+a ln a.综上,当0<a<1时,f(x)的极大值是-a2+a ln a,极小值是-;当a=1时,f(x)无极值;当a>1时,f(x)的极大值是-,极小值是-a2+a ln a.思维提升训练13.D解析若直线l的斜率不存在,则该直线的方程为x=-3,代入圆的方程解得y=±4,故直线l 被圆截得的弦长为8,满足条件;若直线l的斜率存在,不妨设直线l的方程为y+=k(x+3),即kx-y+3k-=0,因为直线l被圆截得的弦长为8,故半弦长为4,又圆的半径为5,则圆心(0,0)到直线l 的距离为,解得k=-,此时直线l的方程为3x+4y+15=0.14.C解析因为方程f(x)=ax恰有两个不同的实数根,所以y=f(x)与y=ax的图象有2个交点,a 表示直线y=ax的斜率.当a>0,x>1时,y'=设切点为(x0,y0),k=,所以切线方程为y-y0=(x-x0),而切线过原点,所以y0=1,x0=e2,k=,所以切线l1的斜率为设过原点与y=x+1平行的直线为l2,则直线l2的斜率为,所以当直线在l1和l2之间时,符合题意,此时实数a的取值范围是当a<0时,设过原点与点(1,-1)的直线为l3,其斜率为-1,则在l3的位置以O为中心逆时针旋转一直转到水平位置都符合题意,此时实数a的取值范围是(-1,0].综上所述,实数a的取值范围是(-1,0],故选C.15.2-2解析当a≤0时,在区间[0,1]上,f(x)=|x2-ax|=x2-ax,且在区间[0,1]上为增函数,当x=1时,f(x)取得的最大值为f(1)=1-a;当0<a<1时,f(x)=在区间内递增,在区间上递减,在区间(a,1]上递增,且f,f(1)=1-a,-(1-a)=(a2+4a-4),∴当0<a<2-2时,<1-a.当2-2≤a<1时,1-a;当1≤a<2时,f(x)=-x2+ax在区间上递增,在区间上递减,当x=时,f(x)取得最大值f;当a≥2时,f(x)=-x2+ax在区间[0,1]上递增,当x=1时,f(x)取得最大值f(1)=a-1.则g(a)=在区间(-∞,2-2)上递减,在区间[2-2,+∞)上递增,即当a=2-2时,g(a)有最小值.16.解(1)f(x)=a ln x+x2的定义域为(0,+∞),f'(x)=+2x=当x∈[1,e]时,2x2∈[2,2e2].若a≥-2,则f'(x)在区间[1,e]上非负(仅当a=-2,x=1时,f'(x)=0),故f(x)在区间[1,e]上单调递增,此时f(x)min=f(1)=1;若-2e2<a<-2,令f'(x)<0,解得1≤x<,此时f(x)单调递减;令f'(x)>0,解得<x≤e,此时f(x)单调递增,所以f(x)min=f ln;若a≤-2e2,f'(x)在区间[1,e]上非正(仅当a=-2e2,x=e时,f'(x)=0),故f(x)在区间[1,e]上单调递减,此时f(x)min=f(e)=a+e2.综上所述,当a≥-2时,f(x)min=1,相应的x=1;当-2e2<a<-2时,f(x)min=ln,相应的x=;当a≤-2e2时,f(x)min=a+e2,相应的x=e.(2)不等式f(x)≤(a+2)x可化为a(x-ln x)≥x2-2x.由x∈[1,e],知ln x≤1≤x且等号不能同时成立,得ln x<x,即x-ln x>0,因而a,x∈[1,e],令g(x)=(x∈[1,e]),则g'(x)=,当x∈[1,e]时,x-1≥0,ln x≤1,x+2-2ln x>0,从而g'(x)≥0(仅当x=1时取等号),所以g(x)在区间[1,e]上是增函数,故g(x)min=g(1)=-1,所以实数a的取值范围是[-1,+∞).17.(1)解f'(x)=-2αsin2x-(α-1)sin x.(2)解(分类讨论)当α≥1时,|f(x)|=|αcos2x+(α-1)(cos x+1)|≤α+2(α-1)=3α-2=f(0).因此A=3α-2.当0<α<1时,将f(x)变形为f(x)=2αcos2x+(α-1)cos x-1.令g(t)=2αt2+(α-1)t-1,则A是|g(t)|在[-1,1]上的最大值,g(-1)=α,g(1)=3α-2,且当t=时,g(t)取得极小值,极小值为g=--1=-令-1<<1,解得α<-(舍去),α>当0<时,g(t)在区间(-1,1)内无极值点,|g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|,所以A=2-3α.当<α<1时,由g(-1)-g(1)=2(1-α)>0,知g(-1)>g(1)>g又-|g(-1)|=>0,所以A=综上,A=(3)证明由(1)得|f'(x)|=|-2αsin2x-(α-1)sin x|≤2α+|α-1|.当0<时,|f'(x)|≤1+α≤2-4α<2(2-3α)=2A.当<α<1时,A=1,所以|f'(x)|≤1+α<2A.当α≥1时,|f'(x)|≤3α-1≤6α-4=2A.所以|f'(x)|≤2A.。
思想方法训练2分类讨论思想能力突破训练1.已知函数f(x)=若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是()A.(-∞,2)B.(-∞,4)C.[2,4]D.(2,+∞)2.在△ABC中,内角A,B,C所对的边分别是a,b,c,若b2+c2-a2=bc,且b=a,则下列关系一定不成立的是()A.a=cB.b=cC.2a=cD.a2+b2=c23.若a>0,且a≠1,p=log a(a3+1),q=log a(a2+1),则p,q的大小关系是()A.p=qB.p<qC.p>qD.当a>1时,p>q;当0<a<1时,p<q4.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y=±x,则该双曲线的离心率为()A.B.C.D.5.已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N,=λ,其中λ为常数,则动点M的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线6.若x>0,且x≠1,则函数y=lg x+log x10的值域为()A.RB.[2,+∞)C.(-∞,-2]D.(-∞,-2]∪[2,+∞)7.设S n是等比数列{a n}的前n项和,S3,S9,S6成等差数列,且a2+a5=2a m,则m等于()A.6B.7C.8D.108.已知三棱锥S-ABC的所有顶点都在球O的球面上,AB=BC=CA=3,SA=SB=SC,球心O到平面ABC的距离为1,则SA与平面ABC所成角的大小为()A.30°B.60°C.30°或60°D.45°或60°9.已知函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是.10.已知函数f(x)=|ln x|,g(x)=则方程|f(x)+g(x)|=1实根的个数为.11.已知函数f(x)=2a sin2x-2a sin x cos x+a+b(a≠0)的定义域为,值域为[-5,1],求常数a,b的值.12.设a>0,函数f(x)=x2-(a+1)x+a(1+ln x).(1)求曲线y=f(x)在(2,f(2))处与直线y=-x+1垂直的切线方程;(2)求函数f(x)的极值.思维提升训练13.若直线l过点P且被圆x2+y2=25截得的弦长是8,则直线l的方程为()A.3x+4y+15=0B.x=-3或y=-C.x=-3D.x=-3或3x+4y+15=014.已知函数f(x)=则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是(注:e为自然对数的底数)()A.(-1,0]B.C.(-1,0]∪D.15.已知a为实数,函数f(x)=|x2-ax|在区间[0,1]上的最大值记为g(a).当a=时,g(a)的值最小.16.已知函数f(x)=a ln x+x2(a为实数).(1)求函数f(x)在区间[1,e]上的最小值及相应的x值;(2)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.17.设函数f(x)=αcos 2x+(α-1)(cos x+1),其中α>0,记|f(x)|的最大值为A.(1)求f'(x);(2)求A;(3)证明|f'(x)|≤2A.参考答案思想方法训练2分类讨论思想能力突破训练1.B解析当-<1时,显然满足条件,即a<2;当a≥2时,-1+a>2a-5,即2≤a<4.综上知,a<4,故选B.2.B解析在△ABC中,由余弦定理得cos A=,则A=又b=a,由正弦定理,得sin B=sin A=,则B=或B=当B=时,△ABC为直角三角形,选项C,D成立;当B=时,△ABC为等腰三角形,选项A成立,故选B.3.C解析当0<a<1时,y=a x和y=log a x在其定义域上均为减函数,∴a3+1<a2+1.∴log a(a3+1)>log a(a2+1),即p>q.当a>1时,y=a x和y=log a x在其定义域上均为增函数,∴a3+1>a2+1,∴log a(a3+1)>log a(a2+1),即p>q.综上可得p>q.4.C解析焦点在x轴上时,,此时离心率e=;焦点在y轴上时,,此时离心率e=,故选C.5.C解析不妨设|AB|=2,以AB中点O为原点,AB所在直线为x轴建立平面直角坐标系xOy,则A(-1,0),B(1,0),设M(x,y),则N(x,0),=(0,-y),=(x+1,0),=(1-x,0),代入已知式子得λx2+y2=λ,当λ=1时,曲线为A;当λ=2时,曲线为B;当λ<0时,曲线为D,所以选C.6.D解析当x>1时,y=lg x+log x10=lg x+2=2;当0<x<1时,y=lg x+log x10=--2=-2.故函数的值域为(-∞,-2]∪[2,+∞).7.C解析∵S3,S9,S6成等差数列,∴2S9=S3+S6.若公比q=1,显然有2S9≠S3+S6,因此q≠1,从而2,2q9-q6-q3=0,即2q6-q3-1=0,∴q3=-或q3=1(舍去).∵a2+a5=2a m,∴a2(1+q3-2q m-2)=0,1+q3-2q m-2=0,∴q m-2=,∴m=8.8.C解析球心位置有以下两种情况:球心在三棱锥内部;球心在三棱锥外部.球心在三棱锥内部时,三棱锥为正三棱锥,设O'为△ABC的中心,在△ABC中,可求得O'A=,所以可得OA=2,SO'=3,SA与平面ABC所成的角即为∠SAO',由tan∠SAO'=,得∠SAO'=60°.同理可得第二种情况中所成角为30°.9解析当a>1时,y=a x在区间[1,2]上递增,故a2-a=,得a=;当0<a<1时,y=a x在区间[1,2]上递减,故a-a2=,得a=故a=或a=10.4解析f(x)=g(x)=(1)当0<x≤1时,方程化为|-ln x+0|=1,解得x=或x=e(舍去).所以此时方程只有1个实根(2)当1<x<2时,方程可化为|ln x+2-x2|=1.设h(x)=ln x+2-x2,则h'(x)=-2x=因为1<x<2,所以h'(x)=<0,即函数h(x)在区间(1,2)上单调递减.因为h(1)=ln1+2-12=1,h(2)=ln2+2-22=ln2-2,所以h(x)∈(ln2-2,1).又ln2-2<-1,故当1<x<2时方程只有1解.(3)当x≥2时,方程可化为|ln x+x2-6|=1.记函数p(x)=ln x+x2-6,显然p(x)在区间[2,+∞)上单调递增.故p(x)≥p(2)=ln2+22-6=ln2-2<-1.又p(3)=ln3+32-6=ln3+3>1,所以方程|p(x)|=1有2个解,即方程|ln x+x2-6|=1有2个解.综上可知,方程|f(x)+g(x)|=1共有4个实根.11.解f(x)=a(1-cos2x)-a sin2x+a+b=-2a sin+2a+b.∵x,∴2x+,∴-sin1.因此,由f(x)的值域为[-5,1],可得或解得12.解(1)由已知x>0,f'(x)=x-(a+1)+因为曲线y=f(x)在(2,f(2))处切线的斜率为1,所以f'(2)=1,即2-(a+1)+=1,所以a=0,此时f(2)=2-2=0,故曲线f(x)在(2,f(2))处的切线方程为x-y-2=0.(2)f'(x)=x-(a+1)+①当0<a<1时,若x∈(0,a),则f'(x)>0,函数f(x)单调递增;若x∈(a,1),则f'(x)<0,函数f(x)单调递减;若x∈(1,+∞),则f'(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-a2+a ln a,极小值是f(1)=-②当a=1时,若x∈(0,1),则f'(x)>0,若x=1,则f'(x)=0,若x∈(1,+∞),则f'(x)>0,所以函数f(x)在定义域内单调递增,此时f(x)没有极值点,也无极值.③当a>1时,若x∈(0,1),则f'(x)>0,函数f(x)单调递增;若x∈(1,a),则f'(x)<0,函数f(x)单调递减;若x∈(a,+∞),则f'(x)>0,函数f(x)单调递增,此时x=1是f(x)的极大值点,x=a是f(x)的极小值点,函数f(x)的极大值是f(1)=-,极小值是f(a)=-a2+a ln a.综上,当0<a<1时,f(x)的极大值是-a2+a ln a,极小值是-;当a=1时,f(x)无极值;当a>1时,f(x)的极大值是-,极小值是-a2+a ln a.思维提升训练13.D解析若直线l的斜率不存在,则该直线的方程为x=-3,代入圆的方程解得y=±4,故直线l 被圆截得的弦长为8,满足条件;若直线l的斜率存在,不妨设直线l的方程为y+=k(x+3),即kx-y+3k-=0,因为直线l被圆截得的弦长为8,故半弦长为4,又圆的半径为5,则圆心(0,0)到直线l 的距离为,解得k=-,此时直线l的方程为3x+4y+15=0.14.C解析因为方程f(x)=ax恰有两个不同的实数根,所以y=f(x)与y=ax的图象有2个交点,a 表示直线y=ax的斜率.当a>0,x>1时,y'=设切点为(x0,y0),k=,所以切线方程为y-y0=(x-x0),而切线过原点,所以y0=1,x0=e2,k=,所以切线l1的斜率为设过原点与y=x+1平行的直线为l2,则直线l2的斜率为,所以当直线在l1和l2之间时,符合题意,此时实数a的取值范围是当a<0时,设过原点与点(1,-1)的直线为l3,其斜率为-1,则在l3的位置以O为中心逆时针旋转一直转到水平位置都符合题意,此时实数a的取值范围是(-1,0].综上所述,实数a的取值范围是(-1,0],故选C.15.2-2解析当a≤0时,在区间[0,1]上,f(x)=|x2-ax|=x2-ax,且在区间[0,1]上为增函数,当x=1时,f(x)取得的最大值为f(1)=1-a;当0<a<1时,f(x)=在区间内递增,在区间上递减,在区间(a,1]上递增,且f,f(1)=1-a,-(1-a)=(a2+4a-4),∴当0<a<2-2时,<1-a.当2-2≤a<1时,1-a;当1≤a<2时,f(x)=-x2+ax在区间上递增,在区间上递减,当x=时,f(x)取得最大值f;当a≥2时,f(x)=-x2+ax在区间[0,1]上递增,当x=1时,f(x)取得最大值f(1)=a-1.则g(a)=在区间(-∞,2-2)上递减,在区间[2-2,+∞)上递增,即当a=2-2时,g(a)有最小值.16.解(1)f(x)=a ln x+x2的定义域为(0,+∞),f'(x)=+2x=当x∈[1,e]时,2x2∈[2,2e2].若a≥-2,则f'(x)在区间[1,e]上非负(仅当a=-2,x=1时,f'(x)=0),故f(x)在区间[1,e]上单调递增,此时f(x)min=f(1)=1;若-2e2<a<-2,令f'(x)<0,解得1≤x<,此时f(x)单调递减;令f'(x)>0,解得<x≤e,此时f(x)单调递增,所以f(x)min=f ln;若a≤-2e2,f'(x)在区间[1,e]上非正(仅当a=-2e2,x=e时,f'(x)=0),故f(x)在区间[1,e]上单调递减,此时f(x)min=f(e)=a+e2.综上所述,当a≥-2时,f(x)min=1,相应的x=1;当-2e2<a<-2时,f(x)min=ln,相应的x=;当a≤-2e2时,f(x)min=a+e2,相应的x=e.(2)不等式f(x)≤(a+2)x可化为a(x-ln x)≥x2-2x.由x∈[1,e],知ln x≤1≤x且等号不能同时成立,得ln x<x,即x-ln x>0,因而a,x∈[1,e],令g(x)=(x∈[1,e]),则g'(x)=,当x∈[1,e]时,x-1≥0,ln x≤1,x+2-2ln x>0,从而g'(x)≥0(仅当x=1时取等号),所以g(x)在区间[1,e]上是增函数,故g(x)min=g(1)=-1,所以实数a的取值范围是[-1,+∞).17.(1)解f'(x)=-2αsin2x-(α-1)sin x.(2)解(分类讨论)当α≥1时,|f(x)|=|αcos2x+(α-1)(cos x+1)|≤α+2(α-1)=3α-2=f(0).因此A=3α-2.当0<α<1时,将f(x)变形为f(x)=2αcos2x+(α-1)cos x-1.令g(t)=2αt2+(α-1)t-1,则A是|g(t)|在[-1,1]上的最大值,g(-1)=α,g(1)=3α-2,且当t=时,g(t)取得极小值,极小值为g=--1=-令-1<<1,解得α<-(舍去),α>当0<时,g(t)在区间(-1,1)内无极值点,|g(-1)|=α,|g(1)|=2-3α,|g(-1)|<|g(1)|,所以A=2-3α.当<α<1时,由g(-1)-g(1)=2(1-α)>0,知g(-1)>g(1)>g又-|g(-1)|=>0,所以A=综上,A=(3)证明由(1)得|f'(x)|=|-2αsin2x-(α-1)sin x|≤2α+|α-1|.当0<时,|f'(x)|≤1+α≤2-4α<2(2-3α)=2A.当<α<1时,A=1,所以|f'(x)|≤1+α<2A.当α≥1时,|f'(x)|≤3α-1≤6α-4=2A.所以|f'(x)|≤2A.。
第二单元数学思想方法高考数学以能力立意,一是考查数学的基础知识,基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度,数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识,是数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类与整合思想、转化与化归思想.一、函数与方程思想已知数列{}是各项均为正数的等差数列()若=,且,,+成等比数列,求数列{}的通项公式;()在()的条件下,数列{}的前项和为,设=++…+,若对任意的∈*,不等式≤恒成立,求实数的最小值.【解】()因为=,=·(+),又因为{}是正项等差数列,故≥,所以(+)=(+)(+),(列出方程)解得=或=-(舍去),所以数列{}的通项公式=.()因为=(+),=++…+=++…+=-+-+…+-=-==,令()=+(≥),(构造函数)则′()=-,当≥时,′()>恒成立,所以()在[,+∞)上是增函数,故当=时,()=()=,即当=时,()=,要使对任意的正整数,不等式≤恒成立,则须使≥()=,所以实数的最小值为.本题完美体现了函数与方程思想的应用,第()问直接列方程求公差;第()问求出的表达式,说明要求≤恒成立时的最小值,只需求的最大值,从而构造函数()=+(≥),利用函数求解..如图是函数=(ω+φ)(其中>,ω>,-π<φ<π)在一个周期内的图象,则此函数的解析式是( ).=.=.=.=解析:依函数图象,知的最大值为,所以=.又=-=,所以=π,又=π,所以ω=,所以=(+φ).将代入可得=,故φ-=+π,∈,又-π<φ<π,所以φ=.所以函数的解析式为=,故选.答案:.()=-+对于∈[-]总有()≥成立,则=.解析:若=,则不论取何值,()≥显然成立;当>即∈(]时,()=-+≥可化为≥-.设()=-,则′()=,所以()在区间上单调递增,在区间上单调递减,因此()==,从而≥;当<即∈[-)时,()=-+≥可化为≤-,()=-在区间[-)上单调递增,。
- 1 -
三、分类与整合思想
分类与整合思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对
基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增
加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),
优化解题思路,降低问题难度;分类研究后还要对讨论结果进行整合.
方法一 公式、定理分类整合法
模型解法
公式、定理分类整合法即利用数学中的基本公式、定理对研究对象进行分类,然后分别对每
类问题进行解决的方法.此方法多适用于公式、定理自身需要分类讨论的情况.破解此类题
的关键点:
①分类转化,结合已知所涉及的知识点,找到合理的分类标准.
②依次求解,对每个分类所对应的问题,逐次求解.
③汇总结论,汇总分类结果,得结论.
典例1 设等比数列{an}的公比为q,前n项和Sn>0 (n=1,2,3,…),则q的取值范围是
________.
解析 由{an}是等比数列,Sn>0,
可得a1=S1>0,q≠0,当q=1时,Sn=na1>0.
当q≠1时,Sn=a11-qn1-q>0,
即1-qn1-q>0(n=1,2,3,…),
则有 1-q>0,1-qn>0, ①
或 1-q<0,1-qn<0. ②
由①得-11.
故q的取值范围是(-1,0)∪(0,+∞).
答案 (-1,0)∪(0,+∞)
思维升华 公式、定理的分类整合法的分类一般比较固定,由定理、公式的限制引起的分类
整合法往往是因为有的数学定理、公式是分类给出的,在不同的条件下结论不一致,如等比
数列的前n项和公式、函数的单调性等.
- 2 -
跟踪演练1 Sn是等比数列{an}的前n项和,若S4,S3,S5成等差数列,则{an}的公比为( )
A.12 B.2 C.-12 D.-2
答案 D
解析 设{an}的公比为q(q≠0),由等比数列{an}的前n项和为Sn,且S4,S3,S5成等差数列,
得2S3=S4+S5.
当q=1时,S4=4a1,S3=3a1,S5=5a1,
此时2S3≠S4+S5,不满足题意;
当q≠1时,有2a11-q31-q=a11-q41-q+a11-q51-q,
即q2+q-2=0,
解得q=-2或q=1(舍去).
方法二 位置关系的分类整合法
模型解法
对于几何中位置关系的分类讨论问题常采用分类整合法,这种方法适用于解析几何中直线与
圆锥曲线的位置关系,以及几何图形中点、线、面的位置关系的研究.破解此类题的关键点:
①确定特征,一般在确立初步特征时将能确定的所有位置先确定.
②分类,根据初步特征对可能出现的位置关系进行分类.
③得出结论,将“所有关系”下的目标问题进行汇总处理.
典例2 在约束条件 x≥0,y≥0,y+x≤s,y+2x≤4下,当3≤s≤5时,z=3x+2y的最大值的变化范围
是( )
A.[6,15] B.[7,15]
C.[6,8] D.[7,8]
解析 由 x+y=s,y+2x=4,可得 x=4-s,y=2s-4,
由图,可得A(2,0),
B(4-s,2s-4),C(0,s),C
′(0,4).
①当3≤s<4时,不等式组所表示的可行域是四边形OABC及其内部,此时,z=3x+2y在点
B
处取得最大值,且zmax=3(4-s)+2(2s-4)=s+4,由3≤s<4,得7≤zmax<8.
②当4≤s≤5时,不等式组所表示的可行域是△OAC′及其内部,此时z=3x+2y在点C′处
取得最大值,且zmax=8.
- 3 -
综上可知,z=3x+2y的最大值的变化范围是[7,8],故选D.
答案 D
思维升华 (1)在解析几何位置关系的研究中,不能仅仅关注直线与圆锥曲线的位置关系中的
相交、相离和相切三种情况,还要注意焦点在不同位置时的关系的探究.
(2)在几何图形的相关问题中,要充分发挥空间想象能力,将所有可能出现的关系“一网打
尽”.如本题随着s取值的变化,目标函数值是会随着变化的,如果考虑不全,就会得出错
误结论.
跟踪演练2 抛物线y2=4px(p>0)的焦点为F,P为其上的一点,O为坐标原点,若△OPF为等
腰三角形,则这样的点P的个数为________.
答案 4
解析 当|PO|=|PF|时,点P在线段OF的中垂线上,此时,点P的位置有两个;当|OP|=|OF|
时,点P的位置也有两个;对|FO|=|FP|的情形,点P不存在.事实上,F(p,0),若设P(x,y),
则|FO|=p,|FP|=x-p2+y2,
若x-p2+y2=p,则有x2-2px+y2=0,
又∵y2=4px,∴x2+2px=0,解得x=0或x=-2p,
当x=0时,不构成三角形.当x=-2p(p>0)时,与点P在抛物线上矛盾.∴符合要求的点
P
有4个.
方法三 含参问题的分类整合法
模型解法
含参问题的分类整合法是分类讨论问题中最重要、最常见也是最复杂的一种方法,在解决问
题中一般根据参数的取值范围进行分类.此模型适用于某些含有参数的问题,如含参的方程、
不等式等,由于参数的取值不同会导致所得的结果不同,或对于不同的参数值要运用不同的
方法进行求解或证明,因此要分类讨论.破解此类题的关键点:
①确定范围,确定需要分类问题中参数的取值范围.
②确定分类标准,这些分类标准都是在解题过程中根据解决问题的需要确定的,注意有些参
数可能出现多级分类,要做到不重不漏.
③分类解决问题,对分类出来的各相应问题分别进行求解.
④得出结论,将所得到的结论进行汇总,得出正确结论.
典例3 函数f(x)=ax2+4x-3在[0,2]上有最大值f(2),则实数a的取值范围为( )
A.(-∞,-1] B.[-1,+∞)
C.(-∞,0) D.(0,+∞)
- 4 -
解析 方法一 当a=0时,f(x)=4x-3在[0,2]上为单调递增函数,最大值为f(2),满足
题意.
当a≠0时,函数f(x)=ax2+4x-3=ax+2a2-3-4a,其对称轴为x=-2a.
当a>0时,f(x)=ax2+4x-3在[0,2]上为单调递增函数,最大值为f(2),满足题意.
当a<0时,只有当-2a≥2,即-1≤a<0时,f(x)=ax2+4x-3在[0,2]上为单调递增函数,最
大值为f(2),满足题意.
综上,当a≥-1时,函数f(x)=ax2+4x-3在[0,2]上有最大值f(2).
故选B.
方法二 由f(x)=ax2+4x-3,得f′(x)=2ax+4,
要使函数f(x)=ax2+4x-3在[0,2]上有最大值f(2),
需使f(x)=ax2+4x-3在[0,2]上为单调递增函数,则f′(x)=2ax+4≥0在[0,2]上恒成立,
当x=0时成立,当x≠0时,由x∈(0,2],得a≥-2x,
因为-2x在(0,2]上的最大值为-1,所以a≥-1.
综上,当a≥-1时,函数f(x)=ax2+4x-3在[0,2]上有最大值f(2).故选B.
答案 B
思维升华 对于含参问题的分类讨论主要有以下三种类型:(1)概念型,即问题所涉及的数学
概念是分类进行定义的,如|a|的定义分a>0,a=0,a<0三种情况.
(2)性质型,即问题中涉及的数学定理、公式和运算性质、法则有范围或者条件限制、或者是
分类给出的,如等比数列的前n项和公式,分q=1和q≠1两种情况.
(3)含参型,求解含有参数的问题时,必须根据参数的不同取值范围进行讨论.另外,某些不
确定的数量、不确定的图形的形状或位置、不确定的结论等,都需要通过分类讨论,保证其
完整性,使之具有确定性.
跟踪演练3 已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),且F2到直线x-3y-9=0
的距离等于椭圆的短轴长.
(1)求椭圆C的方程;
(2)若圆P的圆心为P(0,t)(t>0),且经过F1,F2两点,Q是椭圆C上的动点且在圆P外,过
Q作圆P的切线,切点为M,当|QM|的最大值为322时,求t
的值.
解 (1)设椭圆的方程为x2a2+y2b2=1(a>b>0),
依题意可得2b=|1-9|2=4,
- 5 -
所以b=2,又c=1,所以a2=b2+c2=5,
所以椭圆C的方程为x25+y24=1.
(2)设Q(x,y)满足x25+y24=1,
圆P的方程为x2+(y-t)2=t2+1,
连接PM,因为QM为圆P的切线,
所以PM⊥QM,
所以|QM|=|PQ|2-t2-1
=x2+y-t2-t2-1
= -14y+4t2+4+4t2.
①若-4t≤-2,即t≥12时,
当y=-2时,|QM|取得最大值,
且|QM|max=4t+3=322,
解得t=38<12(舍去).
②若-4t>-2,即0
且|QM|max=4+4t2=322,
解得t2=18,又0