三角函数讲义模板
- 格式:doc
- 大小:396.53 KB
- 文档页数:7
三角函数第一轮复习讲义一、知识回顾1.平面直角坐标系及角的概念平面直角坐标系由横轴x和纵轴y组成。
两条相互垂直的坐标轴交于原点O,称为坐标原点。
根据角的位置,可以分为标准位置角和一般位置角。
标准位置角的始边与正半轴重合,而一般位置角的始边与正半轴不重合。
2.弧度制和角度制弧度制是用弧长来度量角的大小,一周的弧长定义为2π。
而角度制是用度来度量角的大小,一周定义为360°。
两者之间可以通过以下公式进行转换:弧度制=角度制×π/180角度制=弧度制×180/π3.三角函数三角函数是角的函数,分为正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)。
在单位圆上,对于一个角x,在弧度制下,它的正弦值等于角对应的点在单位圆上的y坐标,余弦值等于x坐标,正切值等于y坐标除以x坐标。
4.三角函数的性质正弦函数的周期为2π,在0到2π之间呈现一个完整的周期。
余弦函数的周期也为2π,并且余弦函数与正弦函数的图像相似,只是在x轴上有一个平移。
正切函数的周期为π,即在0到π之间呈现一个完整的周期。
正弦函数和余弦函数在区间[0,π/2]上单调递增,而正切函数则在区间(-π/2,π/2)上单调递增。
二、例题讲解例题1:已知点P(-3,4)在单位圆上的坐标为(M,N),求角APN的弧度制大小。
解:根据P在单位圆上的坐标为(M,N),可以得到:M=-3/5,N=4/5又因为点A是单位圆的圆心,所以A的坐标为(0,0)。
利用三角函数的性质,可以得到:sin(APN) = N = 4/5cos(APN) = M = -3/5因此,角APN的大小为sin^-1(4/5),即其弧度制大小为sin^-1(4/5)。
例题2:已知tan(A) = 5/12,且A的终边在第三象限,求cos(A)的值。
解:已知tan(A) = 5/12,可得:sin(A) = 5/13,cos(A) = 12/13由终边在第三象限可知,cos(A) < 0。
教育学科教师辅导讲义教学内容一、 上次作业检查与讲解; 二、 学习要求及方法的培养: 三、 知识点分析、讲解与训练:Mite一、两角和与差的正弦、余弦、正切公式及倍角公式:sin (° ± 0) = sin QCOS 0 土 cos osin 0 —令空©》sin 2a = 2 sin a cos a (o±0) = cosfzcos^ + sinc^sin p —cos2a = cos?(7-sin 2 a-2cos 2 a-\ = l-2sin 2 a7 1+COS 2Q n cos 「a= ----------2.9 l — cos2o sirr a= ----------2r2 tan atan 2a = ------- -l-tarr a二、三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系, 注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三 观察代数式的结构特点。
基本的技巧有:(1) 巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变 换.如G = (Q + 0)-0 = (Q -0) + 0, 2Q = (G + 0) + (Q -0) , 2a = (0 + a)-(0-a), 心=2•呼,呼十号俘")⑵三角函数名互化(切割化弦),⑶公式变形使用(tana 土tan0 = tan (仅±0)(1^tanotan")。
1 Iy zyI /cos等),(4)三角函数次数的降升(降幕公式:cos2 6Z = —-—, sin%= —与升幕公式:2 2 1+ cos 2a = 2 cos2a , 1-cos 2a = 2 sin2a)。
(5)式子结构的转化(对角、函数名、式子结构化同)。
(6)常值变换主要指"1"的变换(1 = sin 2 x + cos 2 x = sec 2 x - tan 2 x = tan x • cot x = tan^ = sin^ =…等),⑺正余弦“三兄妹一sinx 土cosx 、sinxcosx”的内存联系——“知一求二”, 三、辅助角公式:asinx + bcosx = Jd 2+戻 sin(x + &)1(其中&角所在的象限由日,方的符号确定,&角的值由tan& =—确定)在求最值、化简时起着重要作用。
任意角三角比复习专题一、终边相同的角:1、角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。
若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
2、①与角终边相同的角的集合:{| = 360k +, k ∈Z}与角终边在同一条直线上的角的集合:;与角终边关于x 轴对称的角的集合:;与角终边关于y 轴对称的角的集合:;与角终边关于y =x 轴对称的角的集合:;②一些特殊角集合的表示:终边在坐标轴上角的集合:;终边在一、三象限的平分线上角的集合:;终边在二、四象限的平分线上角的集合:;终边在四个象限的平分线上角的集合:;3、象限角:第一象限角:;第三象限角:;第一、三象限角:;4、正确理解角:“0o~ 90o间的角”=;“第一象限的角”=;“锐角”=;“小于90o的角”=;例1、已知0°<θ<360°,且θ 角的7 倍角的终边和θ 角终边重合,求θ.例2、已知集合A={第一象限角},B={锐角},C={小于90°的角},下列四个命题:①A=B=C ②A ⊂C ③C ⊂A ④A∩C=B,其中正确的命题个数为;例3、若角α是第三象限角,则角的终边在,2α 角的终边在.21、弧度与角度的互化:2、弧长公式:;扇形面积公式:;1、任意角的三角函数定义:以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系, 角的终边与单位圆的交点为 P (x , y ) ,则sin = ; c os = ; t an =定义拓展:在角的终边上任取一个异于原点的点 P (x , y ) ,点P 到原点的距离记为 r ,则sin = ; c os = ; tan =;2、各象限角的各种三角函数值正负符号:一全二正弦,三切四余弦sin cos tan二、弧度制例 4、圆的半径变为原来的 3 倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的倍.例5、已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?例6、如下图,圆周上点A 依逆时针方向做匀速圆周运动.已知A 点1 分钟转过θ(0<θ<π)角,2 分钟到达第三象限,14 分钟后回到原来的位置,求 θ.三、任意角的三角函数:例7、角的终边上一点(a ,- 3a) ,则cos+2s in =。
三角函数讲义任意角的三角函数及同角三角函数的关系知识点知识点一三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ;(3)y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x . 知识点二正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k ·2π)=sin α,cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α,其中k ∈Z .作用:可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.体现了三角函数的周期性。
知识点四三角函数的定义域正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是{x |x ∈R且x ≠k π+π2,k ∈Z }.知识点五三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.记作:sin α=MP ,cos α=OM ,tan α=AT .知识点六同角三角函数的基本关系1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ). 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α的变形公式:sin α=cos αtan α;cos α=sin αtan α.题型一三角函数定义的应用【例1】已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【例2】已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值;2.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( ) A .3 B .-3 C .±3 D .5题型二三角函数符号的判断【例1】判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5;(2)sin(cos θ)(θ为第二象限角).【例2】若tan x <0,且sin x -cos x <0,则角x 的终边在() A .第一象限 B .第二象限C .第三象限D .第四象限【过关练习】1.若sin θ<0且tan θ<0,则θ是第象限的角.2.使得lg(cos αtan α)有意义的角α是第象限角.题型三诱导公式一的应用【例1】求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin -11π6+cos 12π5·tan 4π.【过关练习】1.求下列各式的值:(1)cos 25π3+tan -15π4;(2)sin 810°+tan 765°-cos 360°.2.sin(-1 380°)的值为( )A .-12 B.12 C .-32D.323.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)tan 405°-sin 450°+cos 750°.题型四利用三角函数线求角、解不等式【例1】根据下列三角函数值,作角α的终边,然后求角的取值集合:(1)cos α=12;(2)tan α=-1.【例2】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1) sin θ≥32;(2)-12≤cos θ<32.【例3】当α∈0,π2时,求证:sin α<α<="">【过关练习】1.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<="" αB .tan α<="" αC .si n α<="" αD .cos α<="" α2.如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT3.在[0,2π]上,满足sin x ≥12的x 的取值范围为( ) A.0,π6 B.π6,5π6 C.π6,2π3D.5π6,π题型五求三角函数定义域【例1】求下列函数的定义域.(1)f (x )=sin x ·tan x ;(2)f (x )=lg sin x +9-x 2.【过关练习】1. 求函数f (x )=1-2cos x +lnsin x -22的定义域.2.函数y =tanx -π3的定义域为( ) A.x |x ≠π3,x ∈R B.?x |x ≠k π+π6,k ∈Z C.x |x ≠k π+5π6,k ∈Z D.x |x ≠k π-5π6,k ∈Z题型六三角函数知一求二【例1】已知cos α=-817,求sin α,tan α的值.【例2】已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.【过关练习】1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.已知tan α=3,求下列各式的值. (1)3cos α-sin α3cos α+sin α;(2)2sin 2α-3sin αcos α.4.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.35题型七三角函数平方关系及其应用【例1】已知sin θ+cos θ=15,θ∈(0,π),求:(1)sin θ-cos θ;(2)sin 3θ+cos 3θ.【例2】已知sin α+cos α=m ,求sin 3α+cos 3α的值.【过关练习】1.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.2.若sin A =45,且A 是三角形的一个内角,求5sin A +815cosA -7的值.3.已知sin α+cos α=15,α∈(0,π),则tan α的值是( ) A.34 B .-34 C.43 D .-43 题型八三角函数的化简证明【例1】已知α是第三象限角,化简:1+sin α1-sin α-1-sin α1+sin α.【例2】证明三角恒等式cos α1-sin α=1+sin αcos α【例3】已知下列等式成立.(1)a sin θ-b cos θ=a 2+b 2;(2)sin 2θm 2+cos 2θn 2=1a 2+b 2.求证:a 2m 2+b 2n 2=1.【过关练习】1.若α是第三象限角,化简 1+cos α1-cos α+1-cos α1+cos α.2.求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1.3.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.课后练习【补救练习】1.若sin θcos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限 2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):(1)sin 23π________sin 45π;(2)cos 23π________cos 45π;(3)tan 23π________tan 45π.4.函数y =lg cos x 的定义域为________________.5.利用三角函数线,写出满足下列条件的角α的集合:(1)sin α≥22;(2)cos α≤12.6.已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值.【巩固练习】1.已知角α的终边上一点的坐标为?sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π62.如果3π4<θ<π,那么下列各式中正确的是( ) A .co s θ<="" θB .sin θ<="" θC .tan θ<="" θD .cos θ<="" θ3.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .(-π3,π3) B .(0,π3) C .(5π3,2π) D .(0,π3)∪(5π3,2π) 4.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3105.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为.6.函数f (x )=cos 2x -sin 2x 的定义域为________________.7.化简sin 2β+cos 4β+sin 2βcos 2β的结果是.8.已知sin α=15,求cos α,tan α.9.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan-23π4;(3)sin (cos θ)cos (sin θ)(θ为第二象限角).10.求证:tan θ·sin θtan θ-si n θ=1+cos θsin θ.【拔高练习】1.若sin 2x >cos 2x ,则x 的取值范围是( )A .{x |2k π-34π<="">π,k ∈Z } B .{x |2k π+π4<="">π,k ∈Z } C .{x |k π-π4<="">,k ∈Z } D .{x |k π+π4<="">π,k ∈Z } 2.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .3.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域是. 4.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为. 5.在△ABC 中,2sin A = 3cos A ,则角A = .6.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.7.化简:1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).8.证明:sin α-cos α+1sin α+cos α-1=1+sin αcos α;。
三角函数完美讲义
1.引言
三角函数是高中数学的重要知识点之一,也是解决几何和物理
问题的基础。
本讲义旨在提供一个完整且简明易懂的三角函数讲解,帮助学生更好地理解和应用三角函数的概念和性质。
2.基本概念
研究前提:了解直角三角形和基本三角比的概念
三角函数定义:正弦、余弦和正切的定义及图示
三角恒等式:介绍常见的三角恒等式及其证明方法
3.三角函数图像
正弦函数图像:介绍正弦函数的周期、振幅、相位和对称性
余弦函数图像:介绍余弦函数的周期、振幅、相位和对称性
正切函数图像:介绍正切函数的周期、渐近线和对称性
4.三角函数性质
基本性质:介绍正弦、余弦和正切函数的定义域、值域和奇偶性
三角函数的推导:从直角三角形的角度推导三角函数的值
5.三角函数应用
角度的测量单位:介绍弧度制和度制的转换关系
三角函数应用举例:解决实际问题时如何运用三角函数
三角函数的相关性:介绍三角函数之间的关系,如和差公式和倍角公式
6.总结
本讲义通过简明易懂的语言和清晰明了的图示,全面介绍了三角函数的基本知识和应用。
希望学生能够通过本讲义的研究,更加深入地理解和掌握三角函数,为日后的高中数学研究和实际应用打下坚实的基础。
以上是《三角函数完美讲义》的框架概述,具体内容请根据需要进行补充。
希望对您有所帮助!。
学生姓名年级授课时间教师姓名课时 2三角函数讲义(1)——任意角及任意角的三角函数,基本关系与诱导公式,两角和与差公式【高考会这样考】1.考查三角函数的定义及应用.2.考查三角函数值符号的确定.3.考查同角三角函数的基本关系式.4.考查诱导公式在三角函数化简求值中的运用.5.考查利用两角和与差的正弦、余弦、正切公式及倍角公式进行三角函数式的化简与求值.6.利用三角公式考查角的变换、角的范围基础梳理1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边相同的角终边与角α相同的角可写成α+k·360°(k∈Z).(3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l是以角α作为圆心角时所对圆弧的长,r为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr与所取的r的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度.⑤弧长公式:l=|α|r,扇形面积公式:S扇形=12lr=12|α|r2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(r>0),那么角α的正弦、余弦、正切分别是:sin α=yr,cos α=xr,tan α=yx,它们都是以角为自变量,以比值为函数值的函数.3.三角函数线设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M,则点M是点P在x轴上的正射影.由三角函数的定义知,点P的坐标为(cos_α,sin_α),即P(cos_α,sin_α),其中cos α=OM,sin α=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tan α=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线4.同角三角函数的基本关系5.诱导公式6.两角和与差的正弦、余弦、正切公式7.二倍角的正弦、余弦、正切公式及降幂公式8.辅助角公式函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.考向探究 题型一:角的集合表示及象限角的判定【例题1】下列与9π4的终边相同的角的表达式中正确的是( ). A .2k π+45°(k ∈Z ) B .k ·360°+94π(k ∈Z ) C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )【例题2】若α=k ·180°+45°(k ∈Z ),则α在( ). A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限【变式1】若α 是第二象限的角,则2α所在的象限是( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第二、三象限题型二:三角函数的定义【例题3】已知角α的终边过点(-1,2),则cos α的值为( ). A .-55 B.255 C .-255 D .-12【变式2】已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24 m ,试判断角θ所在的象限,并求cos θ和tan θ的值.题型三:弧度制的应用【例题4】已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【变式3】 已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?题型四:三角函数线及其应用【例题5】在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合:sin α≥32;【例题6】下列不等式中正确的是( )A .π74sin π75sin> B .⎪⎭⎫⎝⎛->7πtan π815tanC .⎪⎭⎫⎝⎛->⎪⎭⎫ ⎝⎛-6πsin 5πsin D .⎪⎭⎫⎝⎛->⎪⎭⎫ ⎝⎛-π49cos π53cos 【变式4】求函数的定义域:y =2cos x -1;【变式5】若2ππ24ππ2+≤≤+k k α,k ∈Z ,则sin α 与cos α 的大小关系是( ) A .sin α >cos αB .sin α <cos αC .sin α ≥cos αD .sin α ≤cos α题型五:利用同角三角函数关系化简与求值【例题7】已知sin 45α=,并且α是第二象限的角,那么tan α的值等于( )A.43-B.34-C.34D.43【变式6】已知tan 13α=-,计算:sin 2cos (1)5cos sin αααα+-; 21(2)2sin cos cos ααα+.题型六:利用诱导公式化简与求值【例题8】.如果sin(π1)2α+=-,那么cos 3()2πα-等于 ( )A.12B.12- C.32-D.32【例题9】已知cos(π6-θ)=a (|a |≤1),则cos(56π+θ)的值是________. 【变式7】已知f (α)=sin (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αtan (π+α),求f ⎝⎛⎭⎫31π3.题型七:诱导公式、同角三角函数关系式的综合应用【例题10】已知sin 3()25πα-=,则cos(π2)α-等于( )A.725B.2425C.725-D.2425-【变式8】记cos(-80)=k ,那么tan100等于( )A.21k k - B.21k k -- C.21k k - D.21k k--题型八:和差角公式的运用【例题11】计算sin105=( ) A .624--B .624-C .624+-D .624+【例题12】计算cos18cos42cos72cos48-=( )A .12-B .12C .32-D .32【例题13】已知,(,)4αβ3π∈π,3sin()5αβ+=-,12sin()413βπ-=,则c o s ()4απ+= .【变式9】已知1t a n 3α=-,5cos ,5β=,(0,)αβ∈π,则tan()αβ+的值等于 .题型九:二倍角公式的运用 【例题14】化简1sin8+=( )A .sin 4cos4+B .sin 4cos4--C .sin 4D .cos 4【例题15】已知3sin(),45x π-=则sin 2x 的值为( )A.1925B.1625C.1425D.725【变式10】已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( )A .247 B .247- C .724 D .724-【变式11】cos10cos80sin 20⋅= .题型十:“22sin cos sin()a b a b θθθϕ+=++”的应用【例题16】函数3sin 4cos 5y x x =++的最小正周期是( )A.5π B.2πC.πD.2π【例题17】函数x x y cos 3sin +=在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为 .【变式12】函数2sin cos 3cos 3y x x x =+-的图象的一个对称中心是( ) A.23(,)32π- B.53(,)62π- C.23(,)32π- D.(,3)3π-巩固训练1.角α与角β的终边互为反向延长线,则( ).A .α=-βB .α=180°+βC .α=k ·360°+β(k ∈Z )D .α=k ·360°±180°+β(k ∈Z )2.若sin α<0且tan α>0,则α是( ). A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角3.把405°化为弧度为( )A .π3683B .π47 C .π613 D .π49 4.已知α =2rad ,则α 是第( )象限角A .一B .二C .三D .四5.(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.456.(2011·江西)已知角θ的顶点为坐标原点,始边为x 轴非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 7.已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.8.当x ∈[0,2π ]时,使得不等式22cos ≥x 成立的x 的取值范围是( ) A .⎥⎦⎤⎢⎣⎡π2,4πB .⎥⎦⎤⎢⎣⎡4π,0C .⎥⎦⎤⎢⎣⎡-4π,4πD .⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡π2,4π74π,09.(2012·东莞模拟)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( )A .-43 B.54 C .-34 D.4510.若cos α+2sin α=-5,则tan α=( )A.12 B .2 C .-12 D .-211.已知角α终边上一点P (-4,3),则cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值为________..12.已知sin θ=2cos θ,则sin (π2+θ)-cos (π-θ)sin (π2-θ)-sin (π-θ)=( )A .2B .-2C .0 D.2313.(2010,广东文16)设函数()3sin()6f x x πω=+,0,(,)x ω>∈-∞+∞ ,且以2π为最小正周期. (1)求(0)f ; (2)求()f x 的解析式;(3)若94125f απ⎛⎫+= ⎪⎝⎭,求sin α的值.14.(2011铁一中三模16)已知:函数()2sin 2cos()f x x x π=++. (1)求函数()f x 的最小正周期和值域;(2)若函数()f x 的图象过点6(,)5α,344ππα<<.求()4f πα+的值.15.已知,αβ均为锐角,1cos 7α=,11cos()14αβ+=-,则cos β= . 16.已知24βαπ3π<<<,且12cos()13αβ-=,3sin()5αβ+=-. (1)求,αβαβ-+的取值范围; (2)求cos2β的值.17.(福建文)若a ∈(0, 2π),且sin 2a+cos2a=14,则tana 的值等于A .22B . 33C . 2D . 318.(上海文)函数2sin cos y x x =-的最大值为 。
高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。
专题16 三角函数的概念及诱导公式知识点一、同角三角函数的基本关系 (1)知识点二、三角函数的诱导公式 (1)知识点三、有关三角函数的常用结论 (2)题型01:同角三角函数的基本关系式 (2)题型02:sinα±cosα与sinαcosα的关系及应用 (6)题型03:利用诱导公式化简求值 (10)题型04:同角三角函数基本关系式、诱导公式的综合应用 (13)知识点一、同角三角函数的基本关系(1)平方关系:sin2x+cos2x=1.(2)商数关系:tan x=sin xcos x⎝⎛⎭⎪⎫其中x≠kπ+π2,k∈Z.知识点二、三角函数的诱导公式组数一二三四五六角α+2kπ(k∈Z)π+α-απ-απ2-απ2+α正弦sin α-sin_α-sin_αsin_αcos_αcos_α余弦cos α-cos_αcos_α-cos_αsin_α-sin_α正切tan αtan_α-tan_α-tan_α知识点三、有关三角函数的常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形(1)sin2α=1-cos2α=(1+cos α)(1-cos α);cos2α=1-sin2α=(1+sin α)(1-sin α);(sin α±cos α)2=1±2sin αcos α.(2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.题型01:同角三角函数的基本关系式【规律方法】1.同角三角函数关系式的三种应用方法--“弦切互化法”、““1”的灵活代换法”、“和积转换法” (1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,注意等;(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.2. 利用sin αcos α=tan α可以实现角α的弦切互化.(1)若已知tan α=m ,求形如a sin c sin α+d cos α(或a sin 2α+b cos 2αc sin 2α+d cos 2α)的值,其方法是将分子、分母同除以cos α(或cos 2α)转化为tan α的代数式,再求值,如果先求出sin α和cos α的值再代入,那么运算量会很大,问题的解决就会变得繁琐.(2)形如a sin 2α+b sin αcos α+c cos 2α通常把分母看作1,然后用sin 2α+cos 2α代换,分子、分母同除以cos 2α再求解.【典例1】(1)(2021·镇原中学高一期末)若1sin 2α=,π(,π)2α∈,则cos α= 。
三角函数讲义知识要点:一、角的概念与推广:任意角的概念;象限角(轴线角)二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α=扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段AT 与MP OM 分别叫做α 的的正切线、正弦线、余弦线。
三、三角函数的求值、化简、证明问题常用的方法技巧有:1、 常数代换法:如:αααααα2222tan sec cot tan cos sin 1-=⋅=+= 2、 配角方法:ββαα-+=)(()βαβαα-++=)(222βαβαβ--+=3、 降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。
4、 ()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。
5、 常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π(3)、1cos sin ≥+x x 6、 常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bcC ab S sin 21sin 21sin 21===(3)、S =四、三角函图象和性质:正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换万能公式:2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 证:2tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α2tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α2tan 12tan22sin 2cos 2cos 2sin 2cos sin tan 222α-α=α-ααα=αα=α例1 已知5cos 3sin cos sin 2-=θ-θθ+θ,求3cos 2θ + 4sin 2θ 的值。