中职数学基础模块上册第1-2章测验题
- 格式:doc
- 大小:63.00 KB
- 文档页数:2
一 选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
1.设集合M ={-2,0,2},N ={0},则( ) A.φ=N B.M N ∈ C.M N ⊂ D.N M ⊂ 2、已知集合{}20<<=x x A ,集合{}31≤<=x x B ,则=B A ( )A .{}30<<=x x A B. {}30≤<=x xB C. {}21<<=x x B D. {}31≤<=x x B 3.下列不等式中正确的是 ( ) A.5a >3a B.5+a >3+a C.3+a >3-a D.aa 35> 4.不等式6≥x 的解集是( ) A.[)+∞,6 B.[]6,6- C.(]6,-∞- D. (][)+∞-∞-,66, 5、不等式02142≤-+x x 的解集为( )A .(][)+∞-∞-,37, B. []3,7- C. (][)+∞-∞-,73, D. []7,3- 6、函数x y 32-=的定义域是( )A .⎪⎭⎫ ⎝⎛∞-32, B.⎥⎦⎤ ⎝⎛∞-32, C.⎪⎭⎫ ⎝⎛+∞,32 D.⎪⎭⎫⎢⎣⎡+∞,32 7.关于函数34)(2+-=x x x f 的单调性正确的是( )A .上减函数),(+∞-∞ B.(-)4,∞减函数 C. )0,(-∞上减函数 D.在(-)2,∞ 上减函数8. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2) C. 1(,)2+∞ D. 1(0,)29.050-角的终边在( ). A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 10. 34sinπ的值为( ). A. 21 B. 21- C. 23 D. 23-二 填空题:本大题共8小题,每小题4分,共32分. 把答案填在题中横线上. 1、用集合相关的数学符号填空:1 {}1,0;φ {}1 (请用⊄⊇⊆∉∈、、、、填空)2、已知集合{}4,3,21,=A ,集合{},7,5,3,1=B ,则=B A ,=B A 。
集合测试题一 选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( ); A.{b } B.{a,d } C.{a,b,d } D.{b,c,e }5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( ); A.φ=N B.M N ∈ C.M N ⊂ D.N M ⊂7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( );A.B B A =B.φ=B AC.B A ⊃D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<<x xB.{}42≤≤x xC.{}42<<x xD.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( ); A.R B.{}64<≤-x x C.φ D.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件 ② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个 12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ).A.1个B.2个C.3个D.4个 二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上.1.用列举法表示集合{}=<<-∈42x Z x ;2.用描述法表示集合{}=10,8,6,4,2 ;3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ;6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤.1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.《不等式》测试题一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x3 |>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A ∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2 -3x -2<0的解集为________________.6.若代数式122--x x 有意义,则x 的取值集合是________________ 二.选择题:(20%) 7.设、、均为实数,且<,下列结论正确的是( )。
一 选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
1.设集合M ={-2,0,2},N ={0},则( ) A.φ=N B.M N ∈ C.M N ⊂ D.N M ⊂ 2、已知集合{}20<<=x x A ,集合{}31≤<=x x B ,则=B A ( )A .{}30<<=x x A B. {}30≤<=x xB C. {}21<<=x x B D. {}31≤<=x x B 3.下列不等式中正确的是 ( ) A.5a >3a B.5+a >3+a C.3+a >3-a D.aa 35> 4.不等式6≥x 的解集是( ) A.[)+∞,6 B.[]6,6- C.(]6,-∞- D. (][)+∞-∞-,66, 5、不等式02142≤-+x x 的解集为( )A .(][)+∞-∞-,37, B. []3,7- C. (][)+∞-∞-,73, D. []7,3- 6、函数x y 32-=的定义域是( )A .⎪⎭⎫ ⎝⎛∞-32, B.⎥⎦⎤ ⎝⎛∞-32, C.⎪⎭⎫ ⎝⎛+∞,32 D.⎪⎭⎫⎢⎣⎡+∞,32 7.关于函数34)(2+-=x x x f 的单调性正确的是( )A .上减函数),(+∞-∞ B.(-)4,∞减函数 C. )0,(-∞上减函数 D.在(-)2,∞ 上减函数8. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2) C. 1(,)2+∞ D. 1(0,)29.050-角的终边在( ). A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 10. 34sinπ的值为( ). A. 21 B. 21- C. 23 D. 23-二 填空题:本大题共8小题,每小题4分,共32分. 把答案填在题中横线上. 1、用集合相关的数学符号填空:1 {}1,0;φ {}1 (请用⊄⊇⊆∉∈、、、、填空)2、已知集合{}4,3,21,=A ,集合{},7,5,3,1=B ,则=B A ,=B A 。
《数学基础模块上册》复习题2:不等式【知识巩固】一、判断题(正确的打“√”,错误的打“×”).1.若a >b ,则a +8>b +7.( )2.若a >b,c =d ,则ac >bd .( )3.若a >b >0,则4a −b >3b .( )4.不等式|x|<2的解集在数轴上可表示为到原点的距离小于2的点的集合. ( )5.已知集合A 的数轴表示如图2-30所示,则它的区间表示为(2,4). ( )图2-306.不等式组{x ≤3x >−2,的解集可以在数轴上表示为图中的( ). A.B. C. D.7.用区间表示集合{x|−1≤x <3},正确的是( ).A.(−1,3)B.[−1,3)C.(−1,3]D.[−1,3]8.已知集合A=[-3,5],集合B=[1,6],则AuB=( ).A.(−3,6]B.(−3,6)C.[−3,6]D.[−3,6)9.下列结论正确的是( ).A.ax <b 的解集是{x|x <b a }B.x 2>2的解集是{x|x >√2}C.x 2−4x >0的解集是{x|x <4}D.x 2+2x +1≥0的解集是R10.不等式|2x −5|>1的解集是( ).A.(−∞,2)∪(3,+∞)B.[2,3]C.(−∞,−2)∪(3,+∞)D.(2,3) 11.不等式|x +5|≤0的解集是( ).A.RB.∅C.{−5}D.(−∞,−5)∪(−5,+∞)12.不等式组{2−x ≥53x −1<2,的解集是_________________. 13.设全集为R,集合A=(−∞,−2],则CA _________________.不等式|x|−1≥0的解集是_________________.15.不等式(x −1)(x +2)<0的解集是_________________.16.不等式(x 2+1)(x −1)>0的解集是_________________.17.当x ______________时,√4x −x 2有意义.18.某商场一件衬衫的进价为200元,销售标价为300元.因换季促销,商场准备打折出售,但要保持利润不低于40元(不考虑场地费用等其他因素),将销售价格的范围用区间表示为______________.19.求解下列不等式组.(1){3x +2≥5x −1>3; (2){x +2≥02x −1<3.20.求下列不等式的解集.(1)x 2−5x >0(2)x 2−5x −6≤0 (3)2x 2−x +3<0(4)|x −3|<12(5)|3x −4|−1≥2 (6)−x 2+3x +4>0【能力提升】1.若关于x 的一元二次方程x 2−(m +1)x −m =0有两个不相等的实数解,求m 的取值范围.2.设a =R ,比较a 2−3与4a −8的大小.3.设x ∈(−∞,74],比较3x −5与2−x 的大小.4.设集合A为|2x−3|<5的解集,集合B={x|x2−3x+2>0}.求A∩B,A∪B.5.已知国际标准足球场为矩形,其长为100~110m,宽为64~75m.若某一足球场的宽为70m,周长大于350m,面积小于7560m2求该足球场的长x(m)的取值范围,并判断这个场地是否满足国际足球比赛的要求.。
中职数学 集合测试题一 选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
题号123456答案题号789101112答案1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合② 集合{1}表示仅由一个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④ 集合{大于3的无理数}是一个有限集其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有②2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},=( );)(N C M I A.{2,4}B.{1,2}C.{0,1}D.{0,1,2,3} 4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则=();N M C I )(A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则( );=A C B )( A.{0,1,2,3,4}B.C.{0,3}D.{0}φ6.设集合M ={-2,0,2},N ={0},则( );A.B.C.D.φ=N M N ∈M N ⊂NM ⊂7.设集合,则正确的是( );{}0),(>=xy y x A {},00),(>>=y x y x B 且A. B. C. D.B B A = φ=B A B A ⊃B A ⊂8.设集合则( );{}{},52,41<≤=≤<=x x N x x M =B A A.B.C.D. {}51<<x x {}42≤≤x x {}42<<x x {}4,3,29.设集合则( );{}{},6,4<=-≥=x x N x x M =N M A.RB.C. D.{}64<≤-x x φ{}64<<-x x 10.设集合( );{}{}==--=≥=B A x x x B x x A 则,02,22A.B.C. D.φA {}1- A B11.下列命题中的真命题共有( );① x =2是的充分条件022=--x x ② x≠2是的必要条件022≠--x x ③是x=y 的必要条件y x =④ x =1且y =2是的充要条件0)2(12=-+-y x A.1个 B.2个 C.3个 D.4个12.设( ).{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上.1.用列举法表示集合 ;{}=<<-∈42x Z x 2.用描述法表示集合 ;{}=10,8,6,4,23.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A =;5.那么 ;{}{},13),(,3),(=+==-=y x y x B y x y x A =B A 6. 是x +2=0的 条件.042=-x 三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤.1.已知集合A=.{}{}B A B A x x B x x ,,71,40求<<=<<2.已知全集I=R ,集合.{}A C x x A I 求,31<≤-=3.设全集I= 求a 值.{}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 4.设集合求实数a 组成的集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且M.高职班数学 《不等式》测试题班级 座号 姓名 分数一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. ||>1解集的区间表示为________________;x34.已知集合A = [2,4],集合B = (-3,3] ,则A ∩B = ,A∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2 -3x -2<0的解集为________________.6. 当X 时,代数式 有意义.r(3 + 2x + x 2)r(3 + 2x + x 2)二.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。
第一章 集合 单元练习题(二)一、选择题1.下列各结论中,正确的是( )A .{}0是空集B . {}220x x x ++=是空集 C. {}1,2与{}2,1是不同的集合 D .方程 2440x x -+=的解集是{}2,2 2.集合}{4p x x =≤,则( )A .p π∉B . p π⊆C .{}p π∈D .{}p π⊆3.设A =}{22x x -<<,}{1B x x =≥,则AUB =( )A .}{12x x ≤<B .{2x x <-或2x >C .}{2x x >-D .{2x x <-或}2x >4.如果{|||2}M x x =<,{|3}N x x =<,则A B ( ) A .}{22x x -<< B .{}23x x -<< C .{}23x x << D .{}3x x < 5.设为,x y 实数,则22x y =的充要条件是( )A .x y =B .x y =-C .33x y =D .||||x y =二、填空题1.用列举法表示集合{|05,}x x x N <<∈ .2.已知{1,2,3,4,5},A ={2,5,6},B =则A B = .3.已知全集{1,2,3,4,5},A =则{1,2,3},A =则CuA = .4.“四边形是正方形”是“两条对角线互相平分”的 条件.5.设全集为R ,集合{|3A x x =<,则CA = .6.已知集合{,0},{1,2},{1},M a N MN ===则a = .三、解答题1.判断集合2{|10}A x x =-=与集合{|||1}B x x o =-=的关系2.选用适当的方法表示下列集合(1) 不大于5的所有实数组成的集合;(2) 二元一次方程组5,3x y x y +=⎧⎨-=⎩的解集3.设全集为{1,2,3,4,5,6},{1,3,5,6,},{3,4}.A B ===求(1),;(2)()();(3)()().CuA CuB Cua CuB CuA CuB4.设全集,{|06},{|2R A x x B x x ==≤<=≥.求(1),;(2)()();(3)()()CuA CuB Cua CuB CuA CuB。
第一章 集合第一章 第一课时 集合及其表示【知识回顾】1.集合的基本概念:我们把研究对象统称为 ,把一些元素组成的总体叫做 .2.集合中元素的三个特性: , , . 3.常用数集的符号4.元素与集合的关系元素与集合之间存在两种关系:如果a 是集合A 中的元素,就说a 集合A ,记作 ;如果a 不是集合A 中的元素,就说a 集合A ,记作 . 5.集合的表示方法 描述法、列举法。
一、选择题.1.下列各组对象可以组成集合的是( )A.数学课本中所有的难题 B.小于8的所有素数 C.直角坐标平面内第一象限的一些点 D.所有小的正数 2.给出下列关系: ①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N ,其中正确的个数为( ) A .1 B .2 C .3 D .4 3.已知集合A 由满足x <1的数x 构成,则有( ) A .3∈A B .1∈A C .0∈A D .-1∉A4.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.已知集合 21,A a ,实数a 不能取的值的集合是( ) A. 1,1 B. 1C. 1,0,1D. 1二、填空题.6.下列所给关系正确的个数是 . ①π∈R ; ②3∉Q ; ③0∈N +; ④|-4|∉N +.7.在方程x 2-4x +4=0的解集中,有 个元素.8.设集合 **(,)|3,N ,N A x y x y x y ,则用列举法表示集合A 为 . 三、解答题.9.已知25{|50}x x ax ,用列举法表示集合2{|40}x x x a .10.数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1),若2∈A ,试求出A 中其他所有元素.第一章 第二课时 集合及之间的关系知识回顾1.空集:不含有任何元素的集合称为空集,记作: .2.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A 或,读作:A 包含于B (或B 包含A ).图示:3.真子集:若集合A B ,存在元素x B x A 且,则称集合A 是集合B 的真子集.记作:A B(或B A )读作:A 真包含于B (或B 真包含A )4.相等集合:如果两个集合所含的元素完全相同(A B B A 且),那么我们称这两个集合相等.记作:A =B 读作:A 等于B .图示:相关结论: (1).A A(2)空集是任何集合的子集,是任何非空集合的真子集. (3)若,,A B B C 则.A C(4)一般地,集合{a 1,a 2,…,a n }的子集有___个,非空子集有___个,非空真子集有___个.一、选择题.1.已知集合 0,2A , 表示空集,则下列结论错误的是( ) A.AB.0AC. AD. 0A s s2.已知集合21M x x ,则M 的真子集个数是( ) A.3 B.4 C.5 D.6 3.满足 11,2,3,4A 的集合A 的个数为( ) A.5B.6C.7D.84.下列表示同一集合的是( ) A.{(3,2)}M ,{(2,3)}N B.{(,)}M x y y x ∣,{}N y y x ∣ C.{1,2}M ,{2,1}ND.{2,4}M ,{(2,4)}N5.若 2{,0,1},,0a a a ,则实数a 的值为( ) A.-1 B.0 C.1 D.-1或1二、填空题.6.21,1,,1a a ,则 a .7.设集合6|2A x N y N x,则集合A 的子集个数为 . 三、解答题.8.已知2{|430}A x x x (1)用列举法表示集合A ; (2)写出集合A 的所有子集.9.已知全集 N 16U x x ,集合 2680A x x x , 3,4,5,6B . (1)求A B ,A B ; (2)求 U A B .第一章 第三课时 集合的运算知识回顾1.并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A ∪B 读作:“A 并B ”,即:A ∪B ={x |x A ,或x B }Venn 图表示:2.交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A∩B ,读作:“A 交B ”,即A ∩B ={x |x A ,且x B };交集的Venn 图表示:3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U .补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作:U C A ,即{|}U C A x x U x A 且补集的Venn 图表示:4.集合运算中常用的结论(1)①A ∩B ⊆A ; ②A ∩B ⊆B ; ③A ∩A =A ; (2)①A ∪B ⊇A; ②A ∪B ⊇B ; ③A ∪A =A ;(3)①A ∩B =A ⇔A ⊆B ⇔A ∪B =B ; ②A ∩B =A ∪B ⇔A =B . 一、选择题.1.已知集合 1,0,1,2A ,{03}B x x ∣,则A B ( ) A. 1,2 B. 1,2 C. 0,1 D. 0,1,22.若集合 24,|21M x x N x x ,则M N ( )A. 22x x B. 2x x C.12x xD. 2x x3.已知集合 2{20},320A x x B x x x ,则A B ( ) A. 1,2 B. 1, C. 2, D. 2,4.已知集合2,2A B x x ,则A B ( )A. 22x x B. 02x x C. 2x x D. 22x x 5.设集合 |115A x x , |2B x x ,则R ()A B ( )A. |24x x B. |02x xC. |04x xD. |4x x二、填空题.6.已知集合3A , 210B x x ,则A B .7.已知集合 52A x x , 33B x x ,则A B .8.已知全集 16U x x N ∣ ,集合 1,2,3,5,3,4,5A B ,则 U A B . 三、解答题.9.已知{|17},{|121}A x x B x m x m ,且B ,若A B A ,求实数m 的取值范围.10.设 2,{|43},|60U A x x B x x x R ,求:(1)A B ; (2)A B ; (3) U A B ∩ .11.设集合 2=|60,|43 P x x x Q x a x a . (1)若P Q Q ,求实数a 的取值范围; (2)若P Q ,求实数a 的取值范围.。
中等职业学校基础模块数学单元测试卷第一章单元测试一、选择题:(6*5分=35分)1.下列元素中属于集合{x| x=2k,k∈N}的是()。
A.-2 B.3 C.π D.102. 下列正确的是().A.∅∈{0}B.∅⫋{0}C.0∈∅D.{0}=∅3.集合A={x|1<x<9},B={2,3,4},那么A与B的关系是().A.B⫋A B.B=A C.A⫋B D.A⊆B4.设全集U={a,b,c,d,e,f},A={a,c,e},那么C U A=().A.{a,c,e} B.{b,d,f} C. ∅ D.{a,b,c,d,e,f} 5.设A={x|x>1},B={ x|x≥5},那么A∪B=().A.{x|x>5}B.{x|x>1}C.{x|x≥5}D.{x|x≥1}6.下列对象不能组成集合的是().A.不等式x+2>0的解的全体 B.本班数学成绩较好的同学C.直线y=2x-1上所有的点 D.不小于0的所有偶数二、填空题:(7*5分=35分)7. p:a是整数;q:a是自然数。
则p是q的。
8. 已知U=R,A={x|x>1} ,则C U A = 。
9. {x|x>1} {x|x>2};∅ {0}。
(∈,∉,⫋,,=)10. {3,5} {5};2 {x| x<1}。
(∈,∉,⫋,,=)11.小于5的自然数组成的集合用列举法表示为.1 Q; 3.14 Q。
12.313. 方程x+2=0的解集用列举法表示为.三、解答题:(3*10分=30分)14.用列举法表示下列集合:(1)绝对值小于3的所有整数组成的集合;(2){x| x2-2x-3=0}.15. 写出集合{0,1,-1}的所有子集,并指出其中哪些是它的真子集.16.已知U={0,1,2,3,4,5,6},A={1,3,5},B={3,4,5,6},求:A∩B,A∪B,C U A,C U(A∩B).第二章单元测试一、选择题:(6*5分=30分)1.下列不等式中一定成立的是( ).A .x >0B .x 2≥0C .x 2>0D .|x |>0 2. 若x >y ,则ax <ay ,那么a 一定 是( ). A .a >0 B .a <0 C.a ≥0 D .a ≤0 3. 区间(- ,2]用集合描述法可表示为( )。
职⾼中职数学基础模块(上册)题库完整集合测试题⼀选择题:本⼤题共12⼩题,每⼩题4分,共48分。
在每⼩题给出的四个选项中只有⼀项是符合题⽬要求,把正确选项写在表格中。
1.给出四个结论:①{1,2,3,1}是由4个元素组成的集合②集合{1}表⽰仅由⼀个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④集合{⼤于3的⽆理数}是⼀个有限集其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最⼤的正数B.最⼩的整数C. 平⽅等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( );A.{0,1,2,3,4}B.φC.{0,3}D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ?D.N M ?7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( ); A.B B A = B.φ=B A C.B A ? D.B A ?8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<B.{}42≤≤x xC.{}42<,6,4<=-≥=x x N x x M 则=N M ( );A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件② x≠2是022≠--x x 的必要条件③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满⾜条件的集合M M ,4,3,2,12,1??( ). A.1个 B.2个 C.3个 D.4个⼆填空题:本⼤题共6⼩题,每⼩题4分,共24分. 把答案填在题中横线上.1.⽤列举法表⽰集合{}=<<-∈42x Z x ; 2.⽤描述法表⽰集合{}=10,8,6,4,2 ; 3.{m,n }的真⼦集共3个,它们是 ;4.如果⼀个集合恰由5个元素组成,它的真⼦集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ; 6.042=-x 是x +2=0的条件.三解答题:本⼤题共4⼩题,每⼩题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且数a 组成的集合M.⾼职班数学《不等式》测试题班级座号分数⼀.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表⽰为___ ______ ;3. | x3|>1解集的区间表⽰为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩B = ,A∪B = .5.不等式x2>2 x的解集为_______ _____;不等式2x2 -3x-2<0的解集为________________.6. 当X 时,代数式 + 2x + x 2) 有意义.+ 2x + x 2)⼆.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。
中职数学基础模块(上册)1~5章基础知识测试卷及参考答案一、选择题:1.答案表格中的格式错误已被删除。
2.设集合$M=\{-2,0,2\},N=\{\}$,则$D$的正确选项为B。
3.下列不等式中正确的是$x>-5$。
4.不等式$x\geq6$的解集是$D$。
5.不等式$x^2+4x-21\leq0$的解集为$D$。
6.函数$y=\dfrac{2-3x}{2}$的定义域是$\left(-\infty,\dfrac{2}{3}\right]$。
7.关于函数$f(x)=x^2-4x+3$的单调性正确的是$(0,2]$上减函数。
8.不等式$\log x>2$的解集是$(e,+\infty)$。
9.角的终边在第三象限。
10.$\sin\dfrac{4\pi}{3}=-\dfrac{\sqrt{3}}{2}$。
二、填空题:1.$1\in\mathbb{N}\cap\mathbb{Z}\cap[0,1]$。
2.$A=\{x|x\leq1\},B=\{x|x\in\mathbb{N}\}$,则$A\cap B=\{1\}$。
3.不等式组$\begin{cases}x+\dfrac{3}{5}>5\\x-\dfrac{4}{5}<4\end{cases}$的解集为$\left(\dfrac{16}{5},+\infty\right)$。
4.函数$y=\log(-x-6)$的定义域为$(-\infty,-6)$。
5.$5a^6=2^1\cdot5^1\cdot a^6$。
6.$f(2)=20$。
7.与终边为-1050°相同的最小正角是多少?求解f(x+1)=的值。
改写:求与-1050°终边相同的最小正角是多少?解出f(x+1)=的值。
8.函数y=2cos(3x+π)的周期T=多少?改写:求函数y=2cos(3x+π)的周期T。
三、解答题:1.已知集合A={x|x<4},B={x|1<x<7},求A∩B,A∪B。
项城中专2018-2019年第一学期期中考试试卷
数学试卷(90分钟)
适用班级: 18春升学班 出卷人:马 追
一 二 三 四 五 总分
一、选择题(10个小题,每题3分,共30分)
1、下列各对象可以组成集合的是( )
A.某班级长头发的学生全体
B.2018年春季入学的全体学生
C.高一年级视力比较好的同学
D.与0很接近的全体实数
2、下列关系式正确的是( )
A.{3}∈R B.{3}{2,3} C.3{2,3} D.{3}R
3、如果M={x|1
4、若集合0xxA,集合1xxB,则集合A与B的关系是( )
A.BA B. AB C.AB D.BA
5、不等式1<x≤2用区间表示为( )
A.(1,2) B.(1,2] C.[1,2) D.[1,2]
6、不等式组的解集是( )
A.{X|-1
7、若a>b,c<0,则( )
A.a+c<b+c B.a+c>b+c C.a-c<b-c D.ac>bc
8、设全集U={1,3,4,5,7},集合A={3,5,7},则ACU=( )
A.{1,3,4,5,7} B.{3,5,7} C. {1,4} D.
9、集合A={(x,y)│3x+y=5},B={(x,y)│2x+y=4},则A∩B是( )
A.{(2,1)} B.{(1,2)} C.{2,1} D.{1,2}
10、x-3<0是x-4<0的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
二、填空题(8个小题,每题3分,共24分)
1、集合{(3,3)}有 个元素。
2、集合{x∈Z|1<x<5}用列举法可表示为___________________。
3、已知集合M中含有n个元素,那么M的真子集的个数是 。
4、集合33xxxA或,41xxB或,则BA 。
5、已知U=R,A={x|x≥8},则ACU= 。
6、如果由条件p可推出结论q,那么p是q的 条件。
7、已知A=[2,5],B=(-2,4],则A∪B= ,A∩B 。
学
校
年
级
班
级
姓
名
学
号
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
装
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
订
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
线
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
1020xx
8、a<b<0能够推出a2 b2。 三、解答题(3个小题,每题8分,共24分) 1、写出集合A={3|xNx}的所有子集并指出其中的真子集。(8分) 2、已知集合A={0,2,3,4,5,},B={2,3,5,6},求:A∩B, A∪B 。(8分) 3、已知集合A={x│0<x<2},B={x│x<-2或x≥1},求:A∩B,A∪B。(8分) 四、选用适当的方法表示下列各集合(2个小题,每题6分,共12分) 1、方程x²+5x-6=0的解集; 2、所有奇数组成的集合
五、综合(1个小题,共10分)
当x为何值时,代数式35-x的值与代数式27-2x的值之差大于2?