2014-2015年安徽省铜陵市八年级第一学期期末数学试卷带答案
- 格式:doc
- 大小:274.50 KB
- 文档页数:23
期末考试参考答案及评分标准八年级数学二.解答题(计75分)16.(6分)解:原式=4(x2+2x+1)-(4x2-25)………………3分=4 x2+8x+4-4x2+25………………5分=8x+29;………………6分17. (6分)解:(1)如图………………3分(2)A′(1,3 ),B′(2,1),C′(-2 ,-2 );………………6分18. (7分)解:原式=[m+3(m-3) (m+3)+m-3(m-3) (m+3)]×(m-3)22m………………3分=2m(m-3) (m+3)×(m-3)22m………………5分= m-3m+3.………………6分当m= 12时,原式=(12-3)÷(12+3)=-52×27= -57.………………7分19.(7分)解:x(x+2)-3=(x-1)(x+2). ………………3分x2+2x-3= x2+x-2. ………………4分x=1. ………………5分检验:当x=1时,(x-1)(x+2)=0,所以x=1不是原分式方程的解. (6)所以,原分式方程无解. ………………7分20.(8分)(1)证明:∵C 是线段AB 的中点, ∴AC =BC ,……………1分 ∵CD 平分∠ACE ,∴∠ACD=∠DCE ,……………2分 ∵CE 平分∠BCD , ∴∠BCE=∠DCE ,∴∠ACD=∠BCE ,……………3分在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE , DC =EC ,∴△ACD ≌△BCE (SAS ),……………5分(2)∵∠ACD =∠BCE =∠DCE ,且∠ACD +∠BCE +∠DCE =180°, ∴∠BCE =60°,……………6分 ∵△ACD ≌△BCE ,∴∠E =∠D =50°,……………7分∠E =180°-(∠E +∠BCE )= 180°-(50°+60°)=70°.……………8分 21.(8分)(1)2a -b ;………………2分(2)由图21-2可知,小正方形的面积=大正方形的面积-4个小长方形的面积, ∵大正方形的边长=2a +b =7,∴大正方形的面积=(2a +b )2=49, 又∵4个小长方形的面积之和=大长方形的面积=4a ×2b =8ab =8×3=24, ∴小正方形的面积=(2a -b )2==49-24=25;………………5分 (3)(2a +b )2-(2a -b )2=8ab . ………………8分 22.(10分)(第22题图1) (第22题图2) (第22题图C【方法I】证明(1)如图∵长方形ABCD,∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,……………1分在△ABF和△DEF中,∠BAD=∠BED=90°∠AFB=∠EFD,AB=DE,∴△ABF≌△EDF(AAS),……………2分∴BF=DF. ……………3分(2)∵△ABF≌△EDF,∴F A=FE,……………4分∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD,∴AD=BC=BE,AB=CD=DE,BD=DB,∴△ABD≌△EDB(SSS),……………7分∴∠ABD=∠EDB,∴GB=GD,……………8分在△AFG和△EFG中,∠GAF=∠GEF=90°,F A=FE,FG=FG,∴△AFG≌△EFG(HL),……………9分∴∠AGF=∠EGF,∴GH垂直平分BD. ……………10分【方法II】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD……………1分又∵长方形ABCD,∴AD∥BC,∴∠ADB=∠DBC,……………2分∴∠EBD=∠ADB,∴FB=FD. ……………3分(2)∵长方形ABCD,∴AD=BC=BE,……………4分又∵FB=FD,∴F A=FE,∴∠F AE=∠FEA,……………5分又∵∠AFE=∠BFD,且2∠AEF+∠AFE =2∠FBD+∠BFD =180°,∴∠AEF=∠FBD,∴AE∥BD,……………6分(3)∵长方形ABCD ,∴AD =BC =BE ,AB =CD =DE ,BD =DB , ∴△ABD ≌△EDB ,……………8分 ∴∠ABD =∠EDB ,∴GB =GD , ……………9分 又∵FB =FD ,∴GF 是BD 的垂直平分线,即GH 垂直平分BD . ……………10分 23.(11分)证明(1)如图, ∵AB =AC ,∴∠ACB =∠ABC ,……………1分 ∵∠BAC =45°,∴∠ACB =∠ABC = 12 (180°-∠BAC )=12 (180°-45°)=67.5°.……………2分第(2)小题评分建议:本小题共9分,可以按以下两个模块评分(9分=6分+3分):模块1(6分): 通过证明Rt △BDC ≌Rt △ADF ,得到BC =AF ,可评 6分; 模块2(3分): 通过证明等腰直角三角形HEB ,得到HE =12 BC ,可评 3分.(2)连结HB ,∵AB =AC ,AE 平分∠BAC , ∴AE ⊥BC ,BE =CE , ∴∠CAE +∠C =90°, ∵BD ⊥AC ,∴∠CBD +∠C =90°,∴∠CAE =∠CBD ,……………4分∵BD ⊥AC ,D 为垂足, ∴∠DAB +∠DBA =90°, ∵∠DAB =45°, ∴∠DBA =45°,∴∠DBA =∠DAB ,∴DA =DB ,……………6分 在Rt △BDC 和Rt △ADF 中, ∵∠ADF =∠BDC =90°, DA =DB ,∠DAF =∠DBC =67.5°-45°=22.5°, ∴Rt △BDC ≌Rt △ADF (ASA), ∴BC =AF ,……………8分∵DA =DB ,点G 为AB 的中点, ∴DG 垂直平分AB , ∵点H 在DG 上,A∴HA =HB ,……………9分∴∠HAB =∠HBA = 12 ∠BAC=22.5°,∴∠BHE =∠HAB +∠HBA =45°, ∴∠HBE =∠ABC -∠ABH =67.5°-22.5°=45°, ∴∠BHE =∠HBE ,∴HE =BE = 12 BC ,……………10分∵AF =BC ,∴HE = 12 AF . ……………11分24.(12分)解:(1)依题意得,my (1+20%)= m +20 (1-10%)y .……………3分解得, m =250.∴m +20=270……………4分 答:2013年的总产量270吨.(2)依题意得,270 a -30=250a (1+14%);① ……………7分(1-10%)y a -30= y a -12 . ② ……………10分解①得 a=570.检验:当a=570时,a (a -30)≠0,所以a=570是原分式方程的解,且有实际意义. 答:该农场2012年有职工570人; ……………11分将a=570代入②式得,(1-10%)y 540 = y 570 -12.解得,y =5700.答:2012年的种植面积为5700亩. ……………12分。
2014-2015学年度第一学期期末测试八年级数学 参考答案一、 选择题:(每小题2分,共16分)1.B 2.A 3.D 4.B 5.C 6.A 7.C 8.C二、填空题:(每小题2分,共20分)9.1x ≥ 10.( 11.54.310-⨯ 12.2421a a -+ 13.答案不唯一,0k <即可 14.(1)(1)ab a a +- 15.5 16.3(3)m a a +或233m a a+(若填3m m a a -+,则得1分) 17 18.8三、解答题:19.⑴原式=2+ (4分) ⑵原式=1114-+ (3分) =14(1分) 20.⑴ 原式=22283a a a a ---+ (2分)=8a - (2分) (2)原式=3122m n m n --- (2分)=22m n-(2分) 或:原式=223(2)2(2)(2)m n m n m n m n ----- =242(2)m n m n --( 2分) =22m n - (1分) 21.(1)原式=223(2)x xy y --+(2分) =23()x y -- (2分) (2) 原式=p p p 3432+--(1分)=42-p (1分)=)2)(2(-+p p (2分)22.原式=22414a a b a b b b-- (1分) =22244()()()a a a b b a b b a b ---- ( 2分) =24a ab b- ( 1分) 当a =2,b =1时,原式=2428211⨯=⨯- (2分) 23.解:方程两边同乘(1)(2)x x -+,得(2)(1)(2)3x x x x +--+=.( 1分)化简,得23x +=.( 1分) 解得1x =. (2分) 检验:1x =时(1)(2)0x x -+=,1x =不是原分式方程的解( 1分)∴原分式方程无解( 1分)24.⑴当2=x,2y =-时,242k -=-,∴1k = (2分) ⑵画出函数1y x =+的图象 (2分) 当自变量1x >-时平移后的一次函数值大于0.(2分)25.解:设骑车同学的速度为x千米时,由题意得 101020260x x -= (2分) 解得 15x = (1分) 经检验,15x =是原分式方程的解.(1分) 答:骑车同学的速度为15千米时.(或250米分 ) (1分)26.⑴0.1300y x =+甲;0.2y x =乙 (4分)⑵当3000x =时,y y =乙甲;当000x <3时,y y >乙甲;当3000x >时,y y <乙甲;即当印刷数量小于3000份时选乙印刷厂能使旅行社节省印制费用,当印刷数量等于3000份任选,当印刷数量大于3000份时选甲印刷厂能使旅行社节省印制费用. (2分)27.⑴等腰三角形(1分) ∵折叠 ∴CBD EBD ∠=∠.∵长方形 ∴AD ∥BC ∴CBD ADB ∠=∠∴EBD EDB ∠=∠ ∴EB ED = 即EBD 是等腰三角形 (2分)⑵ ∵BE 平分ABD ∠ ∴ABE EBD ∠=∠∵90,ABC EBD DBC ∠=︒∠=∠ ∴1303ABE ABC ∠=∠=︒(1分) ∵在Rt 90ABC A ∠=︒ 中, ∴2BE AE = ∴2DE AE = ∴3AD AE =(1分)∵6AD BC == ∴2AE = ∴4BE =. (1分)28. ⑴点B 的坐标为(2,0)-(1分)⑵先求C 点坐标为(3,1)-- (1分) 再求直线2l 的解析式为4y x =-- (1分)⑶存在点P 使得ΔPAB 为等腰直角三角形,1P 即为点C ,∴1P 点坐标为(3,1)--(1分)过点B 作x 轴的垂线交直线2l 于2P ,此时2P 点坐标为(-2,-2)(2分)。
2014-2015年人教版初二上册数学期末试卷及答案2014~2015学年第一学期考试八年级数学试卷题号 一 二 三 四 五 六 总分 得分一、选择题(每题3分,共30分)1、在△ABC 和△DEF 中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△A △DEF ,则补充的条件是( )A 、BC=EFB 、∠A=∠DC 、AC=DFD 、∠C=∠F 2、下列命题中正确个数为( ) ①全等三角形对应边相等;②三个角对应相等的两个三角形全等; ③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等. A .4个 B 、3个 C 、2个 D 、1个3、已知△ABC ≌△DEF ,∠A=80°,∠E=40°,则∠F 等于 ( ) A 、 80° B 、40° C 、 120° D 、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数( )A 、70°B 、70°或55°C 、40°或55°D 、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断时的实际时间是( )A 、10:05B 、20:01C 、20:10D 、10:02班级 姓名 座位号……………………………装………………………订………………………线………………………6、等腰三角形底边上的高为腰的一半,则它的顶角为( ) A 、120° B 、90° C 、100° D 、60°7、点P (1,-2)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( )A 、(1,-2)B 、(-1,2)C 、(-1,-2)D 、(-2,-1) 8、已知()221x y -+,求y x 的值( )A 、-1B 、-2C 、1D 、29、如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=8cm ,AB=10cm ,则△EBC 的周长为( )A 、16 cmB 、18cmC 、26cmD 、28cm10、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为( )A 、2cm ²B 、4cm ²C 、6cm ²D 、8cm ²二、填空题(每题4分,共20分) 11、等腰三角形的对称轴有 条. 12、(-0.7)²的平方根是 .13、若2)(11y x x x +=-+-,则x-y= .14、如图,在△ABC 中,∠C=90°AD 平分∠BAC ,BC=10cm ,BD=6cm ,则点D 到AB 的距离为__ .E D AB C FEDCAEDCAACD第9第10第14第1515、如图,△ABE ≌△ACD ,∠ADB=105°,∠B=60°则∠BAE= . 三、作图题(6分)16、如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水. (1)若要使自来水厂到两村的距离相等,厂址P 应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址Q 应选在哪个位置? 请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.四、求下列x 的值(8分)17、 27x ³=-343 18、 (3x-1)²=(-3)²五、解答题(5分)19、已知5+11的小数部分为a ,5-11的小数部分为b ,求 (a+b)2012的值。
1.下面有4个汽车标志图案,其中不是轴对称图形的是A B C D2.要使分式15-x 有意义,则x 的取值范围是 A 、x ≠1B 、x >1C 、x <1D 、x ≠1- 3.下列运算正确的是A 、2+=a a aB 、632÷=a a aC 、222()+=+a b a bD 、6223)(b a ab = 4.将多项式x 3-xy 2分解因式,结果正确的是A 、•x (x 2-y 2)B 、2)(y x x -C 、x (x +y )2D 、x (x +y )(y x -)5.已知6=m x ,3=n x ,则n m x -2的值为A 、9B 、43C 、12D 、346.下列运算中正确的是A 、236x x x =B 、1-=++-y x yxC 、ba ba ba b ab a -+=-++22222 D 、yxy x =++117.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x 8.若16)3(22+-+x m x 是完全平方式,则m 的值等于A 、1或5B 、5C 、7D 、7或1- 9.如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于A 、75°B 、60°C 、45°D 、30°10.如图,OP 平分∠AOB ,P A ⊥OA ,PB ⊥OB ,垂足分别为A ,B 。
下列结论中不一定成立的是 A 、P A =PBB 、PO 平分∠AOBC 、OA =OBD 、AB 垂直平分OP11.已知∠AOB =45°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是A 、直角三角形B 、等腰三角形C 、等边三角形D 、等腰直角三角形12.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证 A 、2222)(b ab a b a ++=+B 、2222)(b ab a b a +-=-C 、))((22b a b a b a -+=-D 、222))(2(b ab a b a b a -+=-+Ⅱ(主观卷)96分二、填空题(每小题3分,共18分) 13.计算:21a a-=_________。
2014—2015学年度第一学期期末学业水平检测八 年 级 数 学(检测时间:120 分钟;满分:120分)请将1—8各小题所选答案的标号填写在第8小题后面的表格中. 1.下列说法正确的是( ).A .带根号的数都是无理数;B .绝对值最小的实数是0;C .数轴上的每一个点都表示一个有理数;D .两个无理数的和还是无理数. 2.下面四组数值中,是二元一次方程2x +y =10解的是( ).① ② ③ ④ A .①② B .①③ C .②③ D .②④3.某校为了丰富校园文化,举行书法比赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他能否获奖,只需知道这11名选手决赛得分的( ).A .中位数 B.平均数 C.众数 D.方差4.若a ,b 异号,则点P (a ,b )关于x 轴的对称点在( ).A .第二象限B .第四象限C .第一象限或第三象限D .第二象限或第四象限 5.某粮食生产专业户去年计划生产水稻和小麦共15吨,实际生产了17吨,其中水稻超产15%,小麦超产10%.该专业户去年实际生产水稻和小麦各多少吨?设该专业户去年实际生产水稻x 吨,小麦y 吨,根据题意列方程组得( ).A .B .①如果∠1和∠2是对顶角,那么∠1=∠2;市区___________________ 学校___________________ 班级_______________ 姓名_________________ 考号__________________ 密 封 线⎩⎨⎧=-=62y x ⎩⎨⎧==43y x ⎩⎨⎧==34y x ⎩⎨⎧-==26y x ⎩⎨⎧=+=+17%10%1515y x y x ()()⎩⎨⎧=+++=+17%101%15115y x y x ⎪⎧=+17y x ⎪⎧=+17y x8.已知正比例函数y =kx (k ≠0)的函数值随x 值的增大而增大,则一次函数y =-2kx +k 在平面直角坐标系内的图象大致是( ).二、填空题:(本题满分24分,共有8道小题,每小题3分)请将 9—16各小题的答案填写在第16小题后面的表格内. 9.估算: (结果精确到1). 10.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成不完整的统计图(如图).其中捐100元的人数占全班总人数的25%,则本次捐款的众数是 元.11.如图,等腰三角形ABC 的面积是 . 12.如图,已知∠B =40°,∠C =59°,∠DEC =47°,则∠F 的度数是 °.13.计算: =_______.A C DC 6(第10题)(第11题)AB CDF E32715.16124-+÷⎪⎪⎭⎫ ⎝⎛-(第12题)≈4814.已知直线y =2x 与y =-x +b 的交点坐标为(a ,4),则关于x ,y 的方程组 的解是 .三.解答题(本题满分72分,共有8道小题) 17.(本小题满分10分,共有2道小题,每小题5分) 20x y x y b -=⎧⎨+-=⎩第16题18.(本小题满分6分)如图,在正方形ABCD 中,边长AB =4.(1)在图中建立直角坐标系,使x 轴与BC 平行,且点C 的坐标为(2,1);如图是一个滑梯的示意图,若将滑道AC 水平放置,则刚好与AB 一样长.已知滑梯的高CE =DB =3 m ,CD =1 m ,求滑道AC 的长. 解: 密 封 线22.(本小题满分10分)小颖和小亮两位同学在八年级某次考试8门科的成绩(假设成绩均为整数,且个位数字为0)如图所示.利用图中提供的信息,解答下列问题:文学语品 史理物 理小颖 文学语品 史理物理小亮 市区___________________ 学校___________________ 班级_______________ 姓名_________________ 考号__________________ 密 封 线10:10:10:10:5:8:8:8的比例计算各人的成绩,那么谁的成绩高(计算结果精确到0.1)? (3)根据图、表信息,请你对小颖和小亮各提一条不超过30字的学习建议. 解:(2)B 追赶.图中的l 1,l 2分别表示A ,B 两船相对于海岸的距离y (n mile )与追赶时间x (min )之间的关系.(1)求l 1,l 2对应的两个一次函数表达式;(2)求快艇B 出发多长时间后,追上可疑船只A ?(3)在l 1,l 2对应的两个一次函数表达式中,一次项系数的实际意义各是什么?解:(1)2(第23题)(2)(3)24.(本小题满分12分)数学问题:在同一直角坐标系内直线y =k 1x (k 1≠0)与y =k 2x (k 2≠0),当k 1,k 2满足什么条件时,这两条直线互相垂直?探究问题:我们采取一般问题特殊化的策略来进行探究.探究一:如图①,在同一直角坐标系内直线y =x 与y =-x 有怎样的位置关系? 解:如图①,设点A (t ,t )(t >0)在直线y =x 上,则点B (-t ,t )一定在直线 y =-x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D .则OC =AC =t ,OD =BD =t ∴∠AOC =∠BOD =45° ∵∠DOC =180° ∴∠AOB =90°所以,在同一直角坐标系内直线y =x 与y =-x 互相垂直.探究二:如图②,在同一直角坐标系内直线y =2x 与y = 有怎样的位置关系?解:如图②,设点A (t ,2t )(t>0)在直线y =2x 上,则点B (-2t ,t )一定在直线 y = x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D .∵OC =t ,AC=2t ,OD =2t ,BD =t ∴OC=BD ,AC=OD①21-21-又∵∠ACO =∠ODB =90°∴△AOC ≌△ODB ∴∠AOC =∠OBD又∵∠BOD +∠OBD =90° ∴∠BOD +∠AOC =90° ∵∠DOC =180° ∴∠AOB =90°所以,在同一直角坐标系内直线y =2x 与y = x 互相垂直.探究三:如图③,在同一直角坐标系内直线y =3x 与y = x 有怎样的位置关系?(仿照上述方法解答,写出探究过程) 解决问题:在同一直角坐标系内直线y =k 1x (k 1≠0)与y =k 2x (k 2≠0),当k 1,k 2满足 条件时,这两条直线互相垂直.拓广应用:(1)在同一直角坐标系内已知直线 y =0.1x ,请写出一条直线的函数表达式, 使它与直线y =0.1x 互相垂直(只写出结果, 不需要证明).(2)在同一直角坐标系内直线y = x -与y = x -7是否互相垂直?若垂直,请直接写出垂足的坐标;若不垂直,请说明理由. 解:探究三:解决问题:拓广应用:(1) (2)密 封 线21-1-3223-。
安徽省铜陵市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019七下·和平月考) 某种粒子的质量为0.00000081g,将0.00000081用科学计数法表示为()A .B .C .D .2. (2分) (2017八下·宣城期末) 下列各式从左到右的变形为分解因式的是()A . m2﹣m﹣6=(m+2)(m﹣3)B . (m+2)(m﹣3)=m2﹣m﹣6C . x2+8x﹣9=(x+3)(x﹣3)+8xD . x2+1=x(x+ )3. (2分) (2018八上·重庆期末) 等腰三角形一底角平分线与另一腰所成锐角为,则等腰三角形的顶角大小为()A .B .C . 或D . 或4. (2分)如图,a、b、c三条公路的位置成三角形,现决定在三条公路之间修建一个购物超市,使超市到三条公路的距离相等,则超市应建在()A . 在a、b两边高线的交点处B . 在b、c两边中线的交点处C . 在a、b两边中垂线的交点处D . 在∠1、∠2两内角平分线的交点处5. (2分)(2018·天津) 计算的结果为()A . 1B . 3C .D .6. (2分)如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=()A . 100°B . 110°C . 115°D . 120°二、填空题 (共6题;共6分)7. (1分)因式分解:x3-xy2= ________.8. (1分)(2017·承德模拟) 已知a﹣b=3,则a(a﹣2b)+b2的值为________.9. (1分)一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是________度.10. (1分) (2018九上·绍兴月考) 函数与坐标轴交于、、三点,若为等腰直角三角形,则 ________.11. (1分) (2015八上·黄冈期末) 计算﹣(﹣3a2b3)2的结果是________.12. (1分) (2019八上·兴化月考) 已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为________.三、解答题。
2014—2015学年上期期末学业水平测试八年级数学试题卷注意: 本试卷分试题卷和答题卡两部分, 考试时间90分钟, 满分100分, 学生应先阅读答题卡上的文字信息, 然后在答题卡上用蓝色笔或者黑色笔作答, 在试题卷上作答无效, 交卷时只交答题卡。
题号 一 二 三 总分分数一、选择题(每小题3分, 共24分)1. 的算术平方 根是( C ) 2、A. 4 B. 2C. D.在﹣2, 0, 3,A . ﹣2B . 0C . 3D .这四个数中, 最大的数是( C )3.如图, 直线a ∥b, AC ⊥AB, AC 交直线b 于点C, ∠1=60°, 则∠2的度数是( D )A . 50°B . 45°C . 35°D . 30°4.一次函数y=﹣2x+1的图象不经过下列哪个象限( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、若方程mA . 4,2B . 2,4C . ﹣4, ﹣2D . ﹣2, ﹣4阅卷人 得分………试…………题……………卷………………不…………………装………………订…………位: 度), 下列说法错误的是( C )7、下列四组线段A . 4, 5, 6B . 1.5, 2, 2.5C . 2, 3, 4D . 1, , 3中, 可以构成直角三角形的是( B )8、图象中所反映的过程是: 张强从家跑步去体育场, 在那里锻炼了一阵后, 又去早餐店吃早餐, 然后散步走回家.其中x 表示时间, y 表示张强离家的距离. 根据图象提供的信息, 以下四个说法错误的是( C )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时选择题(每小题3分, 共21分)9、计算: 1 。
10、命题“相等的角是对顶角”是假命题(填“真”或“假”)。
若+(b+2)2=0, 则点M(a, b)关于y轴的对称点的坐标为(﹣3, ﹣2)。
2014-2015学年八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共10小题,每题3分,共30分)1.(3分)在直角坐标系中,下列各点位于第三象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标.分析:根据点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得答案.解答:解:A、点在第一象限,故A错误;B、点在第二象限,故B错误;C、点在第三象限,故C正确;D、点在第四象限,故D错误;故选:C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.解答:解:过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.故选D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(3分)下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)考点:轴对称图形.数学是一种别具匠心的艺术。
——哈尔莫斯分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解答:解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.(3分)在△ACB中,如果∠C=∠A﹣∠B,那么此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据三角形的内角和等于180°列方程求出∠A=90°,然后判断即可.解答:解:由三角形的内角和定理得,∠A+∠B+∠C=180°,∵∠C=∠A﹣∠B,∴∠B+∠C=∠A,∴∠A+∠A=180°,解得∠A=90°,所以,此三角形是直角三角形.故选A.点评:本题考查了三角形的内角和定理,熟记定理并列方程求出∠A=90°是解题的关键.5.(3分)正比例函数y=kx的图象经过点(1,﹣3),那么它一定经过的点是()A.(3,﹣1)B.(,﹣1)C.(﹣3,1)D.(,﹣1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:先把(1,﹣3)代入y=kx求出k得到一次函数解析式为y=﹣3x,在分别计算出自变量为3、、﹣3、﹣所对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.解答:解:把(1,﹣3)代入y=kx得k=﹣3,所以一次函数解析式为y=﹣3x,当x=3时,y=﹣3x=﹣9;当x=时,y=﹣3x=﹣1;当x=﹣3时,y=﹣3x=9;当x=﹣时,y=﹣3x=1,所以点(,﹣1)在一次函数y=﹣3x的图象上.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.数学是一种别具匠心的艺术。
2014学年度八年级上学期期末测试卷数 学 试 题(满分:100分;考试时间:120分钟)温馨提示:请在答题卡上相应题目的答题区域内作答,否则不得分。
一、选择题(每题3分,共24分):在答题卡上相应题目的答题区域内作答. 1.9的算术平方根是( )A .3±B .3C .3-D .3 2.下列运算正确的是( )A .523a a a =+ B .632a a a =⋅ C .65332)(b a b a = D .632)(a a = 3.下列图形中不是..中心对称图形的是( )4.如图,AOC ∆≌BOD ∆,∠C 与∠D 是对应角,AC 与BD 是对应边,AC=8㎝, AD=10㎝,OD=OC=2㎝,那么OB 的长是( )A .8㎝B .10㎝C .2㎝D .无法确定5.点(4,﹣3)关于X 轴对称的点的坐标是A (﹣4,3)B .(4,-3)C (﹣4,-3)D (4,3)6.如图,OAB ∆绕点O 逆时针旋转80得到OCD ∆,若∠A=110,∠D=∙40,则∠AOD 的度数是( )A .30 B .40 C .50 D . 607.(3分)一个多边形的内角和等于它的外角和的3倍,它是 A .八 边形 B .七 边形 C .六 边形 D .五 边形 8、下列各式中,分式的个数有( )O DA CB A DCDCB A31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个二、填空题(每题3分,共21分)在答题卡上相应题目的答题区域内作答. 9.若3=mx,2=n x ,则=+n m x 。
10.若=-++32y x 0,则=xy 。
11、点(—2,4)关于x 轴对称的点的坐标是( )A(-2,-4) B 、(-2,4) C 、(2,—4) D 、(2,4)12.如图,在□ABCD 中,已知AD=8㎝,AB=6㎝,DE 平分∠ADC ,交BC 边于点E ,则BE= ㎝。
2014-2015学年安徽省铜陵市初二(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A.①⑤B.②⑤C.④⑤D.①②2.(2分)若点P(m,2013)与点Q(2014,n)关于y轴对称,则()A.m=﹣2014,n=2013B.m=2014,n=﹣2013C.m=2014,n=2013D.m=﹣2014,n=﹣20133.(2分)若分式的值为负数,则x的取值范围是()A.x<2B.x>2C.x>5D.x<﹣24.(2分)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x2 5.(2分)如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是()A.108°B.100°C.90°D.80°6.(2分)如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)7.(2分)如果分式的值为0,那么x等于()A.﹣1B.1C.﹣1或1D.1或28.(2分)能使两个直角三角形全等的条件是()A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等9.(2分)下列从左到右的变形中是因式分解的有()①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;②x3+x=x(x2+1);③(x﹣y)2=x2﹣2xy+y2;④x2﹣9y2=(x+3y)(x﹣3y).A.1个B.2个C.3个D.4个10.(2分)旅游节期间几名同学包租一辆面包车去游览,面包车的租价为180元,出发前,又增加两名同学,结果每个同学比原来少分摊3元车费,若设原来参加游览的学生有x人,则所列方程为()A.B.C.D.二、填空题(共8小题,每小题3分,共24分)11.(3分)因式分解:4ab2﹣8ab+4a=.12.(3分)已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是.13.(3分)已知a m=2,a n=3,则a n﹣2m=.14.(3分)一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:°.15.(3分)已知点P的坐标为(a+6,3a﹣2),且点P到两坐标轴的距离相等,则点P的坐标是.16.(3分)从多项式4x2+4xy+y2,2x+y,4x2﹣y2中,任选两个,其中一个作分子,另一个作分母,组成一个分式,写出化简后的结果.17.(3分)将一张等宽的直角形纸片按图中的方式折叠,若∠1=36°,则∠2的度数为.18.(3分)如图,在△ABC中,∠BAC=50°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF=.三、解答题(本题共6小题,共56分)19.(8分)计算.(1)2(x﹣y)2﹣(2x+y)(﹣y+2x)(2).20.(8分)解下列分式方程.(1)(2).21.(10分)如图,在长度为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)四边形ACBB′的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.22.(8分)如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.23.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?24.(12分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是;(2)探究∠B与∠NMA的关系,并说明理由;(3)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小?若存在,标出点P的位置并求PB+CP的最小值;若不存在,说明理由.2014-2015学年安徽省铜陵市初二(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A.①⑤B.②⑤C.④⑤D.①②【解答】解:①不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意;②有一条对称轴,是轴对称图形,不符合题意;③有三条对称轴,是轴对称图形,不符合题意;④有一条对称轴,是轴对称图形,不符合题意;⑤不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意.故轴对称图形有:①⑤.故选:A.2.(2分)若点P(m,2013)与点Q(2014,n)关于y轴对称,则()A.m=﹣2014,n=2013B.m=2014,n=﹣2013C.m=2014,n=2013D.m=﹣2014,n=﹣2013【解答】解:∵点P(m,2013)与点Q(2014,n)关于y轴对称,∴m=﹣2014,n=2013,故选:A.3.(2分)若分式的值为负数,则x的取值范围是()A.x<2B.x>2C.x>5D.x<﹣2【解答】解:若分式的值为负数,则2﹣x>0,解得x<2.则x的取值范围是x<2.故选:A.4.(2分)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x2【解答】解:A、x2与x3不是同类项,不能合并,故此选项错误;B、x2•x3=x2+3=x5,故此选项错误;C、(x2)3=x6,故此选项错误;D、x5÷x3=x2,故此选项正确;故选:D.5.(2分)如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF的度数是()A.108°B.100°C.90°D.80°【解答】解:∵∠A=18°,AB=BC=CD=DE=EF,∴∠ACB=18°,根据三角形外角和外角性质得出∠BCD=108°,∴∠CBD=∠CDB=×(180°﹣108°)=36°,∵∠ECD=180°﹣∠BCD﹣∠ACB=180°﹣108°﹣18°=54°,∴∠ECD=∠CED=54°∴∠CDE=180°﹣54°×2=72°,∵∠EDF=∠EFD=180°﹣(∠CDB+∠CDE)=72°,∴∠DEF=180°﹣(∠EDF+∠EFD)=36°,∴∠GEF=180°﹣(∠CED+∠DEF)=90°,即∠GEF=90°.故选:C.6.(2分)如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)【解答】解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.7.(2分)如果分式的值为0,那么x等于()A.﹣1B.1C.﹣1或1D.1或2【解答】解:由分式的值为零的条件得|x|﹣1=0 且x2﹣5x+4≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2﹣5x+4≠0,得x≠1,4,则x=﹣1,故选:A.8.(2分)能使两个直角三角形全等的条件是()A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等【解答】解:A选项,无法证明两条直角边对应相等,因此A错误.B、C选项,在全等三角形的判定过程中,必须有边的参与,因此B、C选项错误.D选项的根据是全等三角形判定中的SAS判定.故选:D.9.(2分)下列从左到右的变形中是因式分解的有()①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;②x3+x=x(x2+1);③(x﹣y)2=x2﹣2xy+y2;④x2﹣9y2=(x+3y)(x﹣3y).A.1个B.2个C.3个D.4个【解答】解:①没把一个多项式转化成几个整式积的形式,故①不是因式分解;②把一个多项式转化成几个整式积的形式,故②是因式分解;③整式的乘法,故③不是因式分解;④把一个多项式转化成几个整式积的形式,故④是因式分解;故选:B.10.(2分)旅游节期间几名同学包租一辆面包车去游览,面包车的租价为180元,出发前,又增加两名同学,结果每个同学比原来少分摊3元车费,若设原来参加游览的学生有x人,则所列方程为()A.B.C.D.【解答】解:原来参加游览的学生有x人,则增加两人后人数是(x+2)人,由题意得;﹣=3,故选:A.二、填空题(共8小题,每小题3分,共24分)11.(3分)因式分解:4ab2﹣8ab+4a=4a(b﹣1)2.【解答】解:4ab2﹣8ab+4a=4a(b2﹣2b+1)=4a(b﹣1)2.故答案为:4a(b﹣1)2.12.(3分)已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是27cm.【解答】解:当5cm为底时,其它两边都为11cm,5cm、11cm、11cm可以构成三角形,周长为27cm;当5cm为腰时,其它两边为5cm和11cm,∵5+5=10<11,所以不能构成三角形,故舍去,∴答案只有27cm.13.(3分)已知a m=2,a n=3,则a n﹣2m=.【解答】解:a2m=(a m)2=4,a n﹣2m=a n÷a2m=3÷4=,故答案为:.14.(3分)一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:50或130°.【解答】解:①当为锐角三角形时,如图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时,如图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°.故答案为50°或130°.15.(3分)已知点P的坐标为(a+6,3a﹣2),且点P到两坐标轴的距离相等,则点P的坐标是(10,10)或(5,﹣5).【解答】解:∵点P(a+6,3a﹣2)到两坐标轴的距离相等,∴|a+6|=|3a﹣2|,∴a+6=3a﹣2或a+6=﹣(3a﹣2),解得a=4或a=﹣1,所以,点P的坐标为(10,10)或(5,﹣5).故答案为:(10,10)或(5,﹣5).16.(3分)从多项式4x2+4xy+y2,2x+y,4x2﹣y2中,任选两个,其中一个作分子,另一个作分母,组成一个分式,写出化简后的结果(答案不唯一).【解答】解:2x+y作分子,4x2﹣y2作分母,则==.故答案为(答案不唯一).17.(3分)将一张等宽的直角形纸片按图中的方式折叠,若∠1=36°,则∠2的度数为72°.【解答】解:由平行可得∠3=∠1=36°,根据折叠前后角相等可知,2∠2+∠3=180°,解得∠2=72°.故答案是:72°.18.(3分)如图,在△ABC中,∠BAC=50°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF=25°.【解答】解:∵DE⊥AB,DF⊥AC,∠BAC=50°,∴∠EDF=360°﹣50°﹣90°×2=130°,∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴∠DEF=(180°﹣130°)=25°.故答案为:25°.三、解答题(本题共6小题,共56分)19.(8分)计算.(1)2(x﹣y)2﹣(2x+y)(﹣y+2x)(2).【解答】解:(1)原式=2(x2﹣2xy+y2)﹣(4x2﹣y2)=2x2﹣4xy+2y2﹣4x2+y2=﹣2x2﹣4xy+3y2;(2)原式=(﹣)•=•=﹣.20.(8分)解下列分式方程.(1)(2).【解答】解:(1)去分母得:3(x﹣5)=2x,去括号得:3x﹣15=2x,移项得:3x﹣2x=15,解得:x=15,检验:当x=15时,x(x﹣5)≠0,则原分式方程的解为x=15;(2)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,去括号得:15x﹣12+3x﹣6﹣4x=10,移项合并得:14x=28,解得:x=2,检验:当x=2时,3(x﹣2)=0,则原分式方程无解.21.(10分)如图,在长度为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)四边形ACBB′的面积为7;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.【解答】解:(1)△AB′C′如图所示;(2)四边形ACBB′的面积=3×4﹣×2×2﹣×1×2﹣×1×4,=12﹣2﹣1﹣2,=12﹣5,=7;故答案为:7;(3)点P如图所示,PB+PC的最短长度==.故答案为:.22.(8分)如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.【解答】证明:如图,∵∠BCE=∠DCA,∴∠BCE+∠ECA=∠DCA+∠ECA,即∠BCA=∠DCE.在△ABC和△EDC中,∵,∴△ABC≌△EDC(ASA),∴∠B=∠D.23.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【解答】解:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.24.(12分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是50°;(2)探究∠B与∠NMA的关系,并说明理由;(3)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小?若存在,标出点P的位置并求PB+CP的最小值;若不存在,说明理由.【解答】解:(1)若∠B=70°,则∠NMA的度数是50°,故答案为:50°;(2)猜想的结论为:∠NMA=2∠B﹣90°.理由:∵AB=AC,∴∠B=∠C,∴∠A=180°﹣2∠B,又∵MN垂直平分AB,∴∠NMA=90°﹣∠A=90°﹣(180°﹣2∠B)=2∠B﹣90°.(3)如图:①∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.②当点P与点M重合时,PB+CP的值最小,最小值是8cm.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。