七年级数学上册66角的大小比较试题(新版)浙教版
- 格式:doc
- 大小:114.00 KB
- 文档页数:3
浙教版2022-2023学年七年级上学期期末数学模拟测试卷(二)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列结论正确的是()A.-2的倒数是2B.64的平方根是8C.16的立方根为4D.算术平方根是本身的数为0和1【答案】D【解析】A、-2的倒数是−12,故选项A错误,不符合题意;B、64的平方根是±8,故选项B错误,不符合题意;C、16的立方根为√163,故选项C错误,不符合题意;D、算术平方根是本身的数为0和1,故选项D正确,符合题意.故答案为:D.2.下列结论不正确的是()A.-2是4的一个平方根B.有理数与数轴上的点一一对应C.任何有理数都有相反数D.算术平方根等于它本身的数是0和1【答案】B【解析】A、-2是4的一个平方根,说法正确,不符合题意;B、实数与数轴上的数一一对应,说法错误,符合题意;C、任何有理数都有相反数,说法正确,不符合题意;D、算术平方根等于它本身的数是0和1,说法正确,不符合题意;故答案为:B.3.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A.-1B.-2C.1D.2【答案】D【解析】把x=1代入方程2x-a=0,得:2-a=0,解得:a=2,故答案为:D.4.若x2=3,则x的值是()A.−√3B.√3C.±9D.± √3【答案】D【解析】若x2=3,则x的值是± √3.故答案为:D.5.关于整式的概念,下列说法正确的是()A.−6πx2y35的系数是−65B.32x3y的次数是6C.3是单项式D.−x2y+xy−7是5次三项式【答案】C【解析】A、−6πx 2y35的系数为−6π5,所以本选项错误,故不符合题意;B、32x3y的次数是4,所以本选项错误,故不符合题意;C、3是单项式,所以本选项正确,故符合题意;D、多项式−x2y+xy−7是三次三项式,所以本选项错误,故不符合题意;故答案为:C.6.已知m是最小的正整数,n是最大的负整数,a,b互为相反数,x,y互为倒数,则m2+n3+a+b−xy 的值是()A.-2B.-1C.0D.1【答案】B【解析】由题可得:m =1,n =−1,a +b =0,xy =1, 则原式=12+(−1)3+0−1=−1 故答案为:B .7.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( ).A .ab >0B .|a|<|b|C .a +b >0D .a −b <0 【答案】D【解析】根据图示,可得a <0<b ,且|a|>|b|, ∴ab <0,|a|>|b|,a +b <0,a −b <0, 故答案为:D.8.已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是( ) A .点A 在线段BC 上 B .点B 在线段AC 上 C .点C 在线段AB 上 D .点A 在线段CB 的延长线上 【答案】C【解析】由题意可作图.故答案为:C.9.如图,O 为直线AB 上一点,OM 平分∠AOC ,ON 平分∠BOC ,则图中互余的角有( )A .4对B .3对C .2对D .1对【答案】A【解析】∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=∠AOM= 12 ∠AOC ,∠NOC=∠BON= 12∠BOC ,∴∠MOC+∠NOC= 12(∠AOC+∠BOC )=90°,∴∠MOC 与∠NOC 互余,∠MOA 与∠NOC 互余,∠MOC 与∠NOB 互余,∠MOA 与∠NOB 互余. 故选A . 10.学校在一次研学活动中,有n 位师生乘坐m 辆客车,若每辆客车乘50人,则还有12人不能上车;若每辆客车乘55人,则最后一辆车空了13个座位.下列四个等式:①50m +12=55m −13 ;②50m −12=55m +13 ;③n−1250=n+1355 ;④n+1250=n−1355. 其中正确的是( ) A .①② B .①③ C .③④ D .①④ 【答案】B【解析】按师生人数不变列方程得:50m+12=55m -13, 按乘坐客车的辆数不变列方程得: n−1250=n+1355,所以,等式①③正确. 故答案为B.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.不小于−3而小于2的所有整数的和等于 . 【答案】−5【解析】∵不小于−3而小于2的整数有−3,−2,−1,0,1, ∴这些整数的和为:−3+(−2)+(−1)+0+1=−5. 故答案为:-5.12.已知a 、b 为常数,且三个单项式2xy 2、axy 3-b 、-xy 相加得到的和仍为单项式,则a+b 的值为 . 【答案】-1或3【解析】因为2xy 2和-xy 不是同类项,要使它们的和是单项式,只有2xy 2与axy 3-b 的和为零或者- xy 与axy 3-b 的和是零.则应该有: a=-2,=3- b 或a=1,1=3-b , 所以a=-2, b=1或a=1,b=2. 所以a+b= - 1或a+b=3. 故答案是:-1或3.13.某快递公司在市区的收费标准为:寄一件物品,不超过1千克付费10元;超出1千克的部分加收2元/千克.乐乐在该公司寄市区内的一件物品,重x ( x >1 )千克,则需支付 元.(用含x 的代数式表示) 【答案】(2x+8) 【解析】依题意可知,乐乐在该公司寄市区内的一件物品,重x (x >1)千克,则需支付10+2(x -1)=(2x+8)元.故答案为(2x+8).14.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是【答案】√6 【解析】如图,此图是轴对称图形,∴S 阴影部分=2S ∠ABC +2S ∠CDE=2×12×2×2+2×12×2×1=4+2=6,∵把阴影部分剪拼成一个正方形, ∴这个正方形的边长为√6. 故答案为:√615.若已知x+y=3,xy=-4,则(1+3x )-(4xy -3y )的值为 . 【答案】26【解析】原式=1+3x -4xy+3y=1+3(x+y )-4xy , 把x+y=3,xy=-4代入得:原式=1+9+16=26. 故答案为:26.16.如图1是三个直立于水面上的形状完全相同的几何体(下底面为圆面,单位:厘米),将它们拼成如图2的新几何体,求该新几何体的体积(结果保留π) ;【答案】60π立方厘米【解析】π×22×10+12(π×22×10)=40π+20π=60π(立方厘米).故答案为为60π立方厘米.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤. 17.计算:(1)−17+23+(−16)−(−17)(2)−22×(−112)2 −√−643−√169×|−3| 【答案】(1)解:原式=−17+23+(−16)+(+17) =−17+(+17)+23+(−16) =23+(−16) =7;(2)解:原式=−4×94−(−4)−43×3=−9 −(−4)−4 =−9+4−4 =-9.18.在日常工作中,洒水车每天都道路上来回洒水. 我们约定洒水车在行驶过程中,向北的行程记为正数,向南的行程记为负数. 2022年9月20日这一天,某台洒水车从市政工程处出发,所走的路程(单位:千米)为:+5,+7.5,−8,−3,+9.5,+2.5,−11,−3.5问:(1)这天收工时,这台洒水车离市政工程处多远?它在市政工程处的南边还是北边? (2)这台洒水车这一天共行车多少千米?(3)若洒水车每走1千米耗油0.2升,请问这一天这台洒水车在洒水过程中耗油多少升? 【答案】(1)解:+5+7.5−8−3+9.5+2.5−11−3.5=−1. 则这台洒水车离市政工程处1千米,在市政工程处的南边.答:则这台洒水车离市政工程处1千米,在市政工程处的南边. (2)解:+5+7.5+8+3+9.5+2.5+11+3.5=50(千米). 这台洒水车这一天共行车50千米. (3)解:50×0.2=10(升). 这一天耗油10升.19.已知一个数m 的两个不相等的平方根分别为a +2和3a -6. (1)求a 的值; (2)求这个数m . 【答案】(1)解:∵数m 的两个不相等的平方根为a +2和3a −6, ∴(a +2)+(3a −6)=0, ∴4a =4, 解得a =1;(2)解:∵a=1,∴a +2=1+2=3,3a −6=3−6=−3, ∴m =(±3)2=9, ∴m 的值是9.20.如图,正方形ABCD 与正方形BEFG ,且A 、B 、E 在一直线上,已知AB =a ,BE =b ; 求(1)用含a 、b 的代数式表示阴影部分的面积;(2)当a =5厘米,b =3厘米时,求阴影部分的面积. 【答案】(1)解:根据阴影部分面积的面积等于大正方形的面积加上小正方形的面积减去△ADC 的面积和△AEF 的面积 ∵AB =a ,BE =b ,∴S =a ⋅a +b ⋅b −12a ⋅a −12(a +b)⋅b S =12a 2+12b 2−12ab(2)解:把a =5厘米,b =3厘米代入上式可得S =12×52+12×32−12×5×3 =252+92−152=192(平方厘米)21.已知代数式A =2x 2−2xy +x −1;B =x 2+xy +2y −1; (1)求A −2B ;(2)当x =−1,y =−2时,求A −2B 的值; (3)若A −2B 的值与的x 取值无关,求y 的值, 【答案】(1)解:∵A =2x 2−2xy +x −1,B =x 2+xy +2y −1, ∴A −2B =(2x 2−2xy +x −1)−2(x 2+xy +2y −1)=2x 2−2xy +x −1−2x 2−2xy −4y +2=−4xy +x −4y +1;(2)解:当x =−1,y =−2时, 原式=−4xy +x −4y +1=−4×(−1)×(−2)+(−1)−4×(−2)+1=−8−1+8+1=0;(3)解:∵A −2B =−4xy +x −4y +1=(−4y +1)x −4y +1的值与x 的取值无关, ∴−4y +1=0,∴y =14.22.如图,点M 在线段AB 上,线段BM 与AM 的长度之比为5∠4,点N 为线段AM 的中点.(1)若AB =27cm ,求BN 的长.(2)在线段AB 上作出一点E ,满足MB =3EB ,若ME =t ,求AB 的长(用含t 的代数式表示). 【答案】(1)解:由题知BM∠AM=5∠4,不妨设BM =5x , AM=4 x , ∴ BM+AM=9x ,∵ AB=27cm ,且AB= BM+AM , ∴ BM+AM=9x=27, ∴x =3,∴AM=12cm ,BM=15cm . ∵点N 是线段AM 的中点, ∴MN=12AM=6cm ,∴BN = BM+MN=15+6=21cm . (2)解:如图所示:∵BM∠AM=5∠4,∴AM=45BM ,∵MB= 3 EB , ∴ME=23MB = t ,∴MB =32t ,∵AB= AM+ BM = 45BM + BM=95BM ,∴AB= 95×32t=2710t .23.如图,已知直线AB,CD相交于点O,∠COE=90°.(1)若∠AOC=37°,求∠BOE的度数.(2)若∠BOD:∠BOC=3:6,求∠AOE的度数.【答案】(1)解:∵∠COE=90°,∠AOC=37°,∴∠BOE=180°−∠AOC−∠COE=180°−37°−90°=53°(2)解:∵∠BOD:∠BOC=3:6,∠BOD+∠BOC=180°,∴∠BOD=60°,∵∠BOD=∠AOC,∴∠AOC=60°,∵∠COE=90°,∴∠AOE=∠COE+∠AOC=90°+60°=150°24的主叫时间都为m分钟(m>360).①请用含m的代数式分别表示该月他们的话费,化简后...填空:小聪该月的话费为元;小明该月的话费为元.②若该月小聪比小明的话费还要多14元,求他们的通话时间.(2)若小慧的两个手机号码分别办理了58元、88元套餐.该月她的两个号码主叫时间一共为220分钟,总话费为152元,求她两个号码的主叫时间分别可能是多少分钟.【答案】(1)0.2m+58;64+0.15m;解:②由题意可得:0.2m+58=64+0.15m+14,解得:m=400,∴他们的通话时间为400分钟;(2)解:设办理了58元套餐的手机号码主叫时间为x分钟,当x≤50时,220-x≥170,则58+88+0.2(220-x-150)=152,解得:x=40,220-40=180分钟;当50<x<70时,则58+0.25(x-50)+88+0.2(220-x-150)=152,解得:x=90,不符合,舍去;当x≥70时,则58+0.25(x-50)+88=152,解得:x=74,220-74=146分钟,综上:两个号码的主叫时间分别是40分钟和180分钟或74分钟和146分钟.【解析】(1)①由题意可得:小聪该月的话费为88+0.2(m-150)=0.2m+58(元),小明该月的话费为118+0.15(m-360)=64+0.15m(元),。
浙教版七年级上册数学期末考试试题一、单选题1.2022-的相反数是()A .2022B .2022-C .12022D .12022-2.数604800用科学记数法表示为()A .60.48×104B .6.048×106C .6.048×105D .0.6048×1053.与25°角互余的角的度数是()A .55°B .65°C .75°D .155°4)A .4和5B .5和6C .6和7D .7和85.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有()A .用两颗钉子就可以把木条固定在墙上;B .当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;C .把弯曲的公路改直,就能缩短路程;D .在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定的直线上,就能射中目标.6.下列各式中,正确的是()A 2=-B .(29=C .3=-D .3=±7.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=()A .90°B .120°C .180°D .360°8.若122m a b --与5n ab 与是同类项,则m+n 的值是()A .1B .2C .3D .49.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是()A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x10.如图,点A 表示的实数是a ,则下列判断正确的是()A .10a ->B .10a +<C .10a -<D .||1a >二、填空题11.单项式234xy -的系数是______.12.9的算术平方根是.13.x 与﹣30%x 的和是_____.14.定义一种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则()13-⊕=____.15.如图,是用棋子摆成的图案,摆第1个图案需要1枚棋子,摆第2个图案需要7枚棋子,摆第3个图案需要19枚棋子,摆第4个图案需要37枚棋子,按照这样的方式摆下去,则摆第5个图案需要______枚棋子,摆第n 个图案需要______枚棋子.16.若407'1A ∠= ,则A ∠的补角的度数为__________.17.当x =1时,ax+b+1=﹣3,则(a+b ﹣1)(1﹣a ﹣b )的值为_____.三、解答题18.计算:(1)342-+(2)1115135⎛⎫ ⎪⎝⨯-⎭-19.计算:()42÷-(2)2022213-+20.解方程:(1)5476x x -=+(2)122136x x -+=-21.如图,已知线段a ,b ,用直尺圆规作图.(温馨提醒请保留作图痕迹,相应字母标注到位,不要求写出作法.)(1)作线段AB a b =-;(2)作线段2CD b =.22.已知x ,y 满足()2210x y -++=.(1)求x ,y 的值.(2)先化简,再求值:()()22232x xy x xy ---.23.如图,直线AB 与直线CD 相交于点O ,OE ⊥OF ,且OA 平分∠COE .(1)若∠DOE =50°,求∠AOE ,∠BOF 的度数.(2)设∠DOE=α,∠BOF=β,请探究α与β的数量关系(要求写出过程).24.定义:在一个已知角内部,一条线分已知角成两个新角,其中一个角度数为另个角度数的两倍,我们把这条线叫做这个已知角的三等分线.(1)如图,已知∠AOB =120°,若OC 是∠AOB 三等分线,求∠AOC 的度数.(2)点O 在线段AB 上(不含端点A ,B ),在直线AB 同侧作射线OC ,OD .设∠AOC =3t ,∠BOD =5t .①当OC是∠AOD的三等分线时,求t的值.②当OC是∠BOD的三等分线时,求∠BOD的度数.25.如图,数轴上点A,B分别表示数-6,12,C为AB中点.(1)求点C表示的数.(2)若点P为线段AB上一点,PC=2,求点P表示的数.(3)若点D为线段AB上一点,在线段AB上有两个动点M,N,分别同时从点A,D出发,沿数轴正方向运动,点M的速度为4个单位每秒,点N的速度为3个单位每秒,当MN=1,NC=2时,求点D表示的数.26.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.参考答案1.A2.C3.B4.C5.C6.D7.C8.D 9.C 10.C11.3 4-12.313.0.7x14.1515.613n2-3n+1 16.13943'︒17.-25.18.(1)1;(2)7【解析】(1)解:342-+=3+2-4=1;(2)解:11 15135⎛⎫⎝⨯-⎭-11151151535=⨯-⨯-⨯1553=--=7.【点睛】本题考查了有理数的四则混合运算,有理数混合运算顺序:先算乘除,最后算加减.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)1(2)35【分析】(1)原式先化简立方根,再计算除法,最后计算减法即可得到答案;(2)原式先计算乘方和化简算术平方根,再计算乘法,最后计算加法即可得到答案.(1)()42+÷-=32-=1(2)2022213-+=194-+⨯=136-+=35【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.20.(1)x=-5;(2)x=23-.【分析】(1)方程移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.(1)解:移项得:5x-7x=6+4,合并得:-2x=10,系数化为1得:x=-5;(2)解:去分母得:2(1-2x )=6-(x+2),去括号得:2-4x=6-x-2,移项得:-4x+x=6-2-2,合并得:-3x=2,系数化为1得:x=23-.21.(1)见解析(2)见解析【分析】(1)直接作射线AM ,进而截取AC=a ,BC=b ,进而得出AB a b =-,即可得出答案(2)作射线CN ,进而截取CE=b ,ED=b ,进而得出2CD b =,即可得出答案(1)如图,AB 即为所作.(2)如图,CD 即为所作22.(1)2x =,1y =-(2)24x xy -+,-12【分析】(1)根据非负数的性质可求出x ,y 的值;(2)原式先去括号,再合并后把x ,y 的值代入计算即可(1)∵()2210x y -++=∴20,10x y -=+=∴2x =,1y =-(2)()()22232x xy x xy---=222236x xy x xy--+=24x xy-+当2x =,1y =-时,原式=2242(1)4812-+⨯⨯-=--=-23.(1)∠AOE=65°,∠BOF=25°;(2)α=2β.【分析】(1)先根据平角的定义得:∠COE=130°,由角平分线的定义和垂线的定义可得∠BOF 的度数;(2)根据(1)中的过程可得结论.(1)解:∵∠DOE=50°,∴∠COE=180°-∠DOE=180°-50°=130°,∵OA平分∠COE,∴∠AOE=12∠COE=12×130°=65°,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=180°-∠AOE-∠EOF=180°-65°-90°=25°;(2)解:∵∠DOE=α,∴∠COE=180°-∠DOE=180°-α,∵OA平分∠COE,∴∠AOE=12∠COE=12(180°-α)=90°-12α,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=β=180°-∠AOE-∠EOF=180°-(90°-12α)-90°=12α,即α=2β.【点睛】本题考查了角平分线的定义,以及邻补角的定义,垂线的定义,理解角平分线的定义是关键.24.(1)∠AOC的度数为40°或80°;(2)①:t=907或36019;②∠BOD=270019度【分析】(1)分两种情况讨论,列式计算即可;(2)①分两种情况讨论,列式计算即可;②计算得到∠COD=8t-180°,分两种情况讨论,列式计算即可.(1)解:OC是∠AOB的三等分线,当∠AOC=23∠AOB时,如图:∵∠AOB=120°,∴∠AOC=23∠AOB=80°;当∠AOC=13∠AOB时,如图:∵∠AOB=120°,∴∠AOC=13∠AOB=40°;综上,∠AOC的度数为40°或80°;(2)解:①∵OC是∠AOD的三等分线,∴OC在∠AOD内,依题意得:(180°-5t)÷3=3t或(180°-5t)÷3×2=3t,解得:t=907或36019;②∵OC是∠BOD的三等分线,∴OC在∠BOD内,∵∠BOD+∠AOC=180°-∠COD,∠AOC=3t,∠BOD=5t,∴∠COD=8t-180°,依题意得:(8t-180°)×3=5t 或(8t-180°)×32=5t ,解得:t=54019或54014;∴∠BOD=270019度或270014度(舍去).【点睛】本题考查了角的计算,解决问题的关键是掌握角的三等分线的定义,解题时注意分类思想的运用,分类时不能重复,也不能遗漏.25.(1)3(2)5或1(3)-3.5或-2.5【分析】(1)设点C 表示的数为x ,根据点C 为AB 中点,列出方程求解即可;(2)设点P 表示的数为m ,根据两点间距离公式可列方程求解即可;(3)分点N 在点C 的左侧和右侧两种情况讨论求解即可.(1)设点C 表示的数为x ,∵点A 表示的数为-6,点B 表示的数为12,且点C 为AB 的中点∴(6)12x x --=-解得,3x =所以,点C 表示的数为:3;(2)设点P 表示的数为m ,∵点C 表示的数为3,且PC=2∴|3|2m -=解得,5m =或1m =∴点P 表示的数为:5或1;(3)分两种情况:①当点N在点C左侧时,如图,NC=,且点C表示的数为3∵2∴此时点N表示的数为:3-2=1又MN=1∴M表示的数为:1-1=0AM=--=∴0(6)6÷=秒,∴点M运动的时间为64 1.5∴点N的运动时间也为1.5秒DN=⨯=个单位,∴3 1.5 4.5∴点D表示的数为:1-4.5=-3.5;②当点N在点C的右侧时,如图,NC=,且点C表示的数为3∵2∴此时点N表示的数为:3+2=5又MN=1∴M表示的数为:5-1=4AM=--=∴4(6)10÷=秒,∴点M运动的时间为104 2.5∴点N的运动时间也为2.5秒DN=⨯=个单位,∴3 2.57.5∴点D表示的数为:5-7.5=-2.5;综上,点D表示的数为:-3.5或-2.5【点睛】本题考查一次方程应用及数轴上点表示的数,解题的关键是找准等量关系,正确列出一元一次方程.26.(1)44°;(2)66°或110°;(3)33°或55°【分析】(1)设∠BOC=x,则∠AOC=2x,根据∠AOC的余角比∠BOC小42°列方程求解即可;(2)分两种情况:①当射线OD在∠AOC内部,②当射线OD在∠AOC外部,分别求出∠COD的度数即可;(3)根据(2)的结论以及角平分线的定义解答即可.【详解】解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,∠AOB=∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,如图,∵∠AOC=4∠AOD,∴∠AOD=22°,∴∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,如图,由①可知∠AOD=22°,则∠COD=∠AOC+∠AOD=110°;故∠COD的度数为66°或110°;(3)∵OE平分∠AOD,∴∠AOE=1112AOD∠=︒,当射线OD在∠AOC内部时,如图,∴∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,如图,∴∠BOE=∠AOB+∠AOE=44°+11°=55°.综上所述,∠BOE度数为33°或55°.故答案为:33°或55°。
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】专题1.2同位角、内错角、同旁内角专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•沙坪坝区校级月考)图中,∠1和∠2不是同位角的是( )A.B.C.D.【分析】根据同位角的定义进行判断即可.【解答】解:由同位角的定义可知,选项B图形中的∠1和∠2不是同位角,故选:B.2.(2022春•新乐市校级月考)如图,直线a,b被直线c所截,则∠5的同位角是( )A.∠1B.∠2C.∠3D.∠4【分析】根据同位角的定义进行判断即可.【解答】解:直线a、直线b被直线c所截,∠3与∠5是所得的同位角,故选:C.3.(2022春•洞头区期中)如图,∠1和∠2是( )A.同位角B.内错角C.对顶角D.同旁内角【分析】根据同旁内角的定义进行判断即可.【解答】解:图中的∠1与∠2是直线a、直线b,被直线c所截的同旁内角,故选:D.4.(2022春•常州期中)已知∠1与∠2是内错角,则( )A.∠1=∠2B.∠1+∠2=180°C.∠1<∠2D.以上都有可能【分析】利用平行线的性质,内错角的定义进行判断即可.【解答】解:A.当两直线平行的情况下,∠1与∠2是内错角,则∠1=∠2,因此选项A是可能的;B.当∠1与∠2是内错角,在两直线平行,且∠1=90°时,∠1+∠2=180°,因此选项B也是可能的;C.∠1与∠2是内错角,∠1、∠2的大小是可以变化的,因此选项C是可能的;D.“以上都有可能”比较全面、准确;故选:D.5.(2022•兴宁区校级开学)若直线a,b,c相交如图所示,则∠1的内错角为( )A.∠2B.∠3C.∠4D.∠5【分析】根据内错角的定义判断即可.内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【解答】解:∠1的内错角是∠4.故选:C.6.(2022•丛台区开学)如图,下列判断正确的是( )A.∠3与∠6是同旁内角B.∠2与∠4是同位角C.∠1与∠6是对顶角D.∠5与∠3是内错角【分析】根据同位角、同旁内角、内错角和对顶角的概念解答即可.【解答】解:A、∠3与∠6是同旁内角,说法正确,故本选项符合题意;B、∠2与∠4不是同位角,故本选项不合题意;C、∠1与∠6不是对顶角,故本选项不合题意;D、∠5与∠3不是内错角,故本选项不合题意;故选:A.7.(2022春•法库县期中)如图,下列说法正确的是( )A.∠1与∠2是同位角B.∠1与∠2是内错角C.∠1与∠3是同位角D.∠2与∠3是同旁内角【分析】根据同位角,内错角,同旁内角的定义逐个判断即可.【解答】解:A、∠1和∠2不是同位角,故本选项不符合题意;B、∠1和∠2不是内错角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,故本选项符合题意;故选:D.8.(2022春•潢川县期末)如图:点C是直线AB上一点,过点C作CD⊥CE,那么图中∠1和∠2的关系是( )A.对顶角B.同位角C.互补D.互余【分析】依据∠ACB是平角,∠DCE是直角,即可得出∠1与∠2的关系.【解答】解:∵点C是直线AB上一点,∴∠ACB=180°,又∵CD⊥CE,∴∠DCE=90°,∴∠1+∠2=180°﹣90°=90°,即∠1与∠2互余,故选:D.9.(2022春•怀柔区校级期末)如图,直线a,b被c所截,下列四个结论:①∠1和∠7互为对顶角;②∠2和∠6是同位角;③∠3=∠5;④∠4和∠5是同旁内角.其中,结论一定正确的有( )A.1个B.2个C.3个D.4个【分析】根据对顶角,同位角,同旁内角以及内错角的定义解答即可.【解答】解:①∠1和∠7不是对顶角,原说法错误;②∠2和∠6是同位角,原说法正确;③∠3与∠5是内错角,但是不一定相等,原说法错误;④∠4和∠5是同旁内角,原说法正确.结论一定正确的有2个.故选:B.10.(2022春•莱州市期末)若∠1与∠2是同旁内角,∠1=35°,则∠2的度数是( )A.35°B.145°C.35°或145°D.无法确定【分析】根据如果两直线平行时同旁内角互补,不平行时无法确定同旁内角的大小关系进行解答.【解答】解:∵没有说明两直线是否平行,∴无法判断同旁内角∠1与∠2的大小关系.故选:D.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2021秋•晋江市期末)如图,直线AB,CD被AE所截,则∠A的内错角是 ∠AOD .【分析】根据内错角的定义判断即可.【解答】解:如图,直线AB,CD被AE所截,则∠A的内错角是∠AOD.故答案为:∠AOD.12.(2022春•张店区期末)如图,直线a,b被直线c所截,则形成的角中与∠1互为内错角的是 ∠4 .【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角,根据内错角的概念解答即可.【解答】解:根据内错角的概念可知,与∠1互为内错角的是∠4.故答案为:∠4.13.(2022春•西吉县期末)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是 ∠2、∠4 .【分析】同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.根据定义进行分析即可.【解答】解:∠1的同位角是∠2,∠5的内错角是∠4,即∠1的同位角和∠5的内错角分别是∠2、∠4.故答案为:∠2、∠4.14.(2022春•杭州月考)如图所标的5个角中,∠1与 ∠4 是同位角,∠5与 ∠3 是同旁内角.【分析】根据同位角、同旁内角定义解答即可.【解答】解:如图所标的5个角中,∠1与∠4是同位角,∠5与∠3是同旁内角.故答案为:∠4,∠3.15.(2022•海曙区校级开学)如图,∠1的同旁内角有 3 个.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.据此解答即可.【解答】解:∠1的同旁内角有∠EFD、∠ECD和∠ECB,共有3个.故答案为:3.16.(2022春•杨浦区校级期中)如图:与∠FDB成内错角的是 ∠EFD、∠AFD和∠CBD ;与∠DFB 成同旁内角的是 ∠DBF、∠BDF和∠CBF .【分析】准确识别内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.【解答】解:如图,与∠FDB成内错角的是∠EFD、∠AFD和∠CBD,与∠DFB成同旁内角的是:∠DBF、∠BDF和∠CBF.故答案分别是:∠EFD、∠AFD和∠CBD,∠DBF、∠BDF和∠CBF.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2021春•宝山区校级月考)如图所示,(1)∠AED和∠ABC可看成是直线 ED 、 BC 被直线 AB 所截得的 同位 角;(2)∠EDB和∠DBC可看成是直线 ED 、 BC 被直线 BD 所截得的 内错 角;(3)∠EDC和∠C可看成是直线 ED 、 BC 被直线 AC 所截得的 同旁内 角.【分析】(1)根据同位角的定义求解;(2)根据内错角的定义求解;(3)根据同旁内角的定义求解.【解答】解:(1)∠AED和∠ABC可看成是直线ED、BC被直线AB所截得的同位角;(2)∠EDB和∠DBC可看成是直线ED、BC被直线BD所截得的内错角;(3)∠EDC和∠C可看成是直线ED、BC被直线AC所截得的同旁内角.故答案为:ED,BC,AB,同位;ED,BC,BD,内错;ED,BC,AC,同旁内.18.(2021春•连山区月考)如图,直线EF交AB于G,交CD于M.(1)图中有多少对对顶角;(2)图中有多少对邻补角;(3)图中有多少对同位角;(4)图中有多少对同旁内角;(5)写出图中的内错角.【分析】(1)根据对顶角的概念即可得到答案;(2)根据邻补角的概念即可得到答案;(3)根据同位角的概念即可得到答案;(4)根据同旁内角的概念即可得到答案;(5)根据内错角的概念可得答案.【解答】解:(1)图中4对对顶角;(2)图中12对邻补角;(3)图中有8对同位角;(4)图中有4对同旁内角;(5)图中内错角有:∠AGF和∠GMD,∠CMG和∠MGB,∠CMG和∠MGH,∠NMG和∠MGB,∠NMG和∠MGH.19.(2021春•贺兰县期中)如图,指出图中直线AC,BC被直线AB所截的同位角、内错角、同旁内角.【分析】根据同位角、内错角、同旁内角的定义判断求解即可.【解答】解:∵直线AC、BC被直线AB所截,∴∠1 与∠2,∠4 与∠DBC是同位角;∠1 与∠3,∠4 与∠5 是内错角;∠3 与∠4 是同旁内角,∠1 与∠5 是同旁内角.20.(2021春•莘县期末)两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出示意图,标出∠1,∠2,∠3;(2)若∠1=2∠2,∠2=2∠3,求∠1,∠2,∠3的度数.【分析】(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可,进而画出图形即可;(2)设∠3=x,则∠2=2x,∠1=4x,利用邻补角的关系得到x,进而求出∠1,∠2,∠3的度数.【解答】解:(1)如图所示:(2)∵∠1=2∠2,∠2=2∠3,∴设∠3=x,则∠2=2x,∠1=4x,∵∠1+∠3=180°,∴x+4x=180°,解得:x=36°,故∠3=36°,∠2=72°,∠1=144°.21.(2021春•南海区月考)如图,在直角三角形ABC中,∠C=90°,DE⊥AC交AC于点E,交AB于点D.(1)请分别写出当BC,DE被AB所截时,∠B的同位角、内错角和同旁内角.(2)试说明∠1=∠2=∠B的理由.【分析】(1)按照所学同位角,内错角,同旁内角的定义进行判断;(2)根据三角形的内角和为180°,通过等量代换即可得解.【解答】解:(1)当BC,DE被AB所截时,∠B的同位角为∠1;∠B的内错角为∠2;∠B的同旁内角为∠BDE;(2)∵∠C=90°,DE⊥AC,∴∠AED=∠C,∵∠1+∠A+∠AED=180°,∠B+∠A+∠C=180°,∴∠1=∠B,∵∠1=∠2,∴∠1=∠2=∠B.22.(2020春•南昌期末)如图所示,已知∠1=115°,∠2=65°,∠3=100°.(1)图中所有角中(包含没有标数字的角),共有几对内错角?(2)求∠4的大小.【分析】(1)根据内错角的定义解答即可;(2)根据邻补角的定义先求出∠5的度数,由等量代换得∠5=∠1,根据同位角相等,两直线平行判定直线a∥b,由两直线平行,同位角相等求得∠6,最后根据对顶角相等求出∠4的度数为100°.【解答】解:如图所示:(1)直线c和d被直线b所截,有两对内错角,即∠2和∠6,∠5和∠7,同理还有六对内错角,共有8对内错角;(2)∵∠2+∠5=180°,∠2=65°,∴∠5=180°﹣65°=115°,∵∠1=115°,∴∠1=∠5,∴a∥b,∴∠3=∠6,又∵∠3=100°,∴∠6=100°,∴∠4=∠6=100°.23.(2020春•大悟县期中)如图,直线DE经过点A.(1)写出∠B的内错角是 ∠BAD ,同旁内角是 ∠BAC,∠EAB和∠C .(2)若∠EAC=∠C,AC平分∠BAE,∠B=44°,求∠C的度数.【分析】(1)根据内错角和同旁内角的概念解答即可;(2)根据平行线的判定和性质解答即可.【解答】解:(1)∠B的内错角是∠BAD,∠B的同旁内角是∠BAC,∠EAB和∠C;(2)∵∠EAC=∠C,∴DE∥BC,∴∠BAE=180°﹣44°=136°,∵AC平分∠BAE,∴∠EAC=68°,∴∠C=∠EAC=68°,故答案为:∠BAD;∠BAC,∠EAB和∠C24.(2019秋•崇川区校级期末)复杂的数学问题我们常会把它分解为基本问题来研究,化繁为简,化整为零这是一种常见的数学解题思想.(1)如图1,直线l1,l2被直线l3所截,在这个基本图形中,形成了 2 对同旁内角.(2)如图2,平面内三条直线l1,l2,l3两两相交,交点分别为A、B、C,图中一共有 6 对同旁内角.(3)平面内四条直线两两相交,最多可以形成 24 对同旁内角.(4)平面内n条直线两两相交,最多可以形成 n(n﹣1)(n﹣2) 对同旁内角.【分析】根据同旁内角的定义,结合图形确定同旁内角的对数.【解答】解:因为两个交点可以形成2对同旁内角,而三个交点形成的同旁内角的对数为6对,(1)直线l1,l2被直线l3所截,在这个基本图形中,形成了2对同旁内角.(2)平面内三条直线l1,l2,l3两两相交,交点分别为A、B、C,图中一共有3×2=6对同旁内角.(3)平面内四条直线两两相交,交点最多为6个,最多可以形成4×(4﹣1)×(4﹣2)=24对同旁内角.(4)平面内n条直线两两相交,最多可以形成n(n﹣1)(n﹣2)对同旁内角故答案为:(1)2;(2)6;(3)24;(4)n(n﹣1)(n﹣2)。
浙江省七年级数学上学期期末试卷(含解析)浙教版七年级上学期期末数学试卷一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分。
)1.-2016的倒数是()A。
-2016 B。
2016 C。
0答案:B2.9的平方根为()A。
3 B。
-3 C。
±3 D。
0答案:C3.如图,数轴上的点A、B、C、D、E分别对应的数是1、2、3、4、5,那么表示A。
线段AB上 B。
线段BC上 C。
线段CD上 D。
线段DE上答案:B4.下列选项是无理数的为()A。
-√8 B。
8 C。
3.xxxxxxx D。
-π答案:A、C、D5.2cm接近于()A。
珠穆朗玛峰的高度 B。
三层楼的高度 C。
XXX的身高D。
一张纸的厚度答案:D6.若x=2是关于x的方程2x+3m-1=0的解,则m的值为()A。
-1 B。
1 C。
0 D。
2答案:A7.XXX买书需用48元钱,付款时恰好用了1元和5元的纸币共12张。
设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A。
x+5(12-x)=48 B。
x+5(x-12)=48 C。
x+12(x-5)=48 D。
5x+(12-x)=48答案:A8.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A。
1条 B。
2条 C。
3条 D。
4条答案:C9.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A。
60° B。
120° C。
60°或90° D。
60°或120°答案:B10.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测+1的个位数字是()A。
0 B。
2 C。
4 D。
8答案:C二、认真填一填(本题有6小题,每小题4分,共24分。
浙教版七年级第一学期期末数学试卷及答案一、选择题(本题共10小题,共30分) 1. 2022的相反数是( )A. −2202B. 2202C. −2022D. 20222. 据科学家估计,地球的年龄大约是4600000000年,将数据4600000000用科学记数法表示应为( )A. 0.46×1010B. 46×108C. 4.6×1010D. 4.6×1093. 下列各组数中,互为倒数的是( )A. −134与−143B. −0.25与14C. −0.5与−2D. −1与14. 在实数−1,√3−1,227,3.14中,属于无理数的是( )A. −1B. √3−1C. 227D. 3.145. 下列四个式子中,计算结果最大的是( )A. −23+(−1)2B. −23−(−1)2C. −23×(−1)2D. −23÷(−1)26. 下列说法中,正确的是( )A. 相等的角是对顶角B. 若AB =BC ,则点B 是线段AC 的中点C. 过一点有一条而且仅有一条直线垂直于已知直线D. 若一个角的余角和补角都存在,则这个角的补角一定比这个角的余角大90度7. 下列计算正确的是( )A. 13−13×(−2)=0×(−2)=0 B. (−14)÷(13−12)=(−14)÷(−16)=32 C. 3÷(−12)×(−2)=3÷1=3 D. (−112)2−22=114−4=−2348. 关于平方根与立方根知识,下列说法正确的是( )A. 如果一个数有平方根,那么这个数也一定有立方根B. 如果一个数有立方根,那么这个数也一定有平方根C. 平方根是它本身的数只有0,立方根是它本身的数也只有0D. 如果一个数有正负两个平方根,那么这个数也有正负两个立方根9. 某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/时,求两个码头之间的距离,若设两个码头之间的距离为x 千米,则可得方程为( )A. x 3−4=x5+4B. x 3−x5=4C. x 3+4=x5−4D.x−43=x+45第2页,共12页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………10. 已知a ,b 都是有理数,如果|a +b|=b −a ,那么对于下列两种说法:①a 可能是负数;②b 一定不是负数,其中判断正确的是( )A. ①②都错B. ①②都对C. ①错②对D. ①对②错二、填空题(本题共6小题,共24分) 11. −1的立方根是______.12. 用四舍五入法把数1.3579精确到百分位,所得的近似数是______. 13. 若∠α=42°24′,∠β=15.3°,则∠α与∠β的和等于______. 14. 计算:124÷(13−14+112)=______.15. 甲每小时生产某种零件15个,甲生产3小时后,乙也加入生产同一种零件,再经过5小时,两人共生产这种零件210个,则乙每小时生产这种零件______个.16. 已知线段AB =24cm ,点D 是线段AB 的中点,直线AB 上有一点C ,且CD =3BC ,则线段CD =______cm . 三、填空题(本题共7小题,共66分)17. 把下列各数表示在数轴上,并按从小到大的顺序用“<”连接.−12,0,−1,1.5,3.18. 计算:(1)|−3|−(−2);(2)(−6)2×(12−13)+(−2)3. 19. 解下列方程:(1)1+2x =7−x .(2)y 3−y −16=1−23y. 20. (1)已知一个长方形的长是宽的2倍,面积是10,求这个长方形的周长.(2)如图,已知长方形内两个相邻正方形的面积分别为9和3,求图中阴影部分的面积.21. (1)先化简,再求值:2(a 2+ab)−3(23a 2−ab),其中a =2,b =−3.(2)已知2x +y =3,求代数式3(x −2y)+5(x +2y −1)−2的值.22.数学家欧拉最先把关于x的多项式用记号f(x)来表示.例如:f(x)=x2+x−1,当x=a时.多项式的值用f(a)来表示,即f(a)=a2+a−1.当x=3时,f(3)=32+3−1=11.(1)已知f(x)=x2−2x+3,求f(1)的值.(2)已知f(x)=mx2−2x−m,当f(−3)=m−1时,求m的值.(3)已知f(x)=kx2−ax−bk(a.b为常数),对于任意有理数k,总有f(−2)=−2,求a,b的值.23.如图,已知OB,OC,OD是∠AOE内三条射线,OB平分∠AOE,OD平分∠COE.(1)若∠AOB=70°,∠DOE=20°,求∠BOC的度数.(2)若∠AOE=136°,AO⊥CO,求∠BOD的度数.(3)若∠DOE=20°,∠AOE+∠BOD=220°,求∠BOD的度数.第4页,共12页答案和解析1.【答案】C【解析】解:2022的相反数是−2022. 故选:C .相反数的概念:只有符号不同的两个数叫做互为相反数. 本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【答案】D【解析】解:4600000000=4.6×109. 故选:D .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【答案】C【解析】解:A 、−134的倒数是−73,故该选项不符合题意; B 、−0.25=−14,与−4互为倒数,故该选项不符合题意; C 、−0.5的倒数是−2,故该选项符合题意; D 、−1的倒数是−1,故该选项不符合题意; 故选:C .根据倒数的定义判断即可.本题考查了倒数的定义,掌握乘积为1的两个数互为倒数是解题的关键.4.【答案】B【解析】解:A.−1是整数,属于有理数,故本选项不合题意; B .√3−1是无理数,故本选项符合题意; C .227是分数,属于有理数,故本选项不合题意; D .3.14是有限小数,属于有理数,故本选项不合题意.故选:B.根据无理数是无限不循环小数,可得答案.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.5.【答案】A【解析】解:−23+(−1)2=−8+1=−7,−23−(−1)2=−8−1=−9,−23×(−1)2=−8×1=−8,−23÷(−1)2=−8÷1=−8,∵−7>−8>−9,∴计算结果最大的是选项A.故选:A.各式计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、对顶角相等,但是相等的角不一定是是对顶角,故本选项不符合题意;B、三点不在一条直线上,AB=BC,但是B不是线段AC的中点,故本选项不符合题意;C、平面内,过一点有且只有一条直线与已知直线垂直,正确,故此选项不符合题意;D、若一个角的余角和补角都存在,则这个角的补角一定比这个角的余角大90度,故此选项符合题意;故选:D.根据对顶角性质、线段中点的定义、点到直线的距离,逐一判定即可解答.本题考查了点到直线的距离,解决本题的关键是熟记点到直线的距离.第6页,共12页7.【答案】B【解析】解:A 、13−13×(−2) =13+23=1,不符合题意; B 、(−14)÷(13−12) =(−14)÷(−16) =(−14)×(−6) =32,符合题意; C 、3÷(−12)×(−2) =3×(−2)×(−2) =12,不符合题意; D 、(−112)2−22 =94−4=−134,不符合题意. 故选:B .各式计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【答案】A【解析】解:A.根据平方根以及立方根的定义,一个数有平方根,则这个数非负数,这个数一定有立方根,那么A 正确,故A 符合题意.B .根据平方根以及立方根的定义,一个数有立方根,则这个数可能是负数,但负数没有平方根,那么B 错误,故B 不符合题意.C .根据平方根以及立方根的定义,平方根等于本身的数是0,立方根等于本身的数有1或0或−1,那么C 错误,故C 不符合题意.D .根据平方根以及立方根的定义,一个数有正负两个平方根,则这个数正数,但这个正数只有一个立方根,那么D 错误,故D 不符合题意. 故选:A .根据平方根以及立方根的定义解决此题.本题主要考查平方根以及立方根,熟练掌握平方根以及立方根的定义是解决本题的关键.9.【答案】A【解析】解:设若设两个码头之间的距离为x 千米, 因此可列方程为x3−4=x5+4, 故选:A .首先要理解题意找出题中存在的等量关系:顺水时的路程=逆水时的路程,根据此列方程即可. 此题考查了由实际问题抽象出一元一次方程,求出船在静水中的速度的等量关系是解决本题的关键.10.【答案】B【解析】解:|a +b|={a +b(a +b ≥0)−a −b(a +b ≤0),当a +b =b −a 时,可得到2a =0,即a =0,此时把a =0代入等式|a +b|=b −a ,则|b|=b ,即b ≥0, ∴②b 一定不是负数,正确;当−a −b =b −a 时,得到2b =0,即b =0,此时把b =0代入等式|a +b|=b −a ,则|a|=−a ,即a ≤0; ∴a 有可能是负数,①正确; ∴①②都正确,符合题意, 故选:B .利用绝对值的定义,分情况讨论结果.本题主要考查了绝对值,做题关键是掌握绝对值的定义.11.【答案】−1【解析】解:∵(−1)3=−1 ∴−1的立方根是−1. 直接利用立方根的定义计算.此题主要考查了立方根的定义,注意负数的立方根还是负数.12.【答案】1.36【解析】解:1.3579≈1.36(精确到百分位). 故答案为:1.36.把千分位上的数字7进行四舍五入即可.第8页,共12页本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.13.【答案】57°42′【解析】解:∵∠β=15.3°=15°+0.3×60′=15°18′, ∴∠α+∠β=42°24′+15°18′=57°42′. 故答案为:57°42′.先将0.3°化成18′,即∠β=15.3°=15°18′,然后计算两个角的和即可.本题考查度、分、秒的换算,掌握度、分、秒的换算方法以及单位之间的进率是正确解答的前提.14.【答案】14【解析】解:124÷(13−14+112) =124÷(412−312+112) =124÷16 =124×6 =14. 故答案为:14.先算小括号里面的加减法,再算括号外面的除法.本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.15.【答案】18【解析】解:设乙每小时生产这种零件x 个, 根据题意列方程得,15×3+(15+x)×5=210, 解得x =18, 故答案为:18.设乙每小时生产这种零件x 个,根据题意列方程求解即可.本题主要考查一元一次方程的应用,熟练根据题中等量关系列方程求解是解题的关键.16.【答案】9或18【解析】解:∵AB=24cm,点D是线段AB的中点,∴BD=12cm,设BC=x cm,则CD=3BC=3x cm,当C点在B、D之间时,DC=BD−BC,即3x=12−x,解得x=3,∴CD=9(cm);当C点在DB的延长线上时,DC=DB+BC,即3x=12+x,解得x=6,∴CD=18(cm);故答案为:9或18.根据线段中点的性质,可得BD的长,设BC=x,根据线段的和差列出方程解答便可.本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论以防遗漏.17.【答案】解:把各数在数轴上表示为:从小到大的顺序用不等号连接起来为:−1<−12<0<1.5<3.【解析】在数轴上找出对应的点,根据数轴方向朝右时,右边的数总比左边的数大,按从小到大的顺序用“<”连接即可.此题主要考查了利用数轴比较实数的大小,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.18.【答案】解:(1)|−3|−(−2)=3+2=5;(2)(−6)2×(12−13)+(−2)3=36×16−8第10页,共12页=6−8 =−2.【解析】(1)先算绝对值,再算减法;(2)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.【答案】解:(1)1+2x =7−x ,2x +x =7−1, 3x =6, x =2;(2)y3−y−16=1−23y , 2y −(y −1)=6−4y , 2y −y +1=6−4y , 2y −y +4y =6−1, 5y =5, y =1.【解析】(1)移项,合并同类项,系数化成1即可; (2)去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.20.【答案】解:(1)设长方形的宽为x ,则长方形的长为2x ,则x ⋅2x =10,解得x =√5 或−√5(舍去), ∴长方形的长为2√5,∴长方形的周长为(√5+2√5)×2=6√5. (2)由题意可知,大正方形的边长为3,小正方形的变成为√3, ∴阴影部分的面积为(3−√3)×√3=3√3−3.【解析】(1)根据长方形面积公式为长×宽,代入计算即可;(2)两个小阴影部分可以组成一个长为√3,宽为(3−√3)的长方形,直接计算即可.本题考查二次根式的应用,能够将图形的面积公式和二次根式熟练的结合在一起是解答本题的关键.21.【答案】解:(1)2(a2+ab)−3(2a2−ab)3=2a2+2ab−2a2+3ab=5ab.当a=2,b=−3时,原式=5×2×(−3)=−30.(2)3(x−2y)+5(x+2y−1)−2=3x−6y+5x+10y−5−2=8x+4y−7.∵2x+y=3,∴原式=4(2x+y)−7=4×3−7=12−7=5.【解析】(1)先化简整式,再代入求值;(2)先化简整式,再整体代入求值.本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.22.【答案】解:(1)当x=1时,f(1)=1−2+3=2;(2)当x=−3时,f(−3)=mx2−2x−m=9m+6−m=m−1,∴m=−1;(3)当x=−2时,f(−2)=kx2−ax−bk=4k+2a−bk=−2,∴(4−b)k+2a=−2,∵k为任意有理数,∴4−b=0,2a=−2,∴a=−1,b=4.【解析】(1)将x=1代入f(x)=x2−2x+3中进行计算即可;(2)将x=−3代入f(x)=mx2−2x−m中,根据f(−3)=m−1列方程计算即可;第12页,共12页(3)根据题意将x =−2代入f(x)=kx 2−ax −bk 中,可知k 的倍数4−b =0,从而可解答此题. 本题主要考查的是求代数式的值,读懂记号f(x)的运算方法是解题的关键.23.【答案】解:(1)∵OB 平分∠AOE ,OD 平分∠COE ,∴∠BOE =∠AOB =70°, ∠COE =2∠DOE =40°, ∵∠BOC =−∠BOE −∠COE , ∴∠BOC =70°−40°=30°. (2)∵OB 平分∠AOE ,OD 平分∠COE , ∴∠BOE =12∠AOE ,∠DOE =12∠COE , ∵∠BOD =∠BOE −∠DOE ,∴∠BOD =12(∠AOE −∠COE)=12∠AOC , ∵AO ⊥CO , ∴∠AOC =90°, ∴∠BOD =45°. (3)∵OB 平分∠AOE , ∴∠AOE =2∠BOE , ∵∠AOE +∠BOD =220°, ∴2∠BOE +∠BOD =220°, ∵∠BOE −∠BOD =∠DOE , ∴∠BOE −∠BOD =20°, ∴2∠BOE −2∠BOD =40°, ∴3∠BOD =180°, ∴∠BOD =60°.【解析】(1)由角平分线的定义,表示出∠BOC ,即可求解; (2)由角平分线的定义,表示出∠BOD ,即可求解;(3))由角平分线的定义,列出关于∠BOD 的方程组,即可求解. 本题考查角的计算,关键是由角平分线定义得出有关等式.。
浙教版七年级上册数学期末考试试题一、单选题1.计算52-+的结果等于()A .3B .3-C .7-D .72.数据393000用科学记数法表示为()A .393×103B .39.3×104C .3.93×105D .0.393×1063.数17,π,0,-0.3中,属于无理数的是()A .17B .πC .0D .-0.34.下列合并同类项正确的是()A .3x +2x =5x 2B .3x -2x =1C .-3x +2x =-x D .-3x -2x =5x5.解方程()221x x -+=,以下去括号正确的是()A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x--=6.如图,已知∠AOB :∠BOC =2:3,∠AOC =75°,那么∠AOB =()A .20°B .30°C .35°D .45°7.有一个数值转换器,原理如下:当输入81时,输出()A .9B .3C D .8.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是()A .3x ﹣2=2x +9B .3(x ﹣2)=2x +9C .2932x x +=-D .3(x ﹣2)=2(x +9)9.按图示方法,搭1个正方形需要四根火柴,搭3个正方形需要10根火柴,搭6个正方形需要18根火柴棒,则能搭成符合规律图形的火柴棒的数目可以是()A .52根B .66根C .72根D .88根10.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点,下列结论:①若AD=BM ,则AB=3BD ;②若AC=BD ,则AM=BN ;③AC-BD=2(MC-DN );④2MN=AB-CD .其中正确的结论是()A .①②③B .③④C .①②④D .①②③④二、填空题11.﹣3的相反数是__________.12.计算:()192-÷=_____.13.单项式25ab -的系数是_____.14.若x =2是关于x 的方程5x+a =3(x+3)的解,则a 的值是_____.15.一副三角板如图叠放,已知∠OAB =∠OCD =90°,∠AOB =45°,∠COD =60°,OB 平分∠COD ,则∠AOC =_____度.16.纸片上有一数轴,折叠纸片,当表示-1的点与表示5的点重合时,表示3的点与表示数_____的点重合.17.如图,一个瓶子的容积为1升,瓶内装着一些溶液,当瓶子正放时,瓶内溶液的高度为20cm ,倒放时,空余部分的高度为5cm .(1)瓶内溶液的体积为______升;(2)现把溶液全部倒在一个底面为60cm2的圆柱形杯子里,再把瓶子倒放,此时瓶内溶液的高度是圆柱形杯子内溶液高度的6倍.已知瓶子的高度是33cm,则倒入圆柱形杯子内的溶液体积为______.三、解答题18.计算:(1)4×(-2)+|-8|;(2)12×3142⎛⎫-⎪⎝⎭+(-3)2.19.解方程:1143 x x --=.20.先化简再求值:2(a2-ab)-3(23a2-ab),其中a=2,b=-5.21.如图,直线AB,CD交于点O,OM⊥AB,ON⊥CD.(1)写出图中所有与∠AOC互余的角.(2)当∠MON=120°时,求∠BOD的度数.22.如图,线段AB =10,C 为AB 延长线上的一点,D 是线段AC 中点,且点D 不与点B 重合.(1)当BC =6时,求线段BD 的长.(2)若线段BD =4,求线段BC 的长.23.阅读材料:数轴上A 、B 两点分别对应的实数a 、b ,则a b -表示A 、B 两点之间的距离,若a b ≥,则=a b a b --;若a b <,则a b b a -=-.(1)若数轴上A 点对应的实数1a =-,且=3a b -,则数轴上B 点对应的实数b =__.(2)若数轴上A 、B 两点对应的数分别对应代数式2231x x --,23+24x x -+,且点A 在B 的右边,求A 、B 两点之间的距离.(3)若数轴上A 、B 两点对应的数分别为关于x 的代数式2231x x --,2+24mx x +,且求得,A B 两点之间的距离所得结果不含字母2x ,求m 的值.24.如图,已知线段AB .(1)利用刻度尺画图:延长线段AB 至C ,使BC =12AB ,取线段AC 的中点D .(2)若CD =6,求线段BD 的长.25.如图,直线AB 与直线CD 相交于点O ,OE ⊥OF ,且OA 平分∠COE .(1)若∠DOE =50°,求∠BOF 的度数.(2)设∠DOE =α,∠BOF =β,请探究α与β的数量关系(要求写出过程).26.【阅读理解】甲、乙两人分别从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶,出发后经过0.4小时相遇,已知在相遇时乙比甲多行驶了14.4千米,相遇后经0.1小时乙到达A地.问甲、乙两人的速度分别是多少?分析可以用示意图来分析本题中的数量关系.从图中可得如下的相等关系,甲行驶0.4小时的路程=乙行驶0.1小时路程,甲行驶0.4小时的路程+14.4=乙行驶0.4小时的路程.根据这两个相等关系,可得到甲、乙速度的关系,设元列出方程.【问题解决】请你列方程解答【阅读理解】中的问题.【能力提升】对于上题,若乙出发0.2小时后行驶速度减少10千米/小时,问甲出发后经多少小时两人相距2千米?参考答案1.B【分析】根据有理数的加法计算即可.【详解】解:()523--=-,故选:B .【点睛】本题考查了有理数的加法,解题的关键是掌握有理数的加法法则.2.C【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数.当确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数绝对值1≤时,n 是负整数.【详解】5393000=3.9310⨯故选:C【点睛】本题考查科学记数法的表示方法,解题关键是要正确确定a 的值以及n 的值.3.B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A 、17是分数,属于有理数,故此选项不符合题意;B 、π是无理数,故此选项符合题意;C 、0是整数,属于有理数,故此选项不符合题意;D 、-0.3是有限小数,属于有理数,故此选项不符合题意.故选:B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.C【分析】根据合并同类项法则:系数相加,字母及其指数不变.逐项判断即可.【详解】A 、325x x x +=,故选项错误,不符合题意;B 、32x x x -=,故选项错误,不符合题意;C 、32x x x -+=-,故选项正确,符合题意;D 、325x x x --=-,故选项错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则,解题的关键是掌握合并同类项的法则.【分析】去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号.【详解】解:()221x x-+=42x x --=,故选:D .【点睛】此题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.去括号注意几点:①不要漏乘括号里的每一项;②括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号.6.B【分析】由∠AOB :∠BOC=2:3,可得∠AOB=25∠AOC 进而求出答案,作出选择.【详解】解:∵∠AOB :∠BOC =2:3,∠AOC =75°,∴∠AOB =223+∠AOC =25×75°=30°,故选:B .【点睛】本题考查角的有关计算,按比例分配转化为∠AOB=25∠AOC 是解答的关键.7.C【分析】直接利用算术平方根的定义分析得出答案.【详解】解:由题意可得:81的算术平方根是9,9的算术平方根是3,则3y 故选:C .【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键.8.B【分析】理清题意,根据乘车人数不变,即可列出关于x 的一元一次方程.【详解】解:设车x 辆,根据题意得:3(x ﹣2)=2x +9.故选:B .【点睛】本题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.【分析】仔细观察图形,找到图形变化的规律为:当有n层时,需要2n+2(1+2+3+•••n)=n2+3n根火柴,从而验证选项即可确定答案.【详解】解:1个正方形,一层,需要2×1+2×1=4根火柴;3个正方形,两层,需要2×2+2×(1+2)=10根火柴;6个正方形,三层,需要2×3+2×(1+2+3)=18根火柴;因此当有n层时,需要2n+2(1+2+3+•••n)=n2+3n根火柴,当n=8时,82+3×8=64+24=88根火柴,故选:D.【点睛】本题考查了图形的变化类问题,解题的关键是找到图形变化的规律:当有n层时,需要2n+2(1+2+3+…+n)=n2+3n根火柴,难度中等.10.D【分析】根据M、N分别是线段AD、BC的中点,可得AM=MD,CN=BN.由①知,当AD=BM,可得AM=BD,故而得到AM=MD=DB,即AB=3BD;由②知,当AC=BD时,可得到MC=DN,又AM=MD,CN=BN,可解得AM=BN;由③知,AC-BD=AM+MC-BN-DN=(MC-DN)+(AM-BN)=(MC-DN)+(MD-CN)=2(MC-DN);由④知,AB-CD=AC+BD=AM+MC+DN+NB=MD+MC+DN+CN=MD+DN+MC+CN=2MN逐一分析,继而得到最终选项.【详解】解:∵M,N分别是线段AD,BC的中点,∴AM=MD,CN=NB.①∵AD=BM,∴AM+MD=MD+BD,∴AM=BD.∵AM=MD,AB=AM+MD+DB,∴AB=3BD.②∵AC=BD,∴AM+MC=BN+DN.∵AM=MD,CN=NB,∴MD+MC=CN+DN,∴MC+CD+MC=CD+DN+DN,∴MC=DN ,∴AM=BN.③AC-BD=AM+MC-BN-DN=(MC-DN)+(AM-BN)=(MC-DN)+(MD-CN)=2(MC-DN);④AB-CD=AC+BD=AM+MC+DN+NB=MD+MC+DN+CN=MD+DN+MC+CN=2MN.综上可知,①②③④均正确故答案为:D【点睛】本题主要考查线段长短比较与计算,以及线段中点的应用.11.3【详解】解:一个数的相反数就是在这个数前面添上“﹣”号.所以﹣(﹣3)=3,故答案为:3.12.-18【分析】根据有理数的除法法则进行运算即可.【详解】解:1(9)2-÷=(9)2-⨯=18.【点睛】本题考查了有理数的除法法则即:除以一个不为零的数等于乘以这个数的倒数;解题的关键是掌握有理数的除法法则.13.5-【分析】单项式的系数:单项式中的数字因数叫做这个单项式的系数.【详解】根据单项式系数的定义,可知:25ab -的系数为5-.故答案为5-【点睛】本题考察的知识点为:单项式的定义、单项式系数的定义;单项式中数字因数包括负号这个知识点是解答本题的关键.14.5【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.15【分析】先根据OB 平分∠COD 求出∠BOC ,即可根据∠AOC =∠AOB-∠BOC 求解【详解】∵OB 平分∠COD ,∠COD =60°,∴∠BOC =30°,∵∠AOB =45°,∴∠AOC =∠AOB-∠BOC =45°-30°=15°,故答案为:15.【点睛】本题考查三角板中的角度计算,准确的找到角度之间的关系是解题的关键.16.1【分析】先求出折痕和数轴交点表示的数,再由所求数表示的点与表示3的点关于折痕和数轴交点对称,即可求出.【详解】解:由题意可知,折痕与数轴交点表示的数字为(15)22-+÷=,表示3的点与折痕和数轴的交点的距离为321-=,表示3的点与表示数211-=的点重合,故答案为:1.【点睛】本题考查了数轴的知识,解题的关键是求出折痕表示的数字.17.0.83224cm 【分析】(1)设瓶内溶液的体积为x 升,则空余部分的体积为520x 升,根据瓶子的容积为1升,即可得出关于x 的一元一次方程,解之即可得出结论;(2)可设倒入圆柱形杯子内的溶液体积为y 3cm ,瓶内剩余体积为3(800)y cm -,瓶子的底面积为28002040cm ÷=,以高为等量关系,列出方程计算即可求解.【详解】解:(1)设瓶内溶液的体积为x 升,则空余部分的体积为520x 升,依题意得:5120x x +=,解得:0.8x =.答:瓶内溶液的体积为0.8升.故答案为:0.8;(2)设倒入圆柱形杯子内的溶液体积为y 3cm ,瓶内剩余体积为3(800)y cm -,瓶子的底面积为28002040()cm ÷=,方法1:33564060y y --=⨯,解得224y =.方法2:依题意有800(1000800)(3320)64060y y ---+-=⨯,解得224y =.故倒入圆柱形杯子内的溶液体积为3224cm .故答案为:3224cm .【点睛】本题考查了一元一次方程的应用以及认识立体图形,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)以高为等量关系求解.18.(1)-3(2)12【分析】(1)先利用立方根、绝对值的性质化简,再合并,即可求解;(2)先利用乘法分配律计算,再合并,即可求解.(1)解:()428⨯-+-883=-+-3=-(2)解:()23112342⎛⎫⨯-+- ⎪⎝⎭311212942=⨯-⨯+969=-+12=.【点睛】本题主要考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则.19.15x =-【分析】方程去分母,去括号,移项合并同类项,把x 的系数化为1,即可求解.【详解】解:去分母,得()31124x x--=去括号,得33124x x --=,移项合并同类项,得15x -=系数化为1,得15x =-【点睛】本题主要考查了一元一次方程的解法,解题难点是在解方程的过程中,去分母时各项都要乘以各分母的最小公倍数.20.ab ,-10【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】原式222223a ab a ab ab=--+=当2a =,=5b -时,原式()2510=⨯-=-.【点睛】此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.21.(1)COM ∠,AON∠(2)60°【分析】(1)根据OM ⊥AB ,ON ⊥CD ,可得∠AOC+∠COM=∠AOC+∠AON=90°,即可求解;(2)根据OM ⊥AB ,ON ⊥CD ,可得90AOM ∠=︒,90DON ∠=︒.再由120MON ∠=︒,可得30AON MON AOM ∠=∠-∠=︒,然后180BOD AON DON ∠=︒-∠-∠,即可求解.(1)解:∵OM ⊥AB ,ON ⊥CD ,∴∠AOM=∠CON=90°,∴∠AOC+∠COM=∠AOC+∠AON=90°,∴∠AOC 互余的角为COM ∠,AON ∠;(2)解:∵OM AB ⊥,∴90AOM ∠=︒,∵ON CD ⊥,∴90DON ∠=︒.∵120MON ∠=︒,∴1209030AON MON AOM ∠=∠-∠=︒-︒=︒.∴180180903060BOD AON DON ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题主要考查了垂线,余角和补角,根据题目的已知条件并结合图形分析是解题的关键.22.(1)2(2)线段BC 的长为18或2【分析】(1)如图1,根据线段的和差得到AC=AB+BC=16,根据线段中点的定义即可得到结论;(2)当点D 在B 的右侧时,如图2,AD=AB+BD=10+4=14,当点D 在B 的左侧时,如图3,AD=AB-BD=10-4=6,根据线段中点的定义即可得到结论.(1)解:如图1,∵AB=10,BC=6,∴AC=AB+BC=16,∵D 是线段AC 中点,∴AD=12AC=8,∴BD=AB-AD=10-8=2;(2)解:当点D 在B 的右侧时,如图2,AD=AB+BD=10+4=14,∵D 是线段AC 中点,∴AD=CD=14,∴BC=BD+CD=4+14=18;当点D 在B 的左侧时,如图3,AD=AB-BD=10-4=6,∵D 是线段AC 中点,∴AD=CD=6,∴BC=CD-BD=6-4=2,综上所述,线段BC 的长为18或2.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,解题的关键是掌握分类讨论的思想,以防遗漏.23.(1)2或-4;(2)2555x x --;(3)2m =【分析】(1)根据题意易得3a b -=±,然后问题可求解;(2)根据题意可得A 、B 两点之间的距离为22231324x x x x --+--,然后化简即可得出答案;(3)由题意得()22223124255x x mx x m x x -----=---,然后根据结果不含字母2x 可求解.【详解】解:(1)∵=3a b -,∴3a b -=±,∵1a =-,∴2b =或4b =-;故答案为2或-4;(2)由题意得:A 、B 两点之间的距离为()22222231324231324555x x x x x x x x x x ----++=--+--=--;(3)由题意得:A 、B 两点之间的距离为()22223124255x x mx x m x x -----=---,∵结果不含字母2x ,∴20m -=,∴2m =.【点睛】本题主要考查数轴上的两点距离及整式的加减,熟练掌握数轴上的两点距离及整式的加减是解题的关键.24.(1)见解析;(2)2【分析】(1)根据要求作出图形即可.(2)利用线段的中点的定义求出AC ,再求出BC ,可得结论.【详解】解:(1)如图,线段BC ,中点D 即为所求作.(2)∵D 是AC 的中点,∴AD=CD=6,∴AC=12,∴BC=12AB ,∴BC=13AC=4,∴BD=CD-CB=6-4=2.【点睛】本题考查了线段的和差定义和线段的中点等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)25°;(2)α=2β【分析】(1)先根据平角的定义得:∠COE=130°,由角平分线的定义和垂线的定义可得∠BOF 的度数;(2)根据(1)中的过程可得结论.【详解】解:(1)∵∠DOE=50°,∴∠COE=180°-∠DOE=180°-50°=130°,∵OA平分∠COE,∴∠AOE=12∠COE=12×130°=65°,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=180°-∠AOE-∠EOF=180°-65°-90°=25°;(2)∵∠DOE=α,∴∠COE=180°-∠DOE=180°-α,∵OA平分∠COE,∴∠AOE=12∠COE=12(180°-α)=90°-12α,∵OE⊥OF,∴∠EOF=90°,∴∠BOF=β=180°-∠AOE-∠EOF=180°-(90°-12α)-90°=12α,即α=2β.【点睛】本题考查了角平分线的定义,以及邻补角的定义,垂线的定义,理解角平分线的定义是关键.26.[问题解决]12千米/小时,48千米/小时;[能力提升]0.4或0.48小时【分析】[问题解决]设甲的速度是x千米/小时,则乙的速度是4x千米/小时,根据在相遇时乙比甲多行驶了14.4千米,列出方程计算即可求解;[能力提升]设甲出发后经t小时两人相距2千米,分两种情况讨论:(1)甲、乙两人相遇前相距2千米,(2)甲、乙两人相遇后相距2千米,列出方程计算即可求解.【详解】解:[问题解决]设甲的速度是x千米/小时,则乙的速度是4x千米/小时,依题意有0.4x+14.4=0.4×4x,解得x=12,则4x=4×12=48.故甲的速度是12千米/小时,乙的速度是48千米/小时;[能力提升]设甲出发后经t小时相距2千米,(1)甲、乙两人相遇前两人相距2千米,依题意有12t+48×0.2+38(t-0.2)+2=24,解得t=0.4;(2)甲、乙两人相遇后相距2千米,依题意有12t+48×0.2+38(t-0.2)-2=24,解得t=0.48.故甲出发后经0.4或0.48小时两人相距2千米.。
期末综合素质评价一、选择题(本题有10小题,每小题3分,共30分)1.若a与1互为相反数,则a的值为( )A.-1B.0C.2D.12.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点.其中正确的是( )A.①②③④B.②③C.③④D.④3.据浙江省统计局统计,2023年上半年全省生产总值为3871700000 000元.数3871700000000用科学记数法表示为( ) A.0.38717×1013B.3.8717×1012 C.3.8717×1011D.38.717×1011a2b2+3y是同类项,则x和y 4.[2024·桐庐校级月考]已知2a7x-5b17与-13的值分别为( )A.5,1B.1,5C.-1,5D.-5,1 5.[2024·杭州拱墅区校级月考]已知关于x的方程(k-2)x|k|-1+6=3k是一元一次方程,则k=( )A.±2B.2C.-2D.±16.同一平面内有A,B,C三点,经过任意两点画直线,共可画( )A.1条B.3条C.1条或3条D.不能确定7.下列说法中正确的有( )①过两点有且只有一条直线;②连结两点的线段叫两点间的距离;③有公共端点的两条射线组成的图形叫作角;④若AB=BC,则点B是AC 的中点.A.1个B.2个C.3个D.4个8.如图,1时30分的时候,钟表的时针与分针所组成的小于平角的角的度数是( )A .120°B .125°C .135°D .150°9.一艘船在静水中的速度为20 km /h ,水流速度为4 km /h ,从甲码头顺流航行到乙码头,再返回到甲码头共用5 h .若设甲、乙两码头的距离为x km ,则下列方程正确的是( )A .(20+4)x +(20-4)x =5B .20x +4x =5C . x 20+x 4=5D . x 20+4+x20-4=510.[新视角 新定义题]定义:对于一个有理数x ,我们把[x ]称作x 的伴随数:若x ≥0,则[x ]=x -1;若x <0,则[x ]=x +1.例如:[1]=1-1=0,[-2]=-2+1=-1.现有以下判断:(1)[0]=-1;(2)已知有理数x >0,y <0,且满足[x ]=[y ]+1,则x -y =3;(3)对任意有理数x ,有[x ]-[x +1]=-1或1;(4)方程[3x ]+[x +5]=3的解只有x =0.其中正确的是( )A .(1)(3)B .(1)(2)(3)C .(1)(2)(4)D .(1)(2)(3)(4)二、填空题(本题有6小题,每小题4分,共24分)11.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是: .12.[2024·丽水校级二模]将实数-π,0,-5和2由小到大用“<”连接起来为 .13.[2024·绍兴越城区期末]如图,在同一平面内,三角尺的直角顶点C 正好在直线DE 上.如果∠BCE =25°,那么∠ACD 的度数为 °.14.[2024·衢州期末]如果x -2y +1=0,那么代数式2 024-2x +4y3= .15.如图是一组有规律的图案,它由若干个大小相同的圆片组成,第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…,依此规律,第n 个图案中有 个白色圆片(用含n 的代数式表示).16.如图,已知数轴上点A 对应的数为8,B 是数轴上一点,且AB =14.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t s (t >0).当t = 时,PB =4.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)(-3)-|-8|-2×(-4);(2)-14-12×[3-(-3)2].18.(6分)解方程:(1)2(x +4)=3x -8;(2)2x +13-x -56=1.19.(6分)先化简,再求值:23(6a -3ab )+(ab -2a )-2(ab +b ),其中a -b =9,ab =-6.20.(8分)如图,已知在平面上有三个点A ,B ,C ,请用尺规按下列要求作图:(1)作直线AB ;(2)作射线AC ;(3)在射线AC 上作线段AD ,使AD =2AB.21.(8分)已知一个正数的平方根分别是a -2和7-2a ,3b +1的立方根是-2,c 是39的整数部分.(1)求a ,b ,c 的值;(2)求5a +2b -c 的平方根.22.(10分)[2023·衢州衢江区期末]如图,直线AB ,CD 相交于点O ,OE 是∠BOC 内一条射线,OC 平分∠AOE .(1)若∠BOE =80°,求∠AOC 的度数;(2)若∠BOE 比∠BOD 大30°,求∠BOD 的度数.23.(10分)[情境题 生活应用]某地天然气收费方案如下:阶梯年用气量价格补充说明第一阶梯0~400 m 3(含400)的部分3元/m 3第二阶梯400~800 m 3(含800)的部分4元/m 3第三阶梯800 m 3以上的部分5元当家庭人口超过3人时,每增加1人,第一、二阶梯年用气量上限将分别增加100 m 3,150 m 3,同时,第二、三阶梯年用气量下限随之调整,每一阶梯的价格保持不变5/m 3(1)某家庭当年用气量为500 m 3.若该家庭人口为3人,则需缴纳燃气费用 元;若该家庭人口为4人,则需缴纳燃气费用 元.(2)甲户家庭人口为3人,乙户家庭人口为4人.某年甲、乙两户年用气量之和为1 000 m 3,甲户年用气量大于乙户年用气量.已知甲、乙两户一共缴纳燃气费用3 200元,求甲、乙两户年用气量分别是多少.(3)某公司共有22名员工,员工宿舍有3人间和4人间两种类型的房间可供选择,且员工所选择的房间必须住满.结算天然气费用时,将每间宿舍视作一户家庭,按上表的收费标准进行收费.假定每名员工的年用气量为250 m 3,要使该公司员工宿舍当年缴纳总天然气费用最低,则3人间的房间数为 .24.(12分)[新视角 动态探究题]如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-12,点B 表示10,点C 表示20,我们称点A 和点C 在“折线数轴”上相距32个单位长度.动点P 从点A 出发,以2个单位长度/秒的速度沿“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1个单位长度/秒的速度沿“折线数轴”的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒,回答下列问题:(1)动点P 从点A 运动至点C 需要多久?(2)若P ,Q 两点在点M 处相遇,则点M 在“折线数轴”上表示的数是多少?(3)当t 为何值时,P ,O 两点在“折线数轴”上相距的长度与Q ,B 两点在“折线数轴”上相距的长度相等?7参考答案一、1. A 2. D 3. B 4. B 5. C 6. C 7. B 8. C 9. D 10. B二、11.两点确定一条直线 12.-π<-5<0<213.115 14.2 026 15.(2+2n ) 16.2或3.6三、17.【解】(1)原式=-3-8+8=-3.(2)原式=-1-12×(3-9)=-1+3=2.18.【解】(1)2(x +4)=3x -8,2x +8=3x -8,2x -3x =-8-8,-x =-16,x =16.(2)2x +13-x -56=1,2(2x +1)-(x -5)=6,4x +2-x +5=6,4x -x =6-2-5,3x =-1,x =-13.19.【解】原式=4a -2ab +ab -2a -2ab -2b=2a -3ab -2b =2(a -b )-3ab .因为a -b =9,ab =-6,所以原式=2×9-3×(-6)=36.20.【解】(1)如图,连结AB ,并延长AB ,BA ,得到直线AB .(2)如图,连结AC ,并延长AC ,得到射线AC .(3)如图,以点A 为圆心,线段AB 长为半径画弧,交射线AC 于点E,再以点E为圆心,线段AB长为半径画弧,交射线AC于点D,线段AD即为所求.21.【解】(1)因为一个正数的平方根分别是a-2和7-2a,所以a-2+7-2a=0,解得a=5.因为3b+1的立方根是-2,所以3b+1=-8,解得b=-3.因为36<39<49,所以6<39<7,39的整数部分是6,所以c=6,所以a的值为5,b的值为-3,c的值为6.(2)因为a的值为5,b的值为-3,c的值为6,所以5a+2b-c=5×5+2×(-3)-6=13,所以5a+2b-c的平方根为±13.22.【解】(1)因为∠BOE=80°,∠BOE+∠AOE=180°,所以∠AOE=180°-∠BOE=100°.因为OC平分∠AOE,所以∠AOC=1∠AOE=50°.2(2)设∠BOD=x,则∠AOC=x.因为OC平分∠AOE,所以∠AOE=2∠AOC=2x.因为∠BOE比∠BOD大30°,所以∠BOE=x+30°.因为∠AOE+∠BOE=180°,所以2x+x+30°=180°,解得x=50°,即∠BOD=50°.23.【解】(1)1600;1500(2)设甲户的年用气量为x m3,则乙户的年用气量为(1000-x)m3.因为甲户年用气量大于乙户年用气量,所以x>1000-x,所以x>500,所以1000-x<500.当500<x≤800时,3×400+4(x-400)+3(1000-x)=3200.解得x=600.当800<x<1000时,3×400+4×(800-400)+5(x-800)+3(1000-x)=3200.解得x=700(不合题意,舍去).所以x=600,所以1000-x=400.答:甲、乙两户年用气量分别是600m3,400m3.(3)624.【解】(1)动点P从点A运动至点C需要的时间为[0-(-12)]÷2+(20-10)÷2+(10-0)÷1=6+5+10=21(秒).(2)由题意可得P,Q两点在OB上相遇,所以(t-6)+2(t-10)=10,解得t=12.所以点M在“折线数轴”上所表示的数是6.(3)当点P在AO上,点Q在CB上时,OP=12-2t,BQ=10-t,因为OP=BQ,所以12-2t=10-t,解得t=2;当点P在OB上,点Q在CB上时,OP=t-6,BQ=10-t,因为OP=BQ,所以t-6=10-t,解得t=8;当点P在OB上,点Q在OB上时,OP=t-6,BQ=2(t-10),因为OP=BQ,所以t-6=2(t-10),解得t=14;当点P在BC上,点Q在OA上时,OP=10+2(t-16),BQ=10+(t-15),因为OP=BQ,所以10+2(t-16)=10+(t-15),解得t=17.综上所述:当t=2或8或14或17时,P,O两点在“折线数轴”上相距的长度与Q,B两点在“折线数轴”上相距的长度相等.9。
浙教版七年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下面四个数中,最大的数是()A .4-B .1-C .0D .52.计算:41-的结果是()A .1B .1-C .4D .4-3.单项式32xy -的系数是()A .3B .4C .2-D .24.在17,π-,0,3.14,,0.3133,0.1010010001...,...(两个"1"之间依次多一个"0")中,无理数的个数是()A .1个B .2个C .3个D .4个5.用四舍五入法将5109500精确到万位,可表示为()A .510B .65.1010⨯C .511D .65.1110⨯6.下列说法正确的是()A .一个数的平方等于他本身,则这个数是0或1B .一个数的立方等于它本身,则这个数是0或1C .一个数的平方根等于他本身,则这个数是0或1D .一个数的立方根等于它本身,则这个数是0或17.上午9:30,时钟上分针与时针之间的夹角为()A .90B .105C .120D .1358.如图,点A ,B ,C 都在数轴上,点A 为线段BC 的中点,数轴上A ,B 两点表示的数分别为和1-C 所表示的数为()A .1-B .1-C .2-D .2-9.如图,一个瓶子的容积是1L (其中311000L cm =),瓶内装着一些溶液,当瓶子正放时,瓶内的溶液高度为20cm ,倒放时,空余部分的高度为5cm ,则瓶子的底面积是()A .225cm B .240cm C .250cm D .2200cm 10.若2560x x --=,则324112020x x x --+代数式的值是()A .2026B .2026-C .2025D .2025-二、填空题11.|2|-=_________12.已知60α∠= ,则α∠的补角的度数是__________.13.写出一个根为3x =的一元一次方程__________.14.a -b ,b -c ,c -a 三个多项式的和是____________15.把无限循环小数化为分数的形式:设0.7x = ,由0.70.777...= ,可知107.777...x =,107x x -=,解方程,得79x =,于是,得70.79= ,把0.57 化为分数形式是__________.16.将一根绳子对折1次后从中间剪一刀(如图),绳子变成3段,将一根绳子对折3次后从中间剪一刀,绳子变成__________段,将一根绳子对折(21)n -次后从中间剪一刀,绳子变成__________段.三、解答题17.计算:(1)75(1)-+--(231392()24⨯-18.先化简,再求值:2222()3()3a ab a ab ---,其中3a =-,4b =19.解方程:(1)4133x x -=+(2)4353146x x x -+-=-20.2019年11月18日,第二届华侨进口商品博览会在青田落下帷幕,本届博览会成果丰硕,意向成交额为25.3亿元,是第一届博览会意向成交额的2倍少5.9亿(1)求第一届华侨进口商品博览会的意向成交额(2)以这样的增长速度,预计下届华侨进口商品博览会意向成交额(精确到亿元)21.七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问只参加文学社的有多少人?22.如图,直线AB ,CD 相交于点O ,OE 平分BOC ∠,OF OE⊥(1)写出与BOF ∠互余的角(2)若57BOF ∠= ,求AOD ∠的度数23.小聪同学记得,在作业本中曾介绍了奥地利数学家皮克发现的一个计算点阵中多边形面积的公式:1S a kb =+-,其中a 表示多边形内部的点数,b 表示多边形边界上的点数,不过,他忘了系数的值,请你运用下面的图形解决问题,下列图形中有四个相邻点围城的正方形面积是1个单位面积(1)计算图①中正方形的面积,并求系数k 的值(2)利用面积公式,求出图②、图③的多边形的面积24.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =参考答案1.D【分析】根据正数都大于0,负数都小于0,两个负数比较大小,绝对值大的反而小进行求解即可.【详解】∵-4<-1<0<5,∴最大的数是5,故选D .【点睛】本题考查了有理数大小的比较,熟练掌握有理数大小比较的方法是解题的关键.2.B【分析】原式表示1的四次幂的相反数,求出即可.【详解】﹣14=﹣1,故选B .【点睛】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.3.C【分析】根据单项式的系数定义“是指单项式中的数字因数”进行求解即可得.【详解】单项式32xy -的数字因数是-2,所以单项式32xy -的系数是-2,故选C .【点睛】本题考查的是单项式的系数,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.4.C【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【详解】,∴在17,π-,0,3.14,,0.3133,0.1010010001...,...(两个"1"之间依次多一个"0")中,无理数有π-,,0.1010010001...,...(两个"1"之间依次多一个"0")共3个,故选C .【点睛】此题主要考查了无理数的定义,解题要注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.5.D【分析】先利用科学记数法表示,然后把千位上的数字9进行四舍五入即可.【详解】解:5109500≈5.11×106(精确到万位).故选:D.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.A【分析】根据平方、立方、平方根、立方根的概念判断即可.【详解】解:A、一个数的平方等于它本身,这个数是0,1,故选项正确;B、一个数的立方等于它本身,这个数是0,1,-1,故选项错误;C、一个数的平方根等于它本身,这个数是0,故选项错误;D、一个数的立方根等于它本身,这个数是0,1,-1,故选项错误;故选A.【点睛】本题是对平方,平方根,算术平方根,立方根的考查,熟记一些特殊数的性质是解题的关键.7.B【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.故选:B.本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.8.D【分析】根据A 、B 表示的数求出AB ,再由点A 是BC 中点即可求出结果.【详解】解:∵数轴上A ,B 两点表示的数分别为和1-∴-(-1),∵点A 是BC 中点,∴,∴点C 表示的数为-1-)=2-故选D .【点睛】本题考查了实数与数轴,数轴上两点之间的距离,解题的关键是掌握数轴表示数,结合图形解决问题.9.B【分析】设瓶子的底面积为xcm 2,根据题意列出方程,求出方程的解即可求出所求.【详解】解:设瓶子底面积为xcm 2,根据题意得:x•(20+5)=1000,解得:x=40,故选B .【点睛】此题考查了一元一次方程的应用,弄清题意是解本题的关键.10.A【分析】将2560x x --=变形为256x x =+,再代入代数式324112020x x x --+,化简即可.解:∵2560x x --=,∴256x x =+,代入,324112020x x x --+=()()56456112020x x x x +-+-+=2562024112020x x x x +---+=25251996x x -+=()2551996x x -+=561996⨯+=2026故选A【点睛】本题考查了代数式求值,将已知等式变形代入是关键,体现了降次的方法.11.2【详解】根据绝对值的定义;数轴上一个数所对应的点与原点的距离叫做该数绝对值即,|-2|=2,12.120°【分析】根据互补即两角的和为180°,由此即可得出∠α的补角度数.【详解】∠α的补角的度数是180°﹣∠α=180°﹣60°=120°,故答案为:120°.【点睛】本题考查了补角的知识,掌握互为补角的两角之和为180°是解题的关键.13.2x+5=11(答案不唯一)【分析】根据题意,此方程必须符合以下条件:(1)含有一个未知数;(2)未知数的次数是1;(3)是整式方程;(4)解为3.根据等式性质,构造即可.解:可以这样来构造方程:例:把x=3两边同乘2得,2x=6,两边同时加5,得2x+5=11;故答案为:2x+5=11(答案不唯一).【点睛】本题考查了一元一次方程的定义,考验了同学们的逆向思维能力,属于结论开放性题目.14.0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.15.57 99【分析】仿照已知的方法计算即可.【详解】解:设0.57 =x,则100x=57.57 ,可得:100x-x=99x=57,解得:x=57 99,故答案为:57 99.【点睛】此题考查了解一元一次方程,理解题意是解本题的关键.16.922n-1+1【分析】分析可得:将一根绳子对折1次从中间剪断,绳子变成3段;有21+1=3.将一根绳子对折2次,从中间剪断,绳子变成5段;有22+1=5.依此类推,将一根绳子对折n次,从中间剪一刀全部剪断后,绳子变成2n+1段.【详解】解:∵对折1次从中间剪一刀,有21+1=3;对折2次,从中间剪一刀,有22+1=5;∴对折3次从中间剪一刀,有23+1=9;∴对折n 次,从中间剪一刀,绳子变成2n +1段.∴对折2n-1次,从中间剪一刀,绳子变成22n-1+1段.故答案为:22n-1+1.【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.17.(1)-1;(2)1.【分析】(1)根据有理数加减混合运算的顺序结合有理数加减法法则进行计算即可;(2)按顺序先进行算术平方根的运算,立方的运算,然后再按运算顺序进行计算即可.【详解】(1)75(1)-+--=-7+5+1=-1;(23132()24⨯-=1338(24+⨯-=346+-=1.【点睛】本题考查了实数的混合运算,熟练掌握实数混合运算的运算顺序以及运算法则是解题的关键.18.ab ,-12.【分析】先去括号,然后合并同类项,最后把a 、b 的数值代入进行计算即可得.【详解】2222()3()3a ab a ab ---=222322a ab a ab--+=ab ,当3a =-,4b =时,原式=-3×4=-12.【点睛】本题考查了整式的加减——化简求值,熟练掌握去括号法则与合并同类项法则是解此类问题的关键.19.(1)x=4;(2)x=611.【分析】(1)本题按移项、合并同类项的步骤进行求解即可得答案;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得答案.【详解】(1)4133x x -=+,移项,得4x-3x=3+1,合并同类项,得x=4;(2)4353146x x x -+-=-,去分母,得12-3(4-3x )=2(5x+3)-12x ,去括号,得12-12+9x=10x+6-12x ,移项,得9x-10x+12x=6+12-12,合并同类项,得11x=6,系数化为1,得x=611.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.20.(1)15.6亿元;(2)41亿元【分析】(1)设第一届华侨进口商品博览会的意向成交额为x 亿元,根据题意列出方程,求解即可;(2)设第二届的意向成交额比第一届的增长率为y ,根据增长率的意义计算即可.【详解】解:(1)设第一届华侨进口商品博览会的意向成交额为x 亿元,则:2x-5.9=25.3,解得:x=15.6,∴第一届华侨进口商品博览会的意向成交额为15.6亿元;(2)设第二届的意向成交额比第一届的增长率为y,则15.6(1+y)=25.3,则1+y=25.3÷15.6,∴下一届华侨进口商品博览会意向成交额为:25.3×(1+y)=25.3×(25.3÷15.6)≈41(亿元).【点睛】本题考查了一元一次方程的应用,有理数的混合运算,解题的关键是理解题意,掌握增长率的意义.21.只参加文学社的有15人.【分析】设参加文学社的人数为x人,先根据题意知只参加文学社的人数为(x﹣20)人,只参加书画社的人数为(x-5-20)人,再分别相加可得总人数,从而列出方程,进一步求解可得.【详解】设参加文学社的人数为x人,根据题意知只参加文学社的人数为(x﹣20)人,只参加书画社的人数为(x-5-20)人,则有x﹣20+x-5-20+20=45,解得:x=35,35-20=15(人),答:只参加文学社的有15人.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(1)∠BOE,∠COE;(2)66°【分析】(1)根据垂线的定义可得∠BOF+∠BOE=90°,再由OE平分∠BOC可得∠BOE=∠COE,从而可得结果;(2)由∠BOF的度数计算出∠BOE,从而得到∠BOC的度数,即∠AOD.【详解】解:(1)∵OF⊥OE,∴∠BOF+∠BOE=90°,∵OE 平分∠BOC ,∴∠BOE=∠COE ,∴∠BOF+∠COE=90°,∴与∠BOF 互余的角有:∠BOE ,∠COE ;(2)∵∠BOF=57°,∴∠BOE=90°-57°=33°=∠COE ,∴∠AOD=∠BOC=2∠BOE=66°.【点睛】此题主要考查了余角的定义,角平分线的性质以及垂线的定义,正确得出∠BOE 的度数是解题关键.23.(1)S=9,k=12;(2)图②:14,图③:9.5【分析】(1)根据图像可直接计算出正方形面积,再数出a 和b 的值,代入公式即可计算k 值;(2)分别得出图②和图③中a 和b 的值,再利用公式求出面积.【详解】解:(1)由图可知:图①中正方形的边长为3,∴面积为3×3=9,在1S a kb =+-中,对应a=4,b=12,∴9=4+12k-1,解得:k=12;(2)图②中,a=10,b=10,则S=10+12×10-1=14,图③中,a=5,b=11,则S=5+12×11-1=9.5.【点睛】本题考查了格点图形的面积的计算,一个单位长度的正方形网格纸中多边形面积的公式:112S a b =+-的运用.24.(1)3;(2)12或74-;(3)13秒或79秒【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可.【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1,∴线段AB 的长度为:-1-(-4)=3;(2)设点D 对应的数为x ,∵DA=3DB ,则314x x +=+,则()314x x +=+或()314x x +=--,解得:x=12或x=74-,∴点D 对应的数为12或74-;(3)设t 秒后,OA=3OB ,则有:47312t t t t -+-=-+-,则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+,解得:t=13或t=79,∴13秒或79秒后,OA=3OB .【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.。
6.5 角与角的度量1教学目标进一步认识角的有关概念;会用符号、字母表示角 ;掌握度、分、秒单位及其换算2学情分析在小学里学生已经初步认识了角的概念。
包括角的定义:“从一点引出两条射线所组成的平面图形”;了解直角及其画法;能识别锐角、直角及钝角;认识平角、周角等。
给本课教学提供了经验和认识的前提条件。
与此同时,虽然在小学阶段已经对角有了初步认识,但仅停留在感性认识阶段,对角的定义、表示、换算等有进一步认识的要求。
初一学生处于形象思维向抽象思维过渡时期,对概念性基本图形已有了形象的认识,非常需要在数学语言、符号表示等方面进行更加规范、系统的学习。
本课是新浙教版七年级上册第六章的第五课时,之前学生已经学习了线段、射线、直线的画法和表示,对于如何用字母表示图形已经有了初步的经验;同时,由于小学已经知道周角360°、平角180°,这就为量角器的操作和角度换算教学提供了基本的算法依据。
3重点难点重点:角的概念和表示法;难点:度、分、秒的单位换算;60进制的理解。
4教学过程活动1【导入】生活中的角生活中有很多与角有关的实例,观察下图,你能指出图中的角吗?活动2【讲授】角的定义观察图形,请你用一句话概括什么样的图形叫做角?角的定义1:角是由两条具有公共端点的射线组成的图形。
观察动画,角还可以怎么定义?角的定义2:角也可以看成是由一条射线绕端点旋转而成的图形。
平角:射线OA绕点O旋转,当终止位置OB和起始位置OA成一直线时,所成的角叫平角.当终边继续旋转,与始边再次重合时,所成的角叫周角.活动3【讲授】角的表示角用“∠”表示,读做“角”:1:用三个大写字母表示.2:用一个数字表示,写做∠1,读做:角1.3:在不引起混淆的情况下,也可以用角的顶点字母表示.活动4【练习】你来试一试1、将图中的角用不同方法表示出来并填写下表(见ppt)2、写出图中,(l)能用一个字母表示的角.(2)以B为顶点的角.(3)图中共有几个角(小于平角).(见ppt)活动5【活动】使用量角器度量角的方法:1、对“中”——角的顶点与量角器的中心重合2、对“线” ——角的一边与量角器的零线重合3、读数——读出角的另一边所对的度数活动6【讲授】单位换算度分秒间的数量关系活动7【练习】巩固与练习例1 将48.32°用度、分、秒表示.解:∵ 0.32°=60′×0.32=19.2′(先把0.32°化为分)0.2′=60″×0.2=12″(再把0.2′化为秒)∴ 48.32°=48°19′12″不足1度的化为分,不足1分的化为秒。
6.6 角的大小比较
1.如果∠A=60°24′,∠B=60.24°,∠C=60°23′24″,那么下列关系中正确的是(C)
A.∠A>∠B>∠CB.∠A=∠B=∠C
C.∠A>∠C>∠BD.∠B=∠C>∠A
2.钝角减去锐角所得的差是(D)
A.锐角B.直角
C.钝角D.以上三种都有可能
3.在∠AOB的内部任取一点C,作射线OC,则一定存在(A)
A.∠AOB>∠AOCB.∠AOC>∠BOC
C.∠BOC<∠AOCD.∠AOC=∠BOC
4.下列说法中正确的个数是(B)
①直线MN是平角
②两个锐角的和不一定大于90°
③两个钝角的和不一定大于180°
A.0 B.1
C.2 D.3
5.一条射线绕它的端点先按逆时针方向旋转75.5°,再按顺时针方向旋转15°30′,则射线后来位置与原来位
置所成角的度数是(C)
A.90.8° B.90°35′
C.60° D.60.2°
6.若α是锐角,β是钝角,γ是直角,则α,β,γ的大小关系是(D)
A.α>β>γB.β>α>γ
C.γ>β>αD.β>γ>α
7.下列说法正确的是(A)
A.小于直角的角叫做锐角
B.小于钝角的角是锐角
C.大于平角的角叫做钝角
D.大于直角的角叫做钝角
8.若两个角的和为180°,则下列说法正确的是(C)
A.这两个角都是锐角
B.这两个角都是钝角
C.一个角是钝角,一个角是锐角或两个角都是直角
D.以上说法都有可能
(第9题)
9.如图,∠AOB是直角,∠AOC=38°,∠COD∶∠COB=1∶2,则∠BOD等于(C)
A.38° B.52°
C.26° D.64°
10.下列四个图形中,能判断∠1>∠2的是(D)
11.下列各角中,属于锐角的是(C)
A.14周角 B.23平角
C.35直角 D.47平角
12.用一副三角尺画角,则这个角的度数不可能是(B)
A.15° B.55°
C.75° D.135°
13.如图,已知∠AOB=∠BOC=∠COD=∠DOE,则∠AOD=__3__∠AOB,∠AOE=__2__∠AOC,∠AOD=__34__∠AOE.
(第13题)
(第14题)
14.如图,射线OB,OD都在∠AOC内,试比较下列每组角的大小关系:∠AOB__>__∠AOD,∠COD__>__∠DOB,
∠AOC__>__∠BOD,∠AOC__>__∠AOB.
15.如图,长方体纸箱的表面有__24__个角,它们都是__直__角,以A为顶点的角有__3__个,以AB为边的角有
__4__个.
(第15题)
(第16题)
16.如图,OC⊥OD,∠1=35°,则∠2=__55°__.
17.已知O是直角∠AOB的顶点,OC是一条射线,则∠AOC与∠BOC的关系是(D)
A.∠AOC一定大于∠BOC
B.∠AOC一定小于∠BOC
C.∠AOC一定等于∠BOC
D.∠AOC可能大于、等于或小于∠BOC
18.已知∠ABC是平角,过点B任意作一条射线BD,将∠ABC分成∠DBA与∠DBC两个角.