六年级上册数学工程问题扩展
- 格式:docx
- 大小:20.31 KB
- 文档页数:1
六年级思维拓展之工程问题知识汇总1.一般工程问题都是,已知独做的工作时间(或合作的工作时间),求合作的时间(或独做的工作时间)。
2.从问题入手,确定是求谁来完成哪一部分工作量所需要的时间,就用要完成的那部分工作量除以谁的工作效率。
3.工程问题的基本数量关系式:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间练习1.用计算机录入一份书稿,甲单独做10天可以完成,乙单独做15天可以完成。
现在由甲乙两人合作,由于乙中途生病休息了若干天,结果一共用了8天才完成任务,那么,乙中途休息了多少天?2.一项工程,甲独做6天完成,甲3天的工作量,乙要4天完成。
两队合做2天后由乙队独做,还要几天才能完成?3.打印一份书稿,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。
如果甲、乙合做2天,剩下的由乙独做,那么刚好在规定时间内完成。
甲、乙两合做需几天完成?4.我们规定两人轮流做一个工程是指,第一个人先做一个小时,第二个人再做一个小时,然后再由第一个人做一个小时,然后又由第二个人做一个小时,如此反复,做完为止。
如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?5.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的1。
如果3人合抄只需8天就完成了,那工作效率相当甲、乙每天工作效率和的5么乙一人单独抄需要多少天能完成?6.有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成。
现在有由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天。
那么丙休息了多少天?7.一项工程,甲队单独做24天完成,乙队单独做30天完成。
现在甲、乙两队先合做8天,剩下的由丙队单独做了6天完成了此项工程。
如果从开始就由丙队单独做,需要几天?8.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?9.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
奥数思维拓展:工程问题-数学六年级上册苏教版第一部分知识梳理工程问题工程问题公式(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时.(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间.(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5….特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便.)解答工程问题利用常见的数学思想方法,如代换法、比例法、列表法、方程法等.抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.第二部分典型例题1.加工一批零件,甲单独做要6天完成,乙单独做要5天完成,现甲乙丙丁四人合做一天完成了任务,已知丙丁两人比甲乙两人多做48个,那么这批零件一共有多少个?【解答】解:48÷[1﹣()﹣()]=48÷[1﹣]=48÷=180(个),答:这批零件一共有180个.2.甲、乙、丙三辆卡车要运送A、B两堆数量相同的货物,若单独运A堆货物,甲车需9时,乙车需12时,丙车需18时.开始时,甲帮乙运A堆,丙单独运B堆,一段时间后,甲又转向B堆帮丙运直至最后,两堆货物被同时运完.甲帮丙运了几时?【解答】解:2÷(++)=2÷=8(小时)(1﹣)÷=÷=5(小时)答:甲帮丙运了5时.第三部分跟踪训练1.有一批货物,如果用5辆大卡车和2辆小卡车正好运完,或者用2辆大卡车和8辆小卡车也正好运完,如果全用大卡车运,要几辆才能运完?2.一项工程甲、乙合作完成了全工程的,剩下的由甲单独完成,甲一共做了10天,这项工程由甲单独做需15天,如果由乙单独做,需多少天?3.一项工程,甲、乙、丙合作6天可完成;如果甲工作6天,乙、丙合作两天可完成这项工程的;如果甲、乙合作3天,丙工作6天,也可完成这项工程的.甲、乙、丙单独做各需多少天?4.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
第十四讲工程问题综合提高本讲知识点汇总:1.工程问题基本公式:工作量=工作效率×工作时间;工作时间=工作量÷工作效率;工作效率=工作量÷工作时间.2.理解“单位1”的概念并灵活应用;3.有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔细梳理工作过程、灵活运用基本数量关系;工作量其实是一种分率,利用量率对应可以求出全部工作的具体数量.典型题型1.基本效率计算:最常见的工程问题,基本思路是根据工作过程计算效率,通过对效率的分析计算时间.(1)基本工程问题:关键在于效率的计算;(2)中途离开或加入型:算清楚每个人工作的时间或合作时间即可;(3)来回帮忙型:先利用每个人都在干活算出总时间,再根据总时间算每个人具体的工作安排;2.具有周期性的工程问题(1)轮流工作型:先处理合作的整的单位时间工作量,再独做处理零头,即剩余的工作量;(2)间隔休息型:先考虑一个周期各自的工作量,再分段处理;3.工程问题中的比例(1)正反比的应用:关键要明确“什么是不变的”,从而知道该用何种比例;(2)效率变化:类似于行程问题中的变速问题,需要从变速点分段计算;4.水管问题和牛吃草问题(1)牛吃草问题型:设效率,比较总量;(2)水管问题型:注意有“帮倒忙”的水管.例1.生产一批帽子,甲、乙二人合作需15天完成.现由甲先单独工作5天,再由乙单独工作3天后还剩这批帽子的34没完成.若甲每天比乙少加工4个帽子,则这批帽子共有多少个?「分析」题中已知甲、乙的工效和,那么就应想办法让甲、乙同时工作,不妨采用假设的工作方式分析题目.练习1、一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,期间甲队休息了2天,乙队休息了8天.开始到完工共用了多少天时间?例2.A仓库货物是B仓库的2倍,甲搬运A仓库需要32小时,乙、丙搬运B仓库分别需要24小时和12小时.甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运,最后两仓库货物同时搬完.丙帮助甲搬了多少小时?「分析」总的工作量是已知的,工作效率的和也知道,在整个工作的过程中没有人休息,那么,我们可以求出工作时间.练习2、墨莫带着阿呆和阿瓜去割草.单独割完一个草地的草,阿呆需要9个小时,阿瓜需要12个小时,墨莫只需要18个小时就行.现在阿呆和阿瓜各自负责一个大小相同的草地.墨莫先帮助阿瓜,一会去帮助阿呆,最后阿呆和阿瓜一起完成了割草的任务,那么墨莫共帮助阿呆割了多少个小时?例3.小鹿、小羊、小猪三名打字员承担一项打字任务,若由这3人中的某人单独完成全部打字任务,则小鹿需24小时,小羊需20小时,小猪需16小时.(1)如果鹿、羊、猪三人同时打字,那么需要多少小时完成?(2)如果按鹿、羊、猪的次序轮流每人各打1小时,那么需要多少小时完成?「分析」(1)直接计算即可;(2)分析可得每3个小时可以作为一个周期,那么在完成工作的过程中需要多少个整周期哪?练习3、一个水池有两根进水管,单开甲管12小时注满,单开乙管15小时注满,现在甲乙管轮流打开,甲管打开1小时,乙管打开1小时,甲管打开1小时,乙管打开1小时……重复交替下去,那么注满水池共需要多少小时?例4.甲工程队每工作6天必须休息1天,乙工程队每工作5天必须休息2天,一项工程,甲工程队单独做需104天(含休息),乙工程队单独做需82天(含休息),如果两队合作,从2012年8月28日开工,则该工程在哪一天可以竣工?「分析」分析可得两个工程队都是每7天为一个周期,那么一个周期内它们完成的工作量分别是多少呢?练习4、姜太公“三天打鱼两天晒网”(打三天鱼休息两天),周文王“四天打鱼一天晒网”,姜太公打满一缸鱼要38天,周文王打满同样的一缸鱼要37天,两人从2012年9月2号开始打鱼,在几月几号可以合打满一缸鱼?例5. 一批蜘蛛侠模型,做了后,提速25%,提前3小时完成任务;如果做了400个模型后,提速20%,可以提前2小时完成任务,那么这批模型有多少个?「分析」不妨画出一个类似行程问题的线段图来分段分析本题.例6.甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工程需要12天,二队完成乙工程需要18天;在雨天,一队的工作效率要下降40%,二队的工作效率要上升20%.结果两队同时完成这两项工程,那么在施工的日子里,雨天有多少天?「分析」在解决某些工程问题时列方程是个不错的选择.14智慧的结晶——《梦溪笔谈》宋代是中国古代数学最辉煌的时期之一.北宋大科学家沈括的名著《梦溪笔谈》中,有10多条有关数学的讨论,内容既广且深,堪称我国古代数学的瑰宝.沈括最重要的数学探讨是隙积术和会圆术.隙积术在我国数学史上开辟了高阶等差级数求和的研究领域.所谓“隙积”,指的是有空隙的堆积体、例如酒店中堆积的酒坛、叠起来的棋子等,这类堆积体整体上就像一个倒扣的斗,与平截头的长方锥(刍童)很像.但是隙积的边缘不是平的,而中间又有空隙,所以不能照搬刍童的体积公式.沈括经过思考后,发现了正确的计算方法.他以堆积的酒坛为例说明这一问题:设最上层为纵横各2个坛子,最下层为纵横各12个坛子,相邻两层纵横各差1坛,显然这堆酒坛共11层;每个酒坛的体积不妨设为1,用刍童体积公式计算,总体积为,酒坛总数也应是这个数.显然,酒坛数不应为非整数,问题何在呢?沈括提出,应在刍童体积基础上加上一项“”即为,酒坛实际数应为.加上去的这一项正是一个体积上的修正项.在这里,沈括以体积公式为基础,把求解不连续的个体的累积数(级数求和),化为连续整体数值来求解,可见他已具有了用连续模型解决离散问题的思想.会圆术是对圆的弧矢关系给出的比较实用的近似公式,主要思想是局部以直代曲.沈括进一步应用《九章算术》中弧田的面积近似公式,求出弧长,这便是会圆术公式.沈括得出的虽是近似公式,但可以证明,当圆心角小于45°时,相对误差小于2%,所以该公式有较强的实用性.这是对刘徽割圆术以弦(正多边形的边)代替圆弧思想的一个重要佐证,很有理论意义.后来,郭守敬、王恂在历法计算中,就应用了会圆术.在《梦溪笔谈》中,沈括还应用组合数学法计算得出围棋可能的局数是3361种,并提出用数量级概念来表示大数3361的方法.沈括还在书中记载了一些运筹思想,如将暴涨的汴水引向古城废墟来抢救河堤的塌陷,以及用挖路成河、取土、运输,最后又将建筑垃圾填河成路的方法来修复皇宫等.沈括对数的本质的认识也很深刻,指出:“大凡物有定形,形有真数.”显然他否定了数的神秘性,而肯定了数与物的关系.他还指出:“然算术不患多学,见简即用,见繁即变,乃为通术也.”()37841106649+÷= 1106÷ ()6-⨯÷下宽上宽高 37846÷作业1. 一项工程,甲队单独做20天完成,乙队单独做30天完成,现在由两队合作,其间乙队休息了若干天,从开始到完工共用了14天,那么乙队休息了多少天?2. 一项工作由甲先做6小时,再由乙做12小时即可完成,如果甲先做8小时,乙再做6小时也可完成.如果甲先做3小时,则乙还需要做几小时?3. 某工程可由若干台机器在规定的时间内完成.如果增加2台机器,则需要用规定时间的就可完成;如果减少2台机器,那么就要推迟小时完成.问由一台机器完成这项工程需要多少小时?4. 草场上放有一堆草,并且还有一片草以均匀的速度生长着,如果放养8头牛,则10天可以吃完;如果放养10头牛,则6天可以吃完,那么如果放养15头牛,可以吃几天?5. 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.现有两个相同的仓库A 和B ,甲在A 仓库,乙在B 仓库同时开始搬运货物,丙先帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完,那么丙帮助甲几小时,帮助乙几小时? 23 78。
奥数思维拓展工程问题(试题)一.选择题(共8小题)1.修一段公路,5天修了全长的。
照这样计算,修完剩下的路还要()天。
A.20B.15C.10D.52.一项工程,甲队单独完成需要4天,乙队单独完成需要6天,现在两队合作需要()天完成。
A.2.4B.5C.2.5D.33.加工同样多的零件,赵师傅需要小时,王师傅需要小时,赵师傅和王师傅工作效率的比是()A.4:5B.5:4C.1:5D.1:44.同一项任务,甲3小时干完,乙2小时干完,甲的工作效率是乙的()A.B.C.D.5.加工同一种零件,甲8分钟做13个,乙4分钟做5个,丙2分钟做3个,()做的最快。
A.甲B.乙C.丙D.无法确定6.一项工程,师傅用12小时可完成,徒弟用16小时可完成。
师傅的效率比徒弟快()A.75%B.33.3%C.25%D.133.3%7.一项工程,甲队单独做4天完成,乙队单独做6天完成.两队合做()天可以完成工程的.A.÷(+)B.1÷(+)÷C.×(+)8.要注满一个空池,单开甲管要15分钟;排空满池,单开乙管要10分钟.现将两管齐开,多长时间可将空池注满?()A.5分钟B.30分钟C.25分钟D.永远注不满二.填空题(共8小题)9.一项工程,甲单独做15天完成,乙的效率是甲的。
甲、乙合作完成这项工程需要天。
10.某服装厂计划做640套服装,已经做了4天,平均每天做70套。
剩下的要在4天里做完,平均每天应做套。
11.一项工程,平均每天完成它的,完成这项工程需要天。
12.加工一批零件,甲单独做4小时完成,乙单独做6小时完成。
甲、乙合做,小时完成这批零件的一半。
13.一项工程,每天完成它的,3天完成这项工程的,完成这项工程共需要天。
14.为庆祝元旦,同学们要做一批小红旗。
甲组单独做4天完成,乙组单独做6天完成。
如果两组合作,天可以完成。
15.单独完成同一件工作,甲要4天,乙要5天,乙的工作效率比甲的少%。
奥数思维拓展:工程问题(试题)一、选择题1.一项工程,甲独做10天完成,乙独做8天完成,甲、乙工作效率的最简比是()。
A.5∶4B.4∶5C.8∶10D.11: 1082.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B 做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,算劳务费,则这48元中A应分()元。
A.18B.19.2C.20D.323.打印一份文稿,覃老师要用5分钟,韦老师要用4分钟,覃老师工作效率比韦老师工作效率低()。
A.125%B.25%C.120%D.20%4.一幢办公楼原有5台空调,现在又安装了1台,如果这6台空调全部打开就会烧断保险丝,因此最多只能同时使用5台空调.这样,在24小时内平均每台空调可使用()小时.A.24B.20C.18D.165.有一批工人完成某项工程,如果增加8个人,则10天就能完成;如果增加3个人,就要20天才能完成。
现在只能增加2个人,那么完成这项工程需要多少天?()A.25B.20C.30D.35二、填空题6.一项工程,甲队单独完成需40天。
若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成。
如果乙队单独完成此工程,则需______天。
7.有一项工程,有三个工程队来争夺施工权利,已知甲乙丙三个工程队都是工作时间长短来付费的,甲、乙两队合作,10天可以全部完工,共需要支付18000元,由乙、丙两队合作,20天可以完工,共需要支付12000元,由甲、丙两队合作,12天可以完成,共需要支付15000,如果该工程只需要一个工程队承建,如果只能一个队伍单独施工,那么最快的比最慢的会早完工____天。
需要支付速度最快的队伍____元。
8.有一项工程,甲乙合作3天完成,乙丙合作5天完成,甲丙合作6天完成,三人合作需要______天完成。
9.放满一个水池,如果同时打开1,2号阀门,则12分钟可以完成;如果同时打开1,3号阀门,则15分钟可以完成;如果单独打开1号阀门,则20分钟可以完成;那么,如果同时打开1,2,3号阀门,( )分钟可以完成。
小学中经常遇到的行程问题行程问题是小学数学中经常遇到的,解决起来往往有些困难,因为还没有学习方程,所以有些题目很不好理解,利用单位1解决问题,这里举一些例子,由浅入深,结合方程的解法,同学们自己比较一下。
我们先来了解一下,关于行程问题的公式:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程+乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2流水速度+流水速度÷2 水速:流水速度-流水速度÷2关键是确定物体所运动的速度,参照以上公式。
列车过桥问题:关键是确定物体所运动的路程,参照以上公式。
我们由浅入深看一些题目:一、相遇问题1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。
甲乙两地相距多少千米?2、甲、乙两车同时从A、B两地相对开出,2小时相遇。
相遇后两车继续前行,当甲车到达B 地时,乙车离A地还有60千米,一直两车速度比是3:2。
求甲乙两车的速度。
工程问题奥数思维拓展(试题)一.填空题(共9小题)1.一件工作,甲的工作效率是乙丙工作效率之和,乙的工作效率是甲丙之和的.如果三人合作1天就可以完成,那么乙单独完成需要天.2.如果2个熟练工和4个新手一天可做完一批零件的,8个熟练工和10个新手一天就能把这批零件做完.若这批零件全部由新手一天做完,则应要新手个.3.一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的1倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有的人去甲工地,其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有人.4.用计算机录入一份书稿,甲单独做10天可完成,乙单独做15天可以完成.现在由甲、乙二人合做,由于乙中途生病休息了若干天,结果一共用了8天才完成任务.那么,乙中途休息了天.5.某一个工程甲单独做50天可以完成,乙单独做75天可以完成,现在两人合作,但途中乙因事离开了几天,从开工后40天把这个工程做完,则乙中途离开了天.6.一项工程,甲工程队做需30天完成,每天工程费用万元;乙工程队做需40天完成,每天工程费用万元.为了在20天内完成,安排甲、乙两队共同参与这项工程,如果两队工作的天数可以不一样,那么,两队共同完成这项工程的总费用至少需要万元.7.甲、乙、丙三个人生产一批玩具,甲生产的个数是乙、丙两人生产个数之和的,乙生产的个数是甲、丙两人生产个数之和的,丙生产了40个.这批玩具共有个.8.运送一批货物,甲车3次运这批货物的,若运,乙车只需2次.两车合运,每次运这批货物的.9.师徒三人合作承包一项工程,4天能全部完成.已知师傅单干所需天数与两个徒弟合做所需天数相等;而师傅与乙徒弟合做所需天数的2倍与甲徒弟单独完成所需天数相等.那么乙徒弟单独做完这项工程需天.二.应用题(共12小题)10.一件工程,甲、乙合作需6天完成,乙、丙合作需9天完成,甲、丙合作需15天完成,现在甲、乙、丙合作,需多少天完成?11.甲乙两个队伍完成一项工程修地铁,甲队150天修完,乙队180天修完,在维修的过程中甲队干5天休息2天,乙队干6天休息1天,问甲乙合作几天完成?12.为“雪顿”节做一顶藏式帐篷,师傅单独完成要用30天,徒弟单独完成,要多用半个月.如果按照师、徒、师、徒、…的顺序每人轮流工作一天,这顶帐篷多少天才能做完.13.甲、乙两个车间织布,原计划每天共织700m,现技术改进,甲车间每天多织布100m,乙车间的日产量提高一倍,这样,两车间一天共织了1020m。
小学六年级数学上册——工程问题1.用分数解决工程问题的解题方法与用整数解决工程问题的解题方法相同,所用数量关系相同,即工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率。
2.在用分数解决工程问题时,通常没有具体的工作总量,解题时把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一表示工作效率。
基础巩固例题1.修一段路,甲队单独修需要10天完成,乙队单独修需要15天完成。
如果两队同时修,几天能完成?练习1.录入一份稿件,陈老师单独录入要用18小时,李老师单独录入要用12小时。
两个人合作,几小时能完成这份稿件的一半?例题2.一项工作,甲单独做3天完成这项工作的101,乙单独做4天完成这项工作的51。
甲、乙合作12天,能完成全部工作吗?练习2.有一堆钢材,甲汽车运这堆钢材的61要2天,乙汽车运这堆钢材的52要10天。
乙汽车独运5天,剩下的钢材由甲、乙两汽车共同来运,这需几天运完?例题3.一项工程,甲、乙两队合作需要12天完成,乙、丙两队合作需要15天完成,甲、丙两队合作需要20天完成,甲、乙、丙三队合作需要几天完成?练习3.一项工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作60天完成。
问甲单独做需要多少天完成?思维拓展例题1.一项工程,甲队单独做要10小时完成,乙队单独做要12小时完成,丙队单独做要15小时完成。
开始三队合作,中途丙队有事离开,剩下的由甲、乙两队完成。
从工程开始到结束共用了5小时。
问丙队实际做了几小时?练习1.有一批工艺品。
王大妈独自加工要20天完成,李大妈独自加工要30天完成,张大妈独自加工要40天完成。
现在三人合作,王大妈家中有事中间暂停几天,结果用了12天完成。
王大妈中间休息了几天?例题2.一辆客车和一辆货车同时从A 、B 两城相对开出,经过8小时相遇,相遇后两车各自按原来速度继续行驶。
北师大版六年级数学上册第二单元分数混合运算:工程问题【知识点总览】1. 工程问题的意义与工作效率、工作时间、工作总量有关的问题被称为工程问题。
2.工程问题的特征通常把工作总量看作单位“1”,在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
3. 工程问题的解法解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
4.基本数量关系工作效率×工作时间=工作总量,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率。
【考点一】工程问题基础题型。
【方法点拨】工程问题的基础题型是主要根据工作总量、工作时间、工作效率三者之间基本数量关系列出算式:工作效率×工作时间=工作总量, 工作效率=工作总量÷工作时间, 工作时间=工作总量÷工作效率。
【典型例题】一项工程,甲队需要20天完成,甲队每天完成这项工程的几分之几?【对应练习1】 乙队完成一项工程的32需要12天,求乙队的工作效率。
【对应练习2】一项工程,甲队的工作效率是101,甲队完成这项工程需要几天?【对应练习3】 乙队的工作效率是151,乙队完成这项工程的54需要多少天?【对应练习4】一项工程,甲队的工作效率是121,甲队工作5天可以完成这项工程的几分之几?工作9天可以完成这项工程的几分之几?【对应练习5】砌一道墙,甲单独7小时完成,这道墙已由别人砌了41,还要多少小时能完成?【考点二】工程问题:求合作效率。
【方法点拨】合作效率=工作效率1+工作效率2 【典型例题】一项工作,甲单独做12天完成,乙单独做20天完成。
(1)甲的工作效率是几分之几?乙的工作效率是几分之几?(2)甲、乙合做1天完成全工程的几分之几?(3)甲、乙合作3天完成完成全工程的几分之几?还剩几分之几没完成?【对应练习1】一项工程,甲队单独做10天完成,乙队单独做15天完成。
六年级上册数学工程问题公式题目 1:一项工程,甲单独做 10 天完成,乙单独做 15 天完成,甲乙合作几天完成?解析:工作总量看作单位“1”,甲的工作效率为(1)/(10),乙的工作效率为(1)/(15),合作工作时间 = 工作总量÷(甲工作效率 + 乙工作效率),即1÷((1)/(10) + (1)/(15)) = 6(天)题目 2:一项工程,甲每天完成(1)/(8),乙每天完成(1)/(12),甲乙合作几天完成?解析:工作总量看作单位“1”,合作工作时间 = 工作总量÷(甲工作效率 + 乙工作效率),即1÷((1)/(8) + (1)/(12)) = (24)/(5)(天)题目 3:修一条路,甲队单独修 20 天完成,乙队单独修 30 天完成,两队合修多少天完成这条路的一半?解析:工作总量的一半为(1)/(2),甲队工作效率为(1)/(20),乙队工作效率为(1)/(30),合作工作时间 = 工作总量÷(甲工作效率 + 乙工作效率),即(1)/(2)÷((1)/(20) + (1)/(30)) = 6(天)题目 4:一件工作,甲单独做 12 小时完成,乙单独做 10 小时完成,甲、乙合作多少小时完成?解析:工作总量看作单位“1”,甲的工作效率为(1)/(12),乙的工作效率为(1)/(10),合作工作时间 = 工作总量÷(甲工作效率 + 乙工作效率),即1÷((1)/(12) + (1)/(10)) = (60)/(11)(小时)题目 5:一项工程,甲独做要 18 天,乙独做要 15 天,二人合做 6 天后,其余的由乙独做,还要几天做完?解析:甲的工作效率为(1)/(18),乙的工作效率为(1)/(15),两人合作 6 天完成的工作量为((1)/(18) + (1)/(15))×6 = (11)/(15),剩余工作量为1 - (11)/(15) = (4)/(15),由乙单独完成需要的时间为(4)/(15)÷(1)/(15) = 4(天)题目 6:一批货物,由大、小卡车同时运送,6 小时可运完,如果用大卡车单独运,10 小时可运完。
工程问题拓展练习题
1、 一项工程,甲队单独修8天完成,乙队单独修10天完成。
甲乙两队合修,多少天能完成?
2、一项工程,甲队单独修8天完成,乙队单独修10天完成。
甲乙两队合修,几天能完成这项工程的32
?
3、 一项工程,甲队单独修8天完成,乙队单独修10天完成。
甲乙两队合修,每天完成几分之几?3天完成几分之几?
4、 一项工程,甲队单独修8天完成,乙队单独修10天完成。
甲队先修了2天,余下的由乙队来修,还需要几天?
5、 一项工程,甲队单独修8天完成,乙队单独修10天完成。
乙队先修了3天,余下的甲乙两队合修,还需要几天?
6、一项工程,已经完成了工程的
31,余下的甲乙两队合修,还需要几天?
7、 一项工程,甲队单独修8天完成,乙队单独修的时间是甲队单独修的时间的43。
甲乙两队合修,需要几天完成?
8、 一项工程,甲队单独修8天完成,乙队的工作效率是甲队的2倍。
甲乙两队合修,需要几天完成?
9、 一个蓄水池,有甲乙两个进水管儿,单独开放甲管用8小时可注满水池,单独开放乙管10小时可注满水池。
甲乙两个进水管同时开放,注满水池需要多长时间?
10、 一个蓄水池装有进水管和出水管各一个,单开进水管8小时可将空池注满。
单开出水管10小时可将满池水放完。
进水管和出水管同时开放,注满水池需要多长时间?
11、 一项工程,甲队单独修8天完成,乙队单独修10天完成,丙队单独修6天完成。
甲乙丙三队合修,多少天能完成?。