2021年龙岩市中考数学压轴题总复习
- 格式:docx
- 大小:1.60 MB
- 文档页数:145
实际问题中的方程(组)与函数题型【例1】俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%,在试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售,设每天销售量为y本,销售单价为x元.(1)请直接写出y与x直接的函数关系式及x的取值范围;(2)当每本足球纪念册的销售单价是多少元时,商店每天获利2400元?(3)当每本足球纪念册的销售单价是多少元时,商店每天的利润w最大?最大利润是多少元?【答案】见解析.【解析】解:(1)y=300-10(x-44),整理得:y=-10x+740,(44≤x≤52);(2)由题意得:(x-40)(-10x+740)=2400,解得:x=50,x=64(舍),即当每本足球纪念册的销售单价是50元时,商店每天获利2400元.(3)由题意得:w=(x-40)(-10x+740)=-10(x-57)2+2890∵-10<0,对称轴为x=57,∴当x<57时,w随x增大而增大,∵44≤x≤52,∴当x=52时,w取最大值,最大为2640元,即当每本足球纪念册的销售单价是52元时,商店每天的利润最大,最大利润是2640元.【例2】某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若购买以上两种牲畜共50头,并使这50头的成活率不低于97%,且要使购买的总费用最低,应如何购买?【答案】见解析.【解析】解:(1)设甲种牲畜的单价为x元,由题意得:3x+2x+3000=7500,解得:x=1100,2×1100+200=2400,即甲种牲畜的单价为1100元,乙种牲畜的单价为2400元.(2)设购买甲种牲畜m头时,总购买费用为w元,则w=1100m+2400(50-m)=-1300m+120000,由题意知:95%m+99%(50-m)≥97%×50,解得:m≤25,即0≤m≤25,∵-1300<0,∴w随m的增大而减小,当m=25时,w取最小值,即费用最低,∴购买两种牛各25头时,费用最低.【变式2-1】水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)【答案】见解析.【解析】解:(1)设现在实际购进这种水果价格为每千克a元,则原来价格为每千克(a+2)元,由题意,得:80(a+2)=88a,解得:a =20.即现在实际购进这种水果每千克20元;(2)①设y 与x 之间的函数关系式为:y =kx +b ,将(25,165),(35,55)代入y =kx +b 得,251653555k b k b +=⎧⎨+=⎩, 解得:11440k b =-⎧⎨=⎩, 即y 与x 之间的函数关系式为:y =﹣11x +440;②设这种水果的销售价格为x 元/千克时,利润为w 元,则w =(x ﹣20)y=(x ﹣20)(﹣11x +440)=﹣11(x ﹣30)2+1100,∵﹣11<0,∴当x =30时,w 有最大值,最大值为1100.即这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元.【例3】在江苏卫视《最强大脑》节目中,搭载百度大脑的机器人小度以3:1的总成绩,,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?【答案】见解析.【解析】解:(1)设该商家第一次购进机器人x 个, 由题意得:1100024000102x x+=, 解得:x =100.经检验,x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.(2)设每个机器人的标价是a 元.由题意得:a ﹣11000﹣24000≥×20%,解得:a ≥140.答:每个机器人的标价至少是140元.【变式3-1】由于技术更新,智能电视的功能越来越强大,价格也逐渐下降,某电器商行经营的A 款40英寸智能电视去年销售总额为5万元,今年每台销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 款40英寸智能电视每台售价多少元?(用列方程的方法解答)(2)该电器商行计划新进一批A 款40英寸智能电视和新款B 款40英寸智能电视共60台,且B 款40英寸智能电视的进货数量不超过A 款40英寸智能电视数量的两倍,应如何进货才能使这批智能电视获利最多?A ,B 两款40英寸智能电视的进货和销售价格如下表:【答案】见解析.【解析】解:设今年A 款40英寸智能电视每台售价为x 元,则去年每台售价为(x +400)元,由题意得: ()50000120%50000400x x⨯-=+, 解得:x =1600,经检验,x =1600是原方程的解,符合题意,∴今年A 款40英寸智能电视每台售价为1600元.(2)设购进A 款电视a 台,则购进B 款(60-a )台,此时获利y 元,y =(1600-1100)a +(2000-1400)(60-a )=-100a +36000,其中:60-a ≤2a ,0≤a ≤60,即20≤a ≤60,且a 为整数;∵-100<0,∴y 随a 的增大而减小,当a =20时,y 取最大值,即当进A 款电视20台,B 款电视40台时,获利最大.【例4】紫石中学为了给同学们提供更好的学习环境,计划购买一批桂花树和香樟树来绿化校园,经市场调查发现购买2棵桂花树3棵香樟树共需360元,购买3棵桂花树2棵香樟树共需340元.(1)桂花树香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于桂花树的1.5倍,请你算算,该校本次购买桂花树和香樟树共有哪几种方案.【答案】见解析.【解析】解:(1)设桂花每棵x 元,香樟树每棵y 元,由题意得:2336032340x y x y +=⎧⎨+=⎩, 解得:x =60,y =80,答:桂花树每棵60元,香樟树每棵80元.(2)设桂花树购买x 棵,则香樟树购买(150-a )棵,由题意得:()608015010840150 1.5x x x a ⎧+-≤⎨-≥⎩, 解得:58≤x ≤60,∴有三种购买方案:桂花树58棵,香樟树92棵;桂花树59棵,香樟树91棵;桂花树60棵,香樟树90棵.【变式4-1】冬季来临,某网店准备在厂家购进 A ,B 两种暖手宝共 100 个用于销售,若购买 A 种暖手宝 8 个,B 种暖手宝 3 个,需要 950 元;若购买 A 种暖手宝 5 个,B 种暖手宝 6 个,则需要 800 元.(1)购买 A ,B 两种暖手宝每个各需多少元?(2)①由于资金限制,用于购买这两种暖手宝的资金不能超过 7 650 元,设购买 A 种暖手宝 m 个,求②在①的条件下,购进A种暖手宝不能少于 50 个,则有哪几种购买方案?(3)购买后,若一个A种暖手宝运费为 5 元,一个B种暖手宝运费为 4 元, 在第(2)问的各种购买方案中,购买 100 个暖手宝,哪一种购买方案所付的运费最少?最少运费是多少元?【答案】见解析.【解析】解:(1)设A、B两种暖手宝的价格分别为x元/个、y元/个,由题意得:83950 56800x yx y+=⎧⎨+=⎩,解得:x=100,y=50,即A、B两种暖手宝的价格分别为100元/个,50元/个.(2)①由题意得:100m+50(100-m)≤7650,解得:m≤53,∴m的取值范围是:0≤m≤53,且m为整数;②∵50≤m≤53,∴共有以下四种购买方案,A种50个,B种50个;A种51个,B种49个;A种52个,B种48个;A种53个,B种47个;(3)设总运费为w元,则:w=5m+4(100-m)=m+400,∵1>0,∴w随m的增大而增大,当m=50时,运费最少,最少为450元,∴当购买A种产品50个,B种产品50个时,总运费最少,最少为450元 .1.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户, 经市场调查得知,种植草莓不超过20 亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1 500 m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过 15 亩时,每亩可获得利润 1800 元;超过 15 亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系式为z=-20x+2 100.(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量(2)如果小王家计划承包40 亩荒山种植草莓和樱桃,当种植樱桃面积(x 亩)满足0<x <20时,求小王家总共获得的利润w (元)的最大值.【答案】见解析.【解析】解:(1)由题意得:()()2180001520210015x x p x x x ⎧<≤⎪=⎨-+>⎪⎩(2)种植樱桃面积x 亩,则种植草莓面积(40-x )亩,由题意知,①当0<x ≤15时,w =1800x +1380(40-x )+2400=420x +57600,∵420>0,∴w 随x 的增大而增大,当x =15时,w 最大,最大值为63900,②当15<x ≤20时,w =-20x 2+2100x +1380(40-x )+2400=-20(x -18)2+64080,∵-20<0,∴当x =18时,w 取最大值,最大值为64080,∵64080>63900,∴当x =18时,小王家总共获得的利润w 取最大值,最大值为64080元.2.某游乐园的门票销售分两类:一类个人门票,分为成人票,儿童票;一类为团体门票(一次购买门票 10 张及以上),每张门票在成人票价格基础上打 6 折.已知一个成人带两个儿童购门票需 80 元;两个成人带一个儿童购门票需 100 元.(1)每张成人票和儿童票的价格分别是多少元?(2)光明小学 4 名老师带领 x 名儿童到该游乐园,设购买门票需 y 元.①若每人分别购票,求 y 与 x 之间的函数关系式;②若购买团体票,求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围;③请根据儿童人数变化设计一种比较省钱的购票方案.【答案】见解析.【解析】解:设成人票每张a元,儿童票每张b元,由题意得:a+2b=80,2a+b=100,解得:a=40,b=20,即成人票每张40元,儿童票每张20元;(2)①y=4×40+20x=160+20x②y=40×0.6(x+4)=24x+96,由x+4≥10,得x≥6,且x为整数.③(i)当160+20x>24x+96,即x<16,∴当6≤x<16且x为整数时,应全部购买团体票较为优惠;(ii)当160+20x=24x+96,即x=16,∴当x=16时,购买团体票或分别购买均可以;(iii)当160+20x<24x+96,即x>16,∴当x>16且x为整数时,应分别购买较为优惠.3..近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加,某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表:(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共 80 台,其中B型空气净化器的进货量不多于A 型空气净化器的 2 倍,为使该公司销售完这 80 台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为 200 m3/小时,B型空气净化器的净化能力为 300 m3/小时,某长方体室内活动场地的总面积为 200 m2,室内墙高 3 m,该场地负责人计划购买 5 台空气净化器每天花费30 分钟将室内空气净化一新,若不考虑空气对流等因素,至多要购买A型空气净化器多少台?【答案】见解析.【解析】解:(1)设每台A型空气净化器和B型空气净化器的销售利润分别是x元,y元,由题意得:5395034900x yx y+=⎧⎨+=⎩,解得:x=100,y=150,∴每台A型空气净化器和B型空气净化器的销售利润分别是100元,150元. (2)设购买A型m台,则购进B型(80-x)台,利此时润为w元,由题意知:80-m≤2m,0≤m≤80,m为整数可得:803≤m≤80,m为整数,W=100m+150(80-m)=-50m+12000,∵-50<0,∴w随m的增大而减小,当m=27时,w取最大值,80-27=53,即购进A型27台,B型53台时,售完后获利最大. (3)设购买A型a台,则够买B型(5-a)台,∴12×200a+12×300(5-a)≥200×3,解得:a≤3,∵0≤a≤5,∴0≤a≤3,且a为整数,即至多要购买A型空气净化器3台.4.某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x(天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x(天)之间的函数关系式.(1)求y关于x和p关于x的函数关系式;(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?【答案】见解析.【解析】解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵直线y=k1x过点(15,45),∴15k1=45,解得k1=3,∴y=3x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b, ∵点(15,45),(20,0)在y=k2x+b的图象上,∴15k2+b=45, 20k2+b=0解得:k2=-9,b=180∴y=﹣9x+180(15<x≤20);∴y与x之间的函数关系式为:y=3015 91801520x xx x≤≤⎧⎨-+<≤⎩.①当0≤x<10时,p=25,当10≤x≤20时,设销售单价p与销售时间x之间的函数解析式为:p=mx+n, ∵点(10,25),(20,15)在p=mx+n的图象上,∴10m+n=25,20m+n=15,解得:m=-1,n=35,∴p=﹣x+35(10≤x≤20),∴p=25010351020xx x≤<⎧⎨-+≤≤⎩;(2)若日销售量不低于36千克,即y≥36.当0≤x≤15时,y=3x,3x≥36,解得:x≥12;当15<x≤20时,y=﹣9x+180,﹣9x+180≥36,解得:x≤16,∴12≤x≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣x+35(10≤x≤20),k=﹣1<0,∴p随x的增大而减小,∴当12≤x≤16时,x取12时,p有最大值,此时p=﹣12+35=23.∴此次销售过程中“最佳销售期”共有5天,在此期间销售金额最高是第12天.5..某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和1个B品牌的计算器共需122元;购买1个A品牌和2个B品牌的计算器共需124元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店举行促销活动,具体办法如下:购买A品牌计算器按原价的九折销售,购买B 品牌计算器超出10个以上超出的部分按原价的八折销售.①设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;②小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过10个,问购买哪种品牌的计算器更合算?请说明理由.【答案】见解析.【解析】解:(1)设A品牌计算器的单价为m元,B品牌计算器的单价为n元,由题意得:2m+n=122,m+2n=124,解得:m=40,n=42,即A品牌计算器的单价为40元,B品牌计算器的单价为42元.(2)①由题意:y1=0.9×40x=36x,当0<x≤10时,y2=42x;当x>10时,y2=42×10+42(x﹣10)×0.8=33.6x+84.∴y2=42010 33.68410x xx x≤≤⎧⎨+>⎩.②当购买数量超过10个时,y2=33.6x+84.(i)当y1<y2时,36x<33.6x+84,即x<35,当10<x<35时,购买A品牌的计算器更合算;(ii)当y1=y2时,36x=33.6x+84,即x=35,∴当x=35时,购买两种品牌的计算器花费一样多;(iii)当y1>y2时,36x>33.6x+84,即x>35.∴当x>35时,购买B品牌的计算器更合算.6..某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.【答案】见解析.【解析】解:(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据题意,得:2x+y=56,x+2y=82,解得:x=10,y=36,即一根A型跳绳售价是10元,一根B型跳绳的售价是36元;(2)由m≤3(50﹣m),得:m≤37.5,∴0≤m≤37,且m为整数,设购进A型跳绳m根,总费用为W元,根据题意,得:W=10m+36(50﹣m)=﹣26m+1800,∵﹣26<0,∴W随m的增大而减小,∴当m=37时,W最小=838,即当购买A型跳绳37根,B型跳绳13根时,最省钱.7..为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购进A种树苗a棵,所需费用为W,求W与x的函数关系式;(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,由题意得:80x+60(17﹣x)=1220,解得:x=10,即购进A种树苗10棵,B种树苗7棵;(2)W与a的函数关系式:W=80a+60(17﹣a)=20a+1020;(3)由题意得:17-a<a,即a>8.5,∴8.5<a≤17,且a为整数,由(2)知,W=20a+1020,W随a的增大而增大,∴a=9时,即购买9棵A种树苗,8棵B种树苗时,费用最少,W=80×9+60×8=1200,即购买9棵A种树苗,8棵B种树苗时,费用最少,需要1200元.8..孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【答案】见解析.【解析】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:25600 3380x yx y+=⎧⎨+=⎩,解得:10080xy=⎧⎨=⎩,答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,有a≥3(100﹣a),解得:a≥75.设实际花费金额是y元,则:y=0.9[100a+80(100﹣a)]=18a+7200.∵18>0,∴y随a的增大而增大,∴当a=75时,y取最小值,即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.9..某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如下表:(1)如果在线下购买甲、乙两种书架共30个,花费8 280元,求甲、乙两种书架各购买了多少个?(2)如果在线上购买甲、乙两种书架共30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.【答案】见解析.【解析】解:(1)设线下购买甲种书架x个,乙种书架y个,由题意得:30 2403008280x yx y+=⎧⎨+=⎩,解得:1218 xy=⎧⎨=⎩,即线下购买甲种书架12个,乙种书架18个.(2)设购买甲种书架a个,则购买乙种书架(30-a)个,总花费为w元, ∵30-a≥3a,即a≤7.5(其中a为正整数),W=(210+20)a+(250+30)(30-a)=-50a+8400,∵-50<0,∴w随a的增大而减小,当a=7时,w最小,最小值为8050元,即当购买7个甲种书架,23个乙种书架时,总费用最低,最低为8050元.10..某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【答案】见解析.【解析】解:(1)设y与x之间的函数解析式为y=kx+b,由题意得:50100 6080k bk b+=⎧⎨+=⎩,解得:2200kb=-⎧⎨=⎩,y与x之间的函数表达式是:y=﹣2x+200;(2)由题意得,W=(x﹣40)(﹣2x+200)=﹣2(x﹣70)2+1800,(3)∵W=﹣2(x﹣70)2+1800,40≤x≤80,∵﹣2<0,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小, 且当x=70时,W取得最大值,此时W=1800.11..小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天; 信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表: 生产甲产品数(件) 生产乙产品数(件) 所用时间(分钟) 10 10 350 3020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【答案】见解析.【解析】解:(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟. 由题意得:10103503020850x y x y +=⎧⎨+=⎩,解得:x =15,y =20,即生产一件甲产品需要15分钟,生产一件乙产品需要20分钟.(2)设生产甲种产品共用x 分钟,则生产乙种产品用(25×8×60﹣x )=(12000-x )分钟,收入为w 元,则生产甲种产品15x 件,生产乙种产品1200020x-件. ∴w =1.5×15x +2.8×1200020x-=﹣0.04x +1680, ∵15x≥60,即:x ≥900, w =﹣0.04x +1680中,∵﹣0.04<0,∴w 随x 的增大而减小,∴当x =900时,w 取得最大值,最大值为:1644元, 则小王该月收入最多是1644+1900=3544元, 此时生产甲60件,乙555件,∴小王该月最多能得3544元,此时生产甲、乙两种产品分别60件,555件.12..“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B 售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m<15),B的售价不变,超市如何进货获利最大?【答案】见解析.【解析】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,由题意得:104065030x x=-,解得:x=80,经检验x=80是原分式方程的解,80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是 80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏, 根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得:40≤a≤55.∵a为整数,55-40+1=16,∴该超市有 16 种进货方案(3)设超市销售台灯所获总利润为w元,w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15①当 8<m<10 时,即 10﹣m>0,w随a的增大而增大,当a=55 时,所获总利润w最大,此时进货方案为:A品牌台灯 55 盏、B品牌台灯 45 盏;②当m=10 时,w=3000;当A品牌台灯数量满足 40≤a≤55时,利润均为 3000元;③当 10<m<15 时,即 10﹣m<0,w随a的增大而减小,当a=40 时,所获总利润w最大,此时进货方案为:A品牌台灯 40 盏、B品牌台灯 60 盏.13..为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入34万元.(1)种植A,B两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.【答案】见解析.【解析】解:(1)设种植A,B两种蔬菜,每亩各需分别投入x万元,y万元,由题意得:203036 302034 x yx y+=⎧⎨+=⎩解得:0.60.8xy=⎧⎨=⎩,即种植A,B两种蔬菜,每亩各需分别投入0.6万元,0.8万元. (2)由题意得:w=0.8m+1.2×1000.60.8m-=﹣0.1m+150 ∵1000.6m-≥0,∴0≤m≤5003,(3)∵m≥2×1000.60.8m-解得:m≥100在w=﹣0.1m+150中,∵﹣0.1<0,∴w随m的增大而减小,∴当m=100时,w取最大值为:140万元,∴1000.60.8m-=50即当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.14..2018年4月8日﹣11日,博鳌亚洲论坛2018年年会在海南省博鳌镇召开.本届博鳌亚洲论坛的主题为“开放创新的亚洲,繁荣发展的世界”.围绕这一主题,年会设置了“全球化与一带一路”“开放的亚洲”“创新”“改革再出发”四大板块,展开60多场正式讨论.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】见解析.【解析】解:(1)设甲种、乙种商品的销售单价分别是x元,y元,由题意,得:23 321500x yx y=⎧⎨-=⎩解得:x=900,y=600,.答:甲种商品的销售单价是900元,乙种商品的单价为600元(2)设销售甲种商品a万件,则销售乙种商品(8﹣a)万件,由题意,得:900a+600(8﹣a)≥5400解得:a≥2,即至少销售甲种商品2万件.15..某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B 型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【答案】见解析.【解析】解:(1)设每部A型手机的销售利润为x元,则每部B型手机的销售利润为(x-50)元,根据题意,得:3000200050x x=-,解得:x=150,经检验:x=50是原方程的解,150-50=100,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机(110﹣n)部,则y=150(110﹣n)+100n=﹣50n+16500,∵110﹣n≤2n,∴3623≤n≤110且n为整数,∴y关于n的函数关系式为y=﹣50n+16500 (3623≤n≤110且n为整数);②∵﹣50<0,∴y随n的增大而减小,∴当n=37时,y取得最大值,最大值为14650元,答:购进A型手机73部、B型手机37部时,销售总利润最大;(3)y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,3623≤n≤80,且n为整数),①当30<m<50时,y随n的增大而减小,当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,n取3623≤n≤80的整数时,获得最大利润;③当50<m<100时,y随n的增大而增大, ∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.16..某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,201520359000 10201052051600x yy x++⨯=⎧⎨+⨯=+⨯+⎩,解得:220260xy=⎧⎨=⎩,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,所需的费用为w元,由题意得:m≤3(40﹣m),即m≤30,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少为10000元.17..某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】见解析.。
2021届中考数学压轴题专项训练一次函数【含答案】1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2.5﹣1=1.5(小时),∴乙车出发后1.5小时追上甲车.2.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距km 设甲、乙两车与B地之间的距离为,y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1)A,B两地之间的距离为20 km;(2)当x为何值时,甲、乙两车相距5km?解:(1)A,B两地之间的距离为20km.故答案为:20;(2)乙车的速度为:20÷=120(km/h),甲车的速度为:=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)﹣120x=5,解得x=0.75;相遇后:120x﹣(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.3.在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于点A,B,点D的坐标为(0,3),点E是线段AB上的一点,以DE为腰在第二象限内作等腰直角△DEF,∠EDF=90°.(1)请直接写出点A,B的坐标:A(﹣2 ,0 ),B(0 , 2 );(2)设点F的坐标为(a,b),连接FB并延长交x轴于点G,求点G的坐标.解:(1)∵直线y=x+2与x轴,y轴分别交于点A,B,∴点A(﹣2,0),点B(0,2)故答案为:(﹣2,0),(0,2)(2)如图,过点F作FM⊥y轴,过点E作EN⊥y轴,∴∠FMD=∠EDF=90°∴∠FDM+∠DFM=90°,∠FDM+∠EDN=90°,∴∠DFM=∠EDN,且FD=DE,∠FMD=∠END=90°,∴△DFM≌△EDN(AAS)∴EN=DM,FM=BN,∵点F的坐标为(a,b),∴FM=DN=﹣a,DM=b﹣3,∴点E坐标(﹣b+3,3+a),∵点E是线段AB上的一点,∴3+a=﹣b+3+2∴a+b=2,∴点F(a,2﹣a)设直线BF的解析式为y=kx+2,∴2﹣a=ka+2∴k=﹣1,∴直线BF的解析式为y=﹣x+2,∴点G(2,0)4.某学校甲、乙两名同学去爱国主义教育基地参观,该基地与学校相距2400米.甲从学校步行去基地,出发5分钟后乙再出发,乙从学校骑自行车到基地.乙骑行到一半时,发现有东西忘带,立即返回,拿好东西之后再从学校出发.在骑行过程中,乙的速度保持不变,最后甲、乙两人同时到达基地.已知,乙骑行的总时间是甲步行时间的.设甲步行的时间为x(分),图中线段OA表示甲离开学校的路程y(米)与x(分)的函数关系的图象.图中折线B﹣C﹣D和线段EA表示乙离开学校的路程y(米)与x(分)的函数关系的图象.根据图中所给的信息,解答下列问题:(1)甲步行的速度和乙骑行的速度;(2)甲出发多少时间后,甲、乙两人第二次相遇?(3)若s(米)表示甲、乙两人之间的距离,当15≤x≤30时,求s(米)关于x(分)的函数关系式.解:(1)由题意得:(米/分),=240(米/分);(2)由题意可得:C(10,1200),D(15,0),A(30,2400),设线段CD的解析式为:y=kx+b,则,解得∴线段CD的解析式为:y=﹣240x+3600,易知线段OA的解析式为:y=80x,根据题意得240x+3600=80x,解得:x=,∴甲出发分后,甲、乙两人第二次相遇;(3)∵E(20,0),A(30,2400),设线段EA的解析式为:y=mx+n,,解得,∴线段EA的解析式为:y=240x﹣4800,∴当15≤x≤20时,s=y OA﹣0=80x,当20<x≤30时,s=y OA﹣y EA=80x﹣(240x﹣4800)=﹣160x+4800,∴.5.对于给定的△ABC,我们给出如下定义:若点M是边BC上的一个定点,且以M为圆心的半圆上的所有点都在△ABC的内部或边上,则称这样的半圆为BC边上的点M关于△ABC的内半圆,并将半径最大的内半圆称为点M关于△ABC的最大内半圆.若点M是边BC上的一个动点(M不与B,C重合),则在所有的点M关于△ABC的最大内半圆中,将半径最大的内半圆称为BC关于△ABC的内半圆.(1)在Rt△ABC中,∠BAC=90°,AB=AC=2,①如图1,点D在边BC上,且CD=1,直接写出点D关于△ABC的最大内半圆的半径长;②如图2,画出BC关于△ABC的内半圆,并直接写出它的半径长;(2)在平面直角坐标系xOy中,点E的坐标为(3,0),点P在直线y=x上运动(P不与O重合),将OE关于△OEP的内半圆半径记为R,当≤R≤1时,求点P的横坐标t的取值范围.解:(1)①如图1,过D作DE⊥AC于E,∵Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠C=∠B=45°,∵CD=1,∴BD=2﹣1>CD,∴D到AC的距离小于到AB的距离,∵△DEC是等腰直角三角形,∴DE=,即点D关于△ABC的最大内半圆的半径长是;②当D为BC的中点时,BC关于△ABC的内半圆为⊙D,如图2,∴BD=BC=,同理可得:BC关于△ABC的内半圆半径DE=1.(2)过点E作EF⊥OE,与直线y=x交于点F,设点M是OE上的动点,i)当点P在线段OF上运动时(P不与O重合),OE关于△OEP的内半圆是以M为圆心,分别与OP,PE相切的半圆,如图3,连接PM,∵直线OF:y=x∴∠FOE=30°由(1)可知:当M为线段中点时,存在OE关于△OEP的内半圆,∴当R=时,如图3,DM=,此时PM⊥x轴,P的横坐标t=OM=;如图4,当P与F重合时,M在∠EFO的角平分线上,⊙M分别与OF,FE相切,此时R=1,P的横坐标t=OE=3;∴当≤R≤1时,t的取值范围是≤t≤3.ii)当点P在OF的延长线上运动时,OE关于△OEP的内半圆是以M为圆心,经过点E 且与OP相切的半圆,如图5.∴当R=1 时,t的取值范围是t≥3.iii)当点P在OF的反向延长上运动时(P不与O重合),OE关于△OEP的内半圆是以M为圆心,经过点O且与EP相切的半圆,如图6.∵∠FOE=∠OPE+∠OEP=30°,∴∠OEP<30°,∴OM<1,当R=时,如图6,过P作PA⊥x轴于A,N是切点,连接MN,MN⊥PE,此时OM =MN=,ME=3﹣=,∴EN===,Rt△OPA中,∠POA=30°,OA=﹣t,∴PA=﹣t,∵∠ENM=∠EAP=90°,∠MEN=∠AEP,∴△EMN∽△EPA,∴,即=解得:t=﹣,∴当≤R<1时,t的取值范围是t≤﹣.综上,点P在直线y=x上运动时(P不与O重合),当≤R≤1时,t的取值范围是t≤﹣或t≥.6.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x 相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),解得:BP=,故点P(,6)或(﹣,6)(3)设点E(m,m)、点P(n,6);①当∠EPA=90°时,如左图,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即|m﹣n|=6,m﹣6=8﹣n,解得:m=或16,故点E(,)或(14,);②当∠EAP=90°时,如右图,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14,故点E(2,)或(16,20);上,E(,)或(14,)或;(2,)或(16,20).7.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,画出点E的位置,并求E点的坐标.(3)若点D是折线A﹣B﹣C上一动点,是否存在点D,使AACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入,y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)如图点E为所求点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线DB1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入一次函数表达式并解得:故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为.(3)存在,D点的坐标为(﹣1,3)或.①当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D点的坐标为(﹣1,3);②当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∠FAO=∠CBO,∠AOF=∠BOD,AO=BO,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组并解得:x=,∴交点D的坐标为.8.(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A 作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为C(4,6)或C(6,2)(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.解:(1)∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠ACD=∠CAD=90°,∵∠ACB=90°,∴∠ACD=∠BCE=90°,∴∠BCE=∠CAD,在△BEC和△CDA中,∴△BEC≌△CDA(AAS);(2)①根据题意可得点C的坐标为C(4,6)或C(6,2);故答案为:C(4,6)或C(6,2);②如图,作BP⊥MN交MN的延长线于P,作DQ⊥MN于Q∵∠BCP+∠BCA=∠CAM+∠AMC,∵∠BCA=∠AMC,∴∠BCP=∠CAM,在△CBP与△ACM中,,∴△CBP≌△ACM(AAS),∴MC=BP,同理,CM=DQ,∴DQ=BP在△BPN与△DQN中,,∵△BPN≌△DQN(AAS),∴BN=ND,∴N是BD的中点.9.如图,在平面直角坐标系xOy中,直线l:y=﹣x+4与x轴、y轴分别相交于B、A 两点,点C是AB的中点,点E、F分别为线段AB、OB上的动点,将△BEF沿EF折叠,使点B的对称点D恰好落在线段OA上(不与端点重合).连接OC分别交DE、DF于点M、N,连接FM.(1)求tan∠ABO的值;(2)试判断DE与FM的位置关系,并加以证明;(3)若MD=MN,求点D的坐标.解:(1)直线l:y=﹣x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0);tan∠ABO===tanα;(2)DE与FM的位置关系为相互垂直,理由:点C是AB的中点,则∠COB=∠CBO=∠EDF=α,∠ONF=∠DNM,∴∠DMN=∠DFO,∴O、F、M、D四点共圆,∴∠DMF+∠DOF=180°,∴∠DOF=90°,即:DE⊥FM;(3)MD=MN,∴∠MDN=∠MND=α,而∠COB=α,∠DNM=∠ONF=α,即△OCF为以ON为底,底角为α的等腰三角形,则tan∠NFO===tanβ,则cosβ=(证明见备注);设OF=m,则DF=FB=3﹣m,cos∠DFO=cosβ=,解得:m=,OD2=DF2﹣OF2=(3﹣m)2﹣m2=;则OD=,故点D(0,).备注:如下图,过点N作HN⊥OF于点H,tanα=,则sinα=,作FM⊥ON于点M,设FN=OF=5a,则FN=4a,则ON=6a,同理可得:NH=,tan∠NFO===tanβ,则cosβ=.10.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).11.如图,长方形OBCD的OB边在x轴上,OD在y轴上,把OBC沿OC折叠得到OCE,OE与CD交于点F.(1)求证:OF=CF;(2)若OD=4,OB=8,写出OE所在直线的解析式.解:(1)∵四边形OBCD为矩形,∴DO=BC,∠OBC=∠ODC.由翻折的性质可知∠E=∠OBC,CE=BC,∴OD=CE,∠E=∠ODC.在△ODF和△CEF中,∴△ODF≌△CEF(AAS),∴OF=CF.(2)∵OF=CF.设DF=x,则OF=CF=8﹣x.在Rt△ODF中,OD=4,根据勾股定理得,OD2+DF2=OF2,∴42+x2=(8﹣x)2,解得x=3,∴F(3,4),设直线OE的解析式为y=kx,把F(3,4)代入得4=3k,解得k=,∴OE所在直线的解析式y=x.12.如图,在平面直角坐标系中,直线y=﹣x+m过点A(5,﹣2)且分别与x轴、y轴交于点B、C,过点A画AD∥x轴,交y轴于点D.(1)求点B、C的坐标;(2)在线段AD上存在点P,使BP+CP最小,求点P的坐标.解:(1)∵y=﹣x+m过点A(5,﹣2),∴﹣2=﹣5+m,∴m=3,∴y=﹣x+3,令y=0,∴x=3,∴B(3,0),令x=0,∴y=3,∴C(0,3);(2)过C作直线AD对称点Q,可得Q(0,﹣7),连结BQ,交AD与点P可得直线BQ:,令y′=﹣2,∴,∴.13.如图,直线l1的函数表达式为y=3x﹣2,且直线l1与x轴交于点D.直线l2与x轴交于点A,且经过点B(4,1),直线l1与l2交于点C(m,3).(1)求点D和点C的坐标;(2)求直线l2的函数表达式;(3)利用函数图象写出关于x,y的二元一次方程组的解.解:(1)在y=3x﹣2中令y=0,即3x﹣2=0 解得x=,∴D(,0),∵点C(m,3)在直线y=3x﹣2上,∴3m﹣2=3,∴m=,∴C(,3);(2)设直线l2的函数表达式为Y=KX+B(K≠0),由题意得:,解得:,∴y=﹣x+;(3)由图可知,二元一次方程组的解为.14.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为(﹣2,5)或(﹣5,3)或(,).解:(1)∵点C在正比例函数图象上,∴m=4,解得:m=3,∵点C(3,4)、A(﹣3,0)在一次函数图象上,∴代入一次函数解析式可得,解这个方程组得,∴一次函数的解析式为y=x+2;(2)在中,令x=0,解得y=2,∴B(0,2)∴S△BOC=×2×3=3;(3)过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,如图,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD2,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,即可得出点D的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D的坐标为(﹣5,3),∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).15.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P 顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系xOy中,已知S(﹣3,1),P(1,3),Q(﹣1,﹣3),M(﹣2,4).①在点P,点Q中,点P是点S关于原点O的“正矩点”;②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:点S是点P关于点M的“正矩点”,写出一种情况即可;(2)在平面直角坐标系xOy中,直线y=kx+3(k<0)与x轴交于点A,与y轴交于点B,点A关于点B的“正矩点”记为点C,坐标为C(x c,y c).①当点A在x轴的正半轴上且OA小于3时,求点C的横坐标x c的值;②若点C的纵坐标y c满足﹣1<y c≤2,直接写出相应的k的取值范围.解:(1)①在点P,点Q中,点S绕点O顺时针旋转90°能得到线段OP,故S关于点O的“正矩点”为点P,故答案为点P;②点S是点P关于点M的“正矩点”(答案不唯一);故答案为:S,P,M;(2)①如图1,作CE⊥x轴于点E,作CF⊥y轴于点F,∠BFC=∠AOB=90°,点B(0,3),点A(﹣,0),∵∠ABO+∠CBO=90°,∠CBO+∠BCF=90°,∴∠BCF=∠ABO,BC=BA,∴△BCF≌△AOB(AAS),∴FC=OB=3,故点C的坐标为:(﹣3,3+),即点C的横坐标x c的值为﹣3;②点C(﹣3,3+),如图2,﹣1<y c≤2,即:﹣1<3+≤2,则﹣3≤k.。
2020-2021备战中考数学压轴题专题复习——平行四边形的综合含答案一、平行四边形1.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2) 证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.2.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G 交AD于F(1)求证:AF=DE;(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析.【解析】【分析】(1)证明△BAF≌△ADE(ASA)即可解决问题.(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想办法证明AF=DF,即可解决问题.(3)延长AE,BC交于点P,由(2)知DE=CD,利用直角三角形斜边中线的性质,只要证明BC=CP即可.【详解】(1)证明:如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD ∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=12BP=BC,∴CG=CD.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.3.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.4.如图,在平行四边形ABCD 中,AD ⊥DB ,垂足为点D ,将平行四边形ABCD 折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度5.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE与△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中线,∴△APF与△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,∴△PGH底边GH上的高等于△AEF底边EF上高的一半,∵GH=EF,∴S△PGH=12S△AEF=S△APF,综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.6.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=10,∴当点F 1移动到点B 时,t =101010÷=10; ②当点H 运动到直线DE 上时,F 点移动到F'的距离是10t ,在Rt △F'NF 中,NF NF '=13, ∴FN =t ,F'N =3t ,∵MH'=FN =t ,EM =NG'=15﹣F'N =15﹣3t ,在Rt △DMH'中,43MH EM '=, ∴41533t t =-, ∴t =4, ∴EM =3,MH'=4,∴S =1451023(12)11248⨯+⨯=; 当点G 运动到直线DE 上时,F 点移动到F'10,∵PF =10∴PF'10t ﹣10,在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.7.如图所示,矩形ABCD 中,点E 在CB 的延长线上,使CE =AC ,连接AE ,点F 是AE 的中点,连接BF 、DF ,求证:BF ⊥DF .【答案】见解析.【解析】【分析】延长BF ,交DA 的延长线于点M ,连接BD ,进而求证△AFM ≌△EFB ,得AM =BE ,FB =FM ,即可求得BC +BE =AD +AM ,进而求得BD =BM ,根据等腰三角形三线合一的性质即可求证BF ⊥DF .【详解】延长BF ,交DA 的延长线于点M ,连接BD .∵四边形ABCD 是矩形,∴MD ∥BC ,∴∠AMF =∠EBF ,∠E =∠MAF ,又FA =FE ,∴△AFM ≌△EFB ,∴AM =BE ,FB =FM .∵矩形ABCD 中,∴AC =BD ,AD =BC ,∴BC +BE =AD +AM ,即CE =MD .∵CE =AC ,∴AC =CE = BD =DM .∵FB =FM ,∴BF ⊥DF .【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB =DM 是解题的关键.8.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.9.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2α. 【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2α.证明方法类似; 【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC ,∴BM 垂直平分AC ,∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC ,∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM .(2)ME =3MB .证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME 3.(3) 如图3中,结论:EM=BM•tan 2.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan 2. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.10.在矩形纸片ABCD 中,AB=6,BC=8,现将纸片折叠,使点D 与点B 重合,折痕为EF ,连接DF .(1)说明△BEF 是等腰三角形;(2)求折痕EF 的长.【答案】(1)见解析;(2).【解析】【分析】 (1)根据折叠得出∠DEF =∠BEF ,根据矩形的性质得出AD ∥BC ,求出∠DEF =∠BFE ,求出∠BEF =∠BFE 即可;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,根据矩形的性质得出EM =AB =6,AE =BM ,根据折叠得出DE =BE ,根据勾股定理求出DE 、在Rt △EMF 中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D 与点B 重合,折痕为EF ,∴∠DEF =∠BEF .∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF ,即△BEF 是等腰三角形;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,所以EM =AB =6,AE =BM .∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.11.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
2021年九年级数学中考一轮复习圆综合填空压轴题培优提升专题训练(附答案)1.如图:已知⊙O的半径为6,E是⊙O上一个动点,以BE为边按顺时针方向作正方形BEDC,M是弧AB的中点,当E在圆上移动时,MD的最小值是.2.如图,圆O的半径为3,点A在圆O上运动,ABCD为矩形,AC与BD交于点M,MO =5,则AB2+AD2的最小值为.3.如图,在四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=75°,对角线BD=2,则四边形ABCD面积的最小值为.4.如图,已知△OAB是等腰直角三角形,OA=OB=,点E是AB上一点,且∠AOE=15°,以O为圆心,OE的长为半径画弧,与△OAB的三边分别交于点C、F、D,则图中阴影部分的面积为(结果保留π).5.已知抛物线y=﹣x2+2x+8与x轴交于B、C两点,A点在抛物线上,且以BC为直径的圆经过点A,A在x轴上方,则点A的横坐标为.6.如图,在矩形ABCD中,AB>BC,以点B为圆心,AB的长为半径的圆分别交CD边于点M,交BC边的延长线于点E.若DM=CE,的长为2π,则CE的长.7.如图,过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,作直线BC,连接AB,AC,若∠P=80°,则∠C=°.8.已知⊙O的直径AB为4cm,点C是⊙O上的动点,点D是BC的中点,AD延长线交⊙O 于点E,则BE的最大值为.9.如图,等腰△ABC中,AC=BC=2.∠ACB=120°,以AB为直径在△ABC另一侧作半圆,圆心为O,点D为半圆上的动点,将半圆沿AD所在直线翻叠,翻折后的弧AD 与直径AB交点为F,当弧AD与BC边相切时,AF的长为.10.如图,△ABC中,∠ACB=90°,BC=3,cos∠B=,将△ABC绕点C顺时针旋转90°得到△AB'C,P为线段AB上的动点,以点P为圆心,P A长为半径作⊙P,当⊙P与△A′B′C的一边所在的直线相切时,⊙P的半径为.11.如图,四边形ABDC内接于半圆O,AB为直径,AD平分∠CAB,AB﹣AC=4,AD=3,作DE⊥AB于点E,则BE的长为,AC的长为.12.已知:如图,四边形ABCD中,AD∥BC,AB=BC=4,∠B=60°,∠C=105°,点E为BC的中点,以CE为弦作圆,设该圆与四边形ABCD的一边的交点为P,若∠CPE =30°,则EP的长为.13.已知x轴上有点A(1,0),点B在y轴上,点C(m,0)为x轴上一动点且m<﹣1,连接AB,BC,tan∠ABO=,以线段BC为直径作⊙M交线段AB于点D,过点B作直线l∥AC,过A,B,C三点的抛物线为y=ax2+bx+e,直线与抛物线和⊙M的另一个交点分别是E,F,当EF=BD时,则m的值为.14.Rt△ABC中,∠ACB=90°,CD为AB边上的高,P为AC的中点,连接PD,BC=6,DP=4.O为边BA上一点,以O为圆心,OB为半径作⊙O,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于.15.如图,⊙O的直径AB的长12,长度为4的弦DF在半圆上滑动,DE⊥AB于点E,OC ⊥DF于点C,连接CE,AF,则sin∠AEC的值是,当CE的长取得最大值时AF 的长是.16.如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于E,F两点,若点E的坐标是(﹣3,﹣1),则点F的坐标是.17.如图,已知在Rt△ABC中,∠ACB=90°,cos B=,BC=3,P是射线AB上的一个动点,以P为圆心,P A为半径的⊙P与射线AC的另一个交点为D,直线PD交直线BC 于点E.设线段BE的中点为Q,射线PQ与⊙P相交于点F,点P在运动过程中,当PE ∥CF时,则AP的长为.18.矩形ABCD的边AB=4,边AD上有一点M,连接BM,将MB绕M点逆时针旋转90°得MN,N恰好落在CD上,过M、D、N作⊙O,⊙O与BC相切,Q为⊙O上的动点,连BQ,P为BQ中点,连AP,则AP的最小值为.19.如图,矩形ABCD中,AB=,BC=AB2,E为射线BA上一动点,连接CE交以BE 为直径的圆于点H,则线段DH长度的最小值为.20.如图,抛物线y=x2﹣x﹣1与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是.21.平面直角坐标系中,⊙O交x轴正负半轴于点A、B,点P为⊙O外y轴正半轴上一点,C为第三象限内⊙O上一点,PH⊥CB交CB延长线于点H,已知∠BPH=2∠BPO,PH =15,CH=24,则tan∠BAC的值为.22.如图,AB是以点O为圆心的圆形纸片的直径,弦CD⊥AB于点E,AB=10,BE=3.将阴影部分沿着弦AC翻折压平,翻折后,弧AC对应的弧为G,则点O与弧G所在圆的位置关系为.23.如图,在平行四边形ABCD中,以对角线AC为直径的圆O分别交BC,CD于点E,F.若AB=13,BC=14,CE=9,则线段EF的长为.24.如图,在扇形OAB中,∠AOB=90°,OA=OB=2,将扇形OAB绕边OB的中点D 顺时针旋转90°得到扇形O'A'B',弧A'B′交OA于点E,则图中阴影部分的面积为.25.如图所示,已知AB=10,点P是线段AB上的动点,以AP为边作正六边形APCDEF,以PB为底作等腰三角形BPN,连接PD,DN,则△PDN的面积的最大值是.26.如图,已知扇形AOB的圆心角为120°,点C是半径OA上一点,点D是弧AB上一点.将扇形AOB沿CD对折,使得折叠后的图形恰好与半径OB相切于点E.若∠OCD =45°,OC=+1,则扇形AOB的半径长是.27.如图,在矩形ABCD中,AB=6,AD=8,点M,N分别为AD,AC上的动点(不含端点),AN=DM,连接点M与矩形的一个顶点,以该线段为直径作⊙O,当点N和矩形的另一个顶点也在⊙O上时,线段DM的长为.参考答案1.解:如图,连接MO,延长MO交⊙O于T,连接BT,OE,BD.∵M是弧AB的中点,AB是直径,∴MT⊥AB,∵OB=OT=6,∴∠OBT=∠OTB=45°,∴BT=OB,∵四边形BCDE是正方形,∴∠EBD=∠OBT=45°,BD=BE,∴∠OBE=∠TBD,==,∴△TBD∽△OBE,∴==,∴TD=OE=6,∵DM≥TM﹣TD,∴DM≥12﹣6,∴DM的最小值为12﹣6.故答案为:12﹣6.2.解:如图,连接OA.∵四边形ABCD是矩形,∴AC=BD,AM=MC=BM=MD,∠BAD=90°,∴AB2+AD2=BD2,∴BD的值最小时,AB2+AD2的值最小,∵AM≥OM﹣OA,OM=5,OA=3,∴AM≥2,∴AM的最小值为2,∴BD的最小值为4,∴AB2+AD2的最小值为16,故答案为16.3.解:如图,连接AC,∵AB=CB,∠ABC=60°,∴△ABC是等边三角形,将△DBC绕点B顺时针旋转60°得△HBA,连接DH,则BD=BH=2,∠HBD=60°,∴△HBD是等边三角形,∴S四边形ABCD=S△ABD+S△BCD=S△BDH﹣S△ADH,∵BD=2,是定值,∴S△BDH是定值,∴当△ADH的面积最大时,四边形ABCD的面积最小,∵∠ADC=75°,∠ABC=60°,∴∠BAD+∠BCD=360°﹣75°﹣60°=225°,∴∠DAH=360°﹣∠BAD﹣∠HAB=360°﹣225°=135°,∵点A在定圆⊙O(△ADH的外接圆)上运动,当O、A、B共线时,△ADH的面积最大,此时,OB⊥DH,设OA交DH于K,则HK=KD=1,∵AH=AD,∴∠AHD=∠ADH=22.5°,在HK上取一点F,使FH=AF,则△AKF是等腰直角三角形,设AK=FK=x,则AF=FH=x,∴1=x+x,∴x=﹣1,∴△ADH面积的最大值=×2×(﹣1)=﹣1,∴四边形ABCD的面积的最小值=×22﹣(2﹣2)=﹣+1.故答案为:﹣+1.4.解:如图,连接OF.作OH⊥EF于H.由题意:∠AOE=∠FOB=15°,∠EOF=90°﹣15°﹣15°=60°,∵∠AOB=90°,OA=OB=,∴AB=2,∵OH⊥AB,OA=OB,∴AH=BH,∴OH=AB=,∠EOH=∠FOH=30°,∴OF==2,∴S阴=(S△AOB﹣2•S扇形EOC﹣S△EOF)+(S扇形OEF﹣S△OEF)=××﹣2×﹣×22+﹣×22=3+﹣2.故答案为3+﹣2.5.解:对于抛物线y=﹣x2+2x+8,令y=0,得到x2﹣2x﹣8=0,解得x=﹣2或4,不妨设B(﹣2,0),C(4,0),A(m,﹣m2+2m+8),由题意(m﹣1)2+(﹣m2+2m+8)2=9,∴(m﹣1)2﹣32+(m+2)2•(m﹣4)2=0,∴(m﹣4)(m+2)+(m+2)2•(m﹣4)2=0,∴(m+2)(m﹣4)[1+(m+2)(m﹣4)]=0,∴(m+2)(m﹣4)(m2﹣2m﹣7)=0,解得m=﹣2或4或1±2,∵点A在x轴的上方,∴点A的横坐标为1±2.6.解:连接BM,则AB=BE=BM,设BM=R,∵四边形ABCD是矩形,∴AB=CD=BE,∠B=∠BCD=90°,∵DM=VE,∴CM=BC,∵的长为2π,∴=2π,解得:R=4,即BM=BE=CD=AB=4,在Rt△BCM中,由勾股定理得:BC2+CM2=BM2,BC=CM=2,∴CE=4﹣2,故答案为:4﹣2.7.解:连接OA,∵过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,∴∠P AO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,∴∠C=AOB=50°,故答案为:50.8.解:如图,以OB为直径作⊙K,当直线AE切⊙K于D时,BE的值最大.∵AE是⊙K的切线,∴DK⊥AE,∴∠ADK=90°,∵AB是直径,∴∠AEB=90°,∴∠ADK=∠AEB,∴DK∥BE,∴=,∴=,∴BE=,故答案为.9.解:如图,作点O关于AD的对称点O′,连接O′A,∵AC=BC=2.∠ACB=120°,∴AB=6,∴O′A=OA=3,延长BC交⊙O于点E,∵AB是⊙O的直径,∴∠E=90°,设⊙O′与BC相切于点G,则∠O′GB=90°,∴∠E=∠O′GB,∴AE∥O′G,∵∠ABC=30°,AB=6,∴AE=O′G=3,∴四边形O′AEG为平行四边形,∴AO′∥BE,∴∠O′AB=∠ABC=30°,作O′M⊥AF于M∵O′A=3,∠O′AB=30°,∴AM=MF=,∴AF=2AM=.故答案为:.10.解:①当⊙P与△A′B′C的A′B′边所在的直线相切时,即:⊙P′所在的位置,设切点为H点,圆的半径为R,BC=3,cos∠B=,则sin∠B==sin∠AB′H,则AC=A′C=4,BC=CB′=3,AB′=AC﹣B′C=1,sin∠AB′H===,则R=,②当⊙P与△A′B′C的A′C边所在的直线相切时,即:⊙P′′所在的位置,同理,可得:R=;故:答案为:或.11.解:如图,作DF⊥AC交AC的延长线于F.∵AD平分∠CAB,DF⊥AC,DE⊥AB,∴DE=DF,∵∠DAC=∠DAB,∴=,∴CD=DB,∵∠F=∠DEB=90°,∴Rt△DFC≌Rt△DEB(HL),∴CF=BE,∵∠F=∠AED=90°,AD=AD.DF=DE,∴Rt△ADF≌Rt△ADE(HL),∴AF=AE,∵AB﹣AC=AE+EB﹣(AF﹣CF)=2BE=4,∴BE=2,∵AB是直径,∴∠ADB=90°,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,∴AD2=AE•AB,设AE=x,则有:63=x(x+2),解得x=7或﹣9(舍弃),∴AE=7,∴AB=AE+BE=9,∵AB﹣AC=4,∴AC=5,故答案为2,5.12.解:如图,连接AC,AE,∵AB=BC=4,∠B=60°,∴△ABC是等边三角形,∵点E为BC的中点,∴BE=CE=2,AE⊥BC,∠EAC=30°,∴AC是以CE为弦的圆的直径,设圆心为O,当⊙O与CD边交于P1,则∠EP1C=30°,∵∠ECP1=105°,∴∠P1EC=45°,过C作CH⊥P1E于H,∴EH=CH=CE=,∴P1H=HC=,∴P1E=+;当⊙O与AD交于P2,A(P3),∵AD∥CE,∴∠ECP2=∠AP2C=90°,∴四边形AECP2是矩形,∴P2E=AC=4,P3E=P2C=2,当⊙O与AB交于P4,∵∠AP4C=90°,∠EP4C=30°,∴∠BP4E=60°,∴△BP4E是等边三角形,∴P4E=BE=2,综上所述,若∠CPE=30°,则EP的长为或4或2或2,故答案为:或4或2或2.13.解:∵tan∠ABO==,且A(1,0),∴OB=2,即:点B的坐标为(0,2).点C(m,0),A(1,0),B(0,2)在抛物线y=ax2+bx+e上,∴,解得:b=﹣,a=,∴x=﹣=.∵EB=﹣(1+m),FB=﹣m,EF=FB﹣EB=1,∴线段EF的长是定值1.∴BD=EF=1.如图所示,连接CD∵BC为直径∴∠CDB=90°∴∠CDA=∠AOB=90°,∠CAD=∠BAO∴△CAD∽△BAO∴=A(1,0),B(0,2),C(m,0),∴AB=,AC=1﹣m,AO=1∵BD=1∴AD=﹣1∴=∴1﹣m=5﹣∴m=故答案为:.14.解:∵∠ADC=90°,P是AC中点,∴AC=2DP=8,又∵BC=6,∴AB=10,则CD===,∴BD==,如图1,若⊙O与CD相切,则⊙O的半径r=BD=;如图2,若⊙O与CP相切,则BO=OE=r,AO=10﹣r,由OE⊥AC知OE∥BC,∴△AOE∽△ABC,∴=,即=,解得r=;如图3,若⊙O与DP所在直线相切,切点F,则OF⊥DP,即∠OFD=∠ACB=90°,OB=OF=r,∴OD=BD﹣BO=﹣r,∵∠ODF=∠ADP=∠A,∴△ODF∽△BAC,∴=,即=,解得r=;综上,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于或或,故答案为:或或.15.解:如图1,连接OD,∴DO=AB=6,∵OC⊥DF,∴∠OCD=90°,CD=CF=DF=2,在Rt△OCD中,根据勾股定理得,OC==4,∴sin∠ODC===,∵DE⊥AB,∴∠DEO=90°=∠OCD,∴点O,C,D,E是以OD为直径的圆上,∴∠AEC=∠ODC,∴sin∠AEC=sin∠ODC=,如图2,∵CE是以OD为直径的圆中的弦,CE要最大,即:CE是以OD为直径的圆的直径,∴CE=OD=6,∠COE=90°,∵∠OCD=∠OED=90°,∴四边形OCDE是矩形,∴DF∥AB,过点F作FG⊥AB于G,易知,四边形OCFG是矩形,∴OG=CF=2,FG=OC=4,∴AG=OA﹣OG=4连接AF,在Rt△AFG中,根据勾股定理得,AF==4,故答案为,4.16.解:过点P作AP⊥EF交EF于点A,连接PE,设OP=x,∵⊙P与x轴相切于原点O,∴OP⊥OE,∵平行于y轴的直线交⊙P于E,F两点,∴四边形APOB是矩形,∴AB=OP=x,∵点E的坐标是(﹣3,﹣1),∴AP=OB=3,AE=AB﹣BE=x﹣1,在Rt△ABE中,32+(x﹣1)2=x2,解得x=5,∴AE=4,∵AF=AE,∴EF=8,∴BF=EF+BE=9,∴点F的坐标是(﹣3,﹣9).故答案为(﹣3,﹣9).17.解:如图,连接CF,过点P作PG⊥AC于G,设P A=x.在Rt∠ACB中,∵ACB=90°,BC=3,cos B==,∴AB=5,AC===4,∵PG⊥AD,∴AG=DG=P A•cos∠BAC=x,∴AD=x,CD=4﹣x,∵∠ABC+∠A=90°,∠PEC+∠CDE=90°,∵∠A=∠PDA,∴∠ABC=∠PEC,∵∠ABC=∠EBP,∴∠PEC=∠EBP,∴PB=PE,∵点Q为线段BE的中点,∴PQ⊥BC,∴PQ∥AC∴当PE∥CF时,四边形PDCF是平行四边形,∴PF=CD,当点P在边AB的上时,x=4﹣x,x=,当点P在边AB的延长线上时,x=x﹣4,x=,综上所述,当PE∥CF时,AP的长为或.18.解:设⊙O与BC的交点为F,连接OB、OF,如图1所示.∵△MDN为直角三角形,∴MN为⊙O的直径,∵BM与⊙O相切,∴MN⊥BM,∵将MB绕M点逆时针旋转90°得MN,∴MB=MN,∴△BMN为等腰直角三角形,∵∠AMB+∠NMD=180°﹣∠AMN=90°,∠MBA+∠AMB=90°,∴∠NMD=∠MBA,且BM=NP,∠A=∠NMD=90°,∴△ABM≌△DMN(AAS),∴DM=AB=4,DN=AM,设DN=2a,则AM=2a,OF=4﹣a,BM==2,∵BM=MP=2OF,∴2=2×(4﹣a),解得:a=,∴DN=2a=3,OF=4﹣=,∴⊙O半径为,如图2,延长BA,使AH=AB=4,连接HQ,OH,过O作OG⊥AB于G,∵AB=AH,BP=PQ,∴AP=HQ,HQ∥AP,∴当HQ取最小值时,AP有最小值,∴当点Q在HO时,HQ的值最小,∵HG=4+4﹣=,GO=3+4﹣2=5,∴OH===,∴HQ的最小值=﹣=,∴AP的最小值为,故答案为:.19.解:取BC的中点G,连接BH,HG,DG.∵四边形ABCD是矩形,∴AB=CD=,BC=AB2=,∠DCG=90°,∵CG=BG=,∴DG===,∵BE是直径,∴∠BHE=∠BHC=90°,∵BG=GC,∴HG=BC=,∵DH≥DG﹣HG,∴DH≥﹣=,∴DH的最小值为.故答案为.20.解:对于抛物线y=x2﹣x﹣1,令x=0,得到y=﹣1,∴C(0,﹣1),令y=0,x2﹣x﹣1=0,解得x=5或﹣,∴A(﹣,0),B(5,0),∵PQ是切线,∴PQ⊥BQ,∴∠PQB=90°,∴PQ==,∴PB的值最小时,PQ的值最小,根据垂线段最短可知,当BP′⊥AC于P′时,BP′的值最小,∵OA=,OC=1,∴tan∠OAC==,∴∠OAC=30°,∴BP′=AB•sin30°=6×=3,∴PQ的最小值==,故答案为.21.解:设PB交⊙O于点N,连接P A,延长PB、AC交于点M,∵AB是直径,PH⊥CB∴∠ANP=90°=∠ACB=∠H,∴MC∥PH,由圆的对称性可得,P A=PB,∠BPO=∠APO=∠APB,∵∠BPH=2∠BPO,∴∠BPH=∠APB,∴△PHB≌△PNA(AAS),∴PN=PH=15,由MC∥PH得,∠HPB=∠M=∠APM,∴AM=AP=PB,∵AN⊥PM,∴PM=2PN=30,由△PHB∽△MCB,∴==,设MC=a,BC=b,MB=c,则HB=24﹣b,PB=30﹣c,∴==,∴==sin M=sin∠HPB,∴cos∠HPB=在Rt△PHB中,PH=15,∴PB===25,HB=sin∠HPB•PH=20,∴BC=24﹣20=4,MB=30﹣25=5,则MC==3,在Rt△ABC中,BC=4,AC=AM﹣MC=25﹣3=22,∴tan∠BAC===,故答案为:.22.解:过O作OM⊥AC,交⊙O于F,交弧G于H,连接OC,∵AB为⊙O的直径,AB=10,∴OA=OB=OG=OD=5,∵BE=3,∴OE=2,在Rt△OED中,由勾股定理得:CE===,在Rt△AEC中,AC===,∵OF⊥AC,∴AM=AC=,由勾股定理得:OM===,由折叠得:弧G所在圆与圆O是等圆,∴弧G所在圆的半径为5,∴MH=FM=5﹣,∵5﹣<,∴FM<OM,∴O在G所在圆外,故答案为:点在圆外.23.解:如图,连接AE,AF.∵BC=14,CE=9,∴BE=BC﹣EC=14﹣9=5,∵AC是直径,∴∠AEC=∠AEB=90°,∴AE===12,∴AC===15,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=13,∴∠DAC=∠ACB,∵∠AFE=∠ACB,∴∠AFE=∠DAC,∵∠AEF=∠ACD,∴△AFE∽△DAC,∴=,∴=,∴EF=,故答案为.24.解:延长EO交O'A'于P,则由∠AOB=90°,OA=OB=2,D为OB中点,可得S阴影OPO′=12﹣=1﹣;∵O′P=OE,∠EPO'=90°,∴cos∠EO'P=,∴∠EO'P=60°,EP=∴S阴影A′PE=S扇形O′A′E﹣S△O′PE=﹣××1=﹣∴S阴影═1﹣+﹣=1﹣+.故答案为1﹣+.25.解:连接AD,作NM⊥PB于M,∵六边形APCDEF是正六边形,∴EF∥AD,DP⊥AB,DP⊥ED,正六边形的每一个内角为120°,∴∠ADE=60°,∴∠ADP=30°∴PD=P A,∵DP⊥AB,NM⊥PB∴PD∥MN,∴PM就是△PDN的PD边的高,设P A=x.则PB=10﹣x,∵在等腰△BPN中,MN⊥PB,∴PM=PB=(10﹣x),∴S△PDN=PD•PM=×x×(10﹣x)=﹣(x﹣5)2+(0<x<10),∴△PDN的面积的最大值为:.故答案为:.26.解:作O关于CD的对称点F,连接CF、EF,如图1所示:则EF为扇形AOB的半径,由折叠的性质得:∠FCD=∠OCD=45°,FC=OC=+1,∴∠OCF=90°,∴△OCF是等腰直角三角形,∴∠COF=45°,OF=OC=+,∴∠EOF=∠AOB﹣∠COF=75°,∵折叠后的图形恰好与半径OB相切于点E,∴∠OEF=90°,∴∠OFE=15°,∵cos∠OFE==cos15°=,如图2所示:∴EF=OF×cos15°=()×=2+;故答案为:2+.27.解:如图1中,当点N在CM为直径的圆上时,设DM=AN=x.∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD=6,BC=AD=8,∴AC===10,∵∠MAN=∠DAC,∠ANM=∠ADC=90°,∴△ANM∽△ADC,∴=,∴=,解得x=,∴DM=如图2中,当点N在BM为直径的圆上时,设BC与圆的交点为H,连接MH,NH.设DM=AN=y.∵BM是直径,∴∠MHB=90°,∴∠MHC=∠D=∠DCH=90°,∴四边形CDMH是矩形,∴CH=DM=y,∵∠NCH=∠BCA,∠CHN=∠CAB,∴△CNH∽△CBA,∴=,∴=,解得y=,∴DM=,故答案为或。
2021中考数学压轴题满分训练–圆的专题1.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=4cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)2.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.3.如图,四边形ABCD内接于⊙O,BC为⊙O的直径,⊙O的切线AP与CB的延长线交于点P.(1)求证:∠PAB=∠ACB;(2)若AB=12,cos∠ADB=,求PB的长.4.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC =13,过点O作OD⊥AC于点D.(1)求证:∠B=∠COD;(2)求AB的长.5.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA 的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=,OD=3,求AE的长.6.如图,AD与⊙O相切于点D,点A在直径CB的延长线上.(1)求证:∠DCB=∠ADB;(2)若∠DCB=30°,AC=3,求AD的长.7.如图1,在⊙O中,弦AB⊥弦CD,垂足为点E,连接AD、BC、AO,AD=AB.(1)求证:∠CAO=2∠CDB;(2)如图2,过点O作OH⊥AD,垂足为点H,求证:2OH+CE=DE;(3)如图3,在(2)的条件下,延长DB、AC交于点F,过点D作DM⊥AC,垂足为M交AB于N,若BC=12,AF=3BF,求MN的长.8.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.9.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、CF、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以EF为腰的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.10.直线l与⊙O相离,OB⊥l于点B,且OB=5,OB与⊙O交于点P,A为圆上一点,AP的延长线交直线l于点C,且AB=BC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段AP的长.11.如图,已知直线l与⊙O无公共点,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)若BP=2,sin∠ACB=,求AB的长.12.如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,连接AD.过点D作DF⊥AC,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.14.如图,AB是⊙O的直径,点C和点D分别在AB和⊙O上,且AC=AD,DC的延长线交⊙O于点E,过E作AC的平行线交⊙O于点F,连接AF,DF.(1)求证:四边形ACEF是平行四边形;(2)当sin∠EDF=,BC=4时,求⊙O的半径.15.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC,分别交AC、AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.参考答案1.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°.∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD==2(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,=.∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°.在△CDE与△OBE中,.∴△CDE≌△OBE(AAS).∴S阴影=S扇OBC=π•42=(cm2),答:阴影部分的面积为cm2.2.(1)证明:连接OC,如图1,∵DC=DE,∴∠DCE=∠DEC,∵∠DEC=∠AEO,∴∠DCE=∠AEO,∵OA⊥OE,∴∠A+∠AEO=90°,∴∠DCE+∠A=90°,∵OA=OC,∴∠A=∠ACO,∴∠DCE+∠ACO=90°,∴OC⊥DC,∴CD是⊙O的切线;(2)如图2,过点D作DF⊥CE于点F,∵AC=2,BC=,∴AB===5,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AOE,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴,∴AE=,∴CE=AC﹣AE=2﹣=,∵CD=DE,∴CF=CE=,∠DEC=∠DCE,∵∠DEC=∠AEO,∠AEO=∠B,∴∠DCE=∠B,又∵∠DFC=∠ACB,∴△DFC∽△ACB,∴,∴,∴DC=.3.解:(1)证明:如图,连接OA,∵AP为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∴∠OAB+∠PAB=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠PAB=90°,∵BC为⊙O的直径,∴∠ACB+∠OBA=90°,∴∠PAB=∠ACB;(2)由(1)知∵∠PAB=∠ACB,且∠ADB=∠ACB,∴∠PAB=∠ACB=∠ADB,∴,∵AB=12,∴AC=16,∴,∴OB=10,过B作BF⊥AP于F,∵∠ADB=∠FAB,,∴,∴,∴在Rt△ABF中,,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴△PBF∽△POA,∴,∴,∴.答:PB的长为.4.解:(1)作直径AE,连接CE,∴∠ACE=90°,∴∠CAE+∠E=90°,∵OA=OC,∴∠CAE=∠OCD,∴∠OCD+∠E=90°,∵OD⊥AC,∴∠OCD+∠COD=90°,∴∠COD=∠E,∵∠B=∠E,∴∠B=∠COD;(2)∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==.5.(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:∵OC⊥GC,GC∥AE,∴OC⊥AE,∵CD⊥AB,∴∠CHF=∠FDA=90°,∵∠CFH=∠AFD,∴∠OCD=∠EAB.∴.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE,∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵,∴BE=6,∴AE=8.6.(1)证明:如图,连接OD,∵AD与⊙O相切于点D,∴OD⊥AD,∴∠ODB+∠ADB=90°,∵CB是直径,∴∠CDB=90°,∴∠ODB+∠ODC=90°,∴∠ODC=∠ADB,∵OD=OC,∴∠ODC=∠OCD,∴∠C=∠ADB;(2)解:∵∠DCB=∠ADB,∠DAC=∠CAD,∴△ADB∽△ACD,∴=,∵CB是直径,∴∠CDB=90°,∠DCB=30°,∴tan∠DCB==,∴=,∵AC=3,∴AD=3.7.解:(1)如图,连接AO、DO,∵AB=AD,∴,∴∠AOB=∠AOD,∴AO=OB,AO=OD,∴△AOB≌△AOD,∴∠BAO=∠DAO,延长AO交BD于点H,∵AB=AD,∴AH⊥BD,∴∠AHB=∠AHD=90°,∵,∴∠ACD=∠ABD,∴∠CAB=∠BAO=∠OAD,∴∠CAO=2∠CDB.(2)过点O作OT⊥CD,则CT=DT,∵CD⊥AB,CD⊥OT,OQ⊥AB,∴∠OQB=∠OTE=∠AED=90°,∴四边形OTEQ为矩形,∴OQ=ET,∵TD=CT=ET+CE,∵AB=AD,∴OQ=OH,∴2OH+CE=DE.(3)如图,∵∠ACB+∠ADB=180°,∠FCB+∠ACB=180°,∴∠ADB=∠FCB,∵∠F=∠F,∴△FCB∽△FDA,∴,∵CB=12,∴AB=AD=36,∵∠BCD=∠BAD,∠AEB=∠AED,∴△CEB∽△AED,∴,设BE=x,则AE=36﹣x,ED=3x,∵AB⊥CD,∴∠AED=90°,则在Rt△AED中,AE2+ED2=AD2,(36﹣x)2+(3x)2=362,解得:,∴BD=∵CD⊥AB,∴∠BED=90°,∠NMA=90°,∠ANM=∠END,∴∠NED=∠MAN,∴∠BDE=∠EDN,∵ED=ED,∴△BED≌△NED,∴,∵∠CDB=∠CAB,∠NMA=∠BED,∴△AMN∽△DEB,∴,∴,∴MN=.8.(1)证明:连接BD,DO,∵BC是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°,又∵E为AB的中点,∴DE=EB=EA,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)解:在Rt△ABC中,AB=8,BC=6,∴AC===10,∵,∴.9.解:(1)∵∠CFE=90°,∠CFE=∠CDE,∴∠CDE=45°,∵∠ACB=90°,∴∠DAC=45°,∴∠DAC=∠ADC,∴AC=CD=6;(2)证明:∵∠ACB=90°,∴∠BAC+∠B=90°,∵CF∥AB,∴∠B=∠FCB,又∵∠FCB=∠DEF,∴∠BAC+∠DEF=90°,∵CD为⊙O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)①如图1,当EF=CE时,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3;②如图2,当EF=CF时,则∠CEF=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CEF=∠CDF=∠BDG,∴∠ADG=∠BDG,∵FC∥AB,∠DFC=90°,∴∠FGA=90°,∴∠FGA=∠ACD,∵GD=GD,∴△BGD≌△AGD(ASA),∴BD=AD,在Rt△ACD中,设CD=x,∵CD2+AC2=AD2,∴x2+62=(8﹣x)2,∴x=,即CD=;综合以上可得CD的长为3或.10.证明:(1)连接OA,∵OA=OP,∴∠OPA=∠OAP=∠BPC,∵AB=BC,∴∠BAC=∠ACB,∵OB⊥l,∴∠ACB+∠BPC=90°,∴∠BAC+∠OAP=90°,即OA⊥AB,∴AB与⊙O相切;(2)解:如图,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△CPB,∴,即,解得,AP=.11.(1)证明:连接OB,如图1,∵AB=AC,∴∠ABC=∠ACB,∵OA⊥l,∴∠ACB+∠APC=90°,∵OB=OP,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠OBP+∠ACB=90°,∴∠OBP+∠ABC=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作直径BD,连接PD,则∠BPD=90°,如图2,∵AB是⊙O的切线,∴∠ABC=∠D,∵∠ABC=∠ACB,∴∠D=∠ABC=∠ACB,∵sin∠ACB=,∴sin∠D==,∵BP=2,∴BD=10,∴OB=OP=5,∵sin∠ACB=,∴=,∴=,设PA=x,则AB=AC=2x,在Rt△AOB中,AB=2x,OB=5,OA=5+x,∴(2x)2+52=(5+x)2,解得x=,∴AB=2x=.12.(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又AB=AC=13,BC=10,D是BC的中点,∴BD=5.连接OD;由中位线定理,知DO∥AC,又DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线;(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8∴S阴影=S扇形AOE﹣S△AOE=4π﹣8.13.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.14.(1)证明:∵AC=AD,∴∠ADC=∠ACD,∵AC∥EF,∴∠ACD=∠E,∴∠ADC=∠E,∴=,∴=,∴AD=EF,∵AD=AC,∴AC=EF,∵AC∥EF,∴四边形ACEF是平行四边形;(2)解:连接BD,∵四边形ACEF是平行四边形,∴AF∥CE,∴∠EDF=∠AFD,∵所对圆周角∠B和∠AFD,∴∠AFD=∠B,∴∠B=∠EDF,∵AB是⊙O的直径,∴∠ADB=90°,∵sin∠EDF=,∴sin B=sin∠EDF==,∴设AD=2x,AB=3x,∵AC=AD,BC=4,∴3x﹣2x=4,解得:x=4,即AB=3x=3×4=12,∵AB为⊙O的直径,∴⊙O的半径是6.15.(1)证明:连接OD交BC于H,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠HCE=90°,又∵DE⊥AC,∴∠E=90°,由(1)得:OD⊥EF,∴∠HDE=90°,∴四边形CEDH是矩形,∴HD=CE=2,∴∠CHD=90°,∴∠OHB=90°,∴OD⊥BC,∴OH平分BC,∴OH是△ABC的中位线,∴OH=AC=3,∴OB=OD=OH+HD=5,∴AB=2OB=10,∴CB===8.。
2021年中考九年级数学一轮专题复习:圆压轴题综合练习(三)1、如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C. 过点B作BD⊥PC交PC的延长线于点D,连接BC. 求证:(1)∠PBC =∠CBD; (2)BC2=AB·BD2、如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.3、如图,⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若点C到弦AB的距离为2,求弦AB的长.4、如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD ⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.5、如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB 的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若CD的长.6、如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.7、如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.8、已知:如图,在△ABC 中,AC =BC ,以 BC 为直径的⊙O 交AB 于点D ,过点D作DE ⊥AC 于点E ,交BC 的延长线于点F 。
(1)求证:AD =BD ;(2)求证:DF 是⊙O 的切线;(3)若⊙O 的半径为3,sin ∠F =53,求DE 的长。
中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。
2021年九年级数学中考压轴题之《二次函数与直角三角形综合》专题训练(附答案)1.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A、B,与y轴负半轴交于点C,且OC =OB,其中B点坐标为(3,0),对称轴l为直线x=.(1)求抛物线的解析式;(2)在x轴上方有一点P,连接P A后满足∠P AB=∠CAB,记△PBC的面积为S,求当S=10.5时点P的坐标;(3)在(2)的条件下,当点P恰好落在抛物线上时,将直线BC上下平移,平移后的直线y=x+t与抛物线交于C′、B′两点(C′在B′的左侧),若以点C′、B′、P为顶点的三角形是直角三角形,求出t的值.2.《函数的图象与性质》拓展学习展示:【问题】如图①,在平面直角坐标系中,抛物线G1:y=ax2+bx+与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,则a=,b=.【操作】将图①中抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,G2在y轴左侧的部分与G1在y轴右侧的部分组成的新图象记为G,如图②.请直接写出图象G 对应的函数解析式.【探究】在图②中,过点C作直线l平行于x轴,与图象G交于D,E两点,如图③.求图象G在直线l上方的部分对应的函数y随x的增大而增大时x的取值范围.【应用】P是抛物线G2对称轴上一个动点,当△PDE是直角三角形时,直接写出P点的坐标.3.如图,直线y=x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴正半轴交于点C,连接BC,P为线段AC上的动点,P与A,C不重合,作PQ∥BC交AB于Q,A关于PQ的对称点为D,连接PD,QD,BD.(1)求抛物线的解析式;(2)当点D在抛物线上时,求点P的坐标;(3)设点P的横坐标为x,△PDQ与△ABC重叠部分的面积为S.①直接写出S与x的函数关系式;②当△BDQ为直角三角形时,直接写出x的值.4.如图,抛物线y=a(x2﹣2mx﹣3m2)(a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标.(2)若点E是第一象限抛物线上的点,过点E作EM⊥x轴于点M,当OM=2CD时,求证:∠EAB=∠ADC.(3)在(2)的条件下,试探究:在x轴上是否存在点P,使得以PF,AD,AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.6.如图,直线y=﹣2x+10分别与x轴,y轴交于A,B两点,点C为OB的中点,抛物线y=x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB下方的抛物线上的一点,且△ABD的面积为,求点D的坐标;(3)点P为抛物线上一点,若△APB是以AB为直角边的直角三角形,求点P到抛物线的对称轴的距离.7.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C.且直线y=x﹣6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.(1)求抛物线的函数解析式;(2)当△MDB的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:;(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.9.已知二次函数y=ax2+(3a+1)x+3(a<0).(1)该函数的图象与y轴交点坐标为;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数.①求a的值及二次函数的表达式;②画出二次函数的大致图象(不列表,只用其与x轴的两个交点A、B,且A在B的左侧,与y轴的交点C及其顶点D,并标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P,使△PCA为直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由.10.如图,二次函数y=ax2+bx+4的图象与坐标轴分别交于A、B、C三点,其中A(﹣3,0),点B在x轴正半轴上,连接AC、BC.点D从点A出发,沿AC向点C移动;同时点E从点O出发,沿x轴向点B移动,它们移动的速度都是每秒1个单位长度,当其中一点到达终点时,另一点随之停止移动,连接DE,设移动时间为t秒.(1)若t=3时,△ADE与△ABC相似,求这个二次函数的表达式;(2)若△ADE可以为直角三角形,求a的取值范围.11.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线y=﹣x+2经过B,C两点.(1)直接写出二次函数的解析式;(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;(3)过(2)中的点Q作QE∥y轴,交x轴于点E.若点M是抛物线上一个动点,点N 是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E(3,0),点P为抛物线上动点,设点P的横坐标为t.(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;(2)若点P在第四象限,连接P A、PE及AE,当t为何值时,△P AE的面积最大?最大面积是多少?(3)是否存在点P,使△P AE为以AE为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),点A的坐标是(3,0),抛物线的对称轴是直线x=1.(1)求抛物线的函数表达式;(2)若点P为第四象限内抛物线上一点,且△PBC是直角三角形,求点P的坐标;(3)在(2)的条件下,在直线BC上是否存在点Q,使∠PQB=∠CPB,若存在,求出点Q坐标:若不存在,请说明理由.14.在平面直角坐标系中,抛物线L1:y=ax2﹣2x的对称轴为直线x=﹣2,顶点为A.将抛物线L1沿y轴对称,得到抛物线L2,顶点为B.(1)求a的值.(2)求抛物线L2的表达式.(3)请问在抛物线L1或L2上是否存在点P,使以点P、A、B为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.15.如图1.在平面直角坐标系xOy中,抛物线y=x2+k的顶点A在直线l:y=x﹣3上,将抛物线沿直线l向右上方平移,使其顶点P始终保持在直线l上,设平移后的抛物线与原抛物线交于B点.(1)请直接写出k的值;(2)若抛物线y=x2+k与直线l:y=x﹣3的另一个交点为C.当点B与点C重合时.求平移后抛物线的解析式;(3)连接AB,BP,当△ABP为直角三角形时,求出P点的坐标.16.如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标及S△ABF;(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.17.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧抛物线上找一点P,使得P、D、C构成以PC为底边的等腰三角形,求出点P的坐标及此时四边形PBCD的面积.18.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.19.如图,抛物线C的顶点坐标为(2,8),与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点D(0,6).(1)求抛物线C的函数表达式以及点B的坐标;(2)平移抛物线C,使平移后的抛物线C′的顶点P落在线段BD上,过P作x轴的垂线,交抛物线C于点Q,再过点Q作QE∥x轴交抛物线C于另一点E,连接PE,若△PQE是等腰直角三角形,请求出所有满足条件的抛物线C′的函数表达式.20.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点的三角形,是以AC为直角边的直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.参考答案1.解:(1)∵B(3,0),对称轴为直线x=,∴A(﹣2,0),∴抛物线的解析式为y=a(x+2)(x﹣3)=ax2﹣ax﹣6a,令x=0,则y=﹣6a,∵B(3,0),∴OB=3,∵OC=OB,∴OC=3,∴C(0,﹣3),∴﹣6a=﹣3,∴a=,∴抛物线的解析式为y=x2﹣x﹣3;(2)如图1,∵∠P AB=∠CAB,∴所以,作射线AP与y轴的交点记作点C',∵∠BAC=∠BAC',OA=OA,∠AOC=∠AOC'=90°,∴△AOC≌△AOC'(ASA),∴OC'=OC=3,∴C'(0,3),∵A(﹣2,0),∴直线AP的解析式为y=x+3,∵点P(m,n)在直线AP上,∴n=m+3,∵B(3,0),C(0,﹣3),∴直线BC的解析式为y=x﹣3,过点P作y轴的平行线交BC于F,∴F(m,m﹣3),∴PF=m+3﹣(m﹣3)=m+6,∴S=S△PBC=OB•PF=×3(m+6)=m+9(m>﹣2);∴当S=10.5时,10.5=m+9,∴m=2,∴点P(2,6)(3)由(1)知,抛物线的解析式为y=x2﹣x﹣3①由(2)知,直线AP的解析式为y=x+3②,联立①②解得,或,∴P(6,12),如图2,当∠C'PB'=90°时,取B'C'的中点E,连接PE,则B'C'=2PE,即:B'C'2=4PE2,设B'(x1,y1),C'(x2,y2),∵直线B'C'的解析式为y=x+t③,联立①③化简得,x2﹣3x﹣(2t+6)=0,∴x1+x2=3,x1x2=﹣(2t+6),∴点E(,+t),B'C'2=(x1﹣x2)2+(y1﹣y2)2=2(x1﹣x2)2=2[(x1+x2)2﹣4x1x2]=2[9+4(2t+6)]=16t+66,而PE2=(6﹣)2+(12﹣﹣t)2=t2﹣21t+,∴16t+66=4(t2﹣21t+),∴t=6(此时,恰好过点P,舍去)或t=19,当∠PC'B'=90°时,延长C'P交BC于H,交x轴于G,则∠BHC=90°,∵OB=CO,∠BOC=90°,∴∠OBC=45°,∴∠PGO=45°,过点P作PQ⊥x轴于Q,则GQ=PQ=12,∴OG=OQ+GQ=18,∴点G(18,0),∴直线C''G的解析式为y=﹣x+18④,联立①④解得或,∴C''的坐标为(﹣7,25),将点C''坐标代入y=x+t中,得25=﹣7+t,∴t=32,即:满足条件的t的值为19或32.2.解:【问题】y=ax2+bx+=a(x+1)(x﹣3),解得:a=,b=1,故答案为:﹣,1;【操作】抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平移个单位,G1:y=ax2+bx+=﹣x2+x+=﹣(x﹣1)2+2,G2:y=﹣(x﹣1+3)2+2+=﹣x2﹣2x+,当x<0时,y=﹣x2﹣2x+,当x≥0时,y=﹣x2﹣x+;【探究】C点的坐标为(0,).当y=时,,解得:x1=0,x2=2,∴E(2,),当时,,解得:x1=0,x2=﹣4,∴D(﹣4,),∵,,∴抛物线G1的顶点为(1,2),抛物线G2的顶点为(﹣2,),∴﹣4<x<﹣2或0<x<1时,函数y随x的增大而增大;【应用】如图,过点P作x轴的平行线交过点D与x轴的垂线于点M,交过E点与x轴的垂直的直线于点N,设点P(﹣2,m),则EN=﹣m,PN=4,DM=﹣m,PM=2,∵∠EPN+∠MPD=90°,∠MDP+∠DPM=90°,∴∠EPN=∠MDP,∴tan∠EPN=tan∠MDP,即,即,解得:m=±2,故点P的坐标为:.3.解:(1)直线y=x+4①,令x=0,则y=4,令y=0,则x=﹣3∴A(﹣3,0)B(0,4),∵抛物线经过A,B两点,∴,解得,∴;(2)设P点坐标为(x,0),令=0,解得x1=﹣3,x2=4,∴OB=OC=4,∴∠BCO=45°,又PQ∥BC,∴∠QP A=∠BCO=45°,∴∠APD=90°,∴D(x,x+3),∴,解得x1=﹣3,x2=1,∵P与A,C不重合,∴P(1,0);(3)∵PQ∥BC,∴直线PQ的表达式中的k值为﹣1,则直线PQ的表达式为:y=﹣x+b,将点P的坐标[改设为:点P(m,0)]代入上式并解得:直线PQ的表达式为:y=﹣x+m②,联立①②并解得:x=,故点Q(,);①由点B、C的坐标得,直线BC的表达式为:y=﹣x+4,由(2)知,点D(x,x+3),∵当点D在直线BC上时,即x+3=﹣x+4,解得:x=;当﹣3<x≤时,S=S△PQD=×PD×(xP﹣xQ)=×(x+3)(x﹣)=;当<x<4时,同理可得:S=;②点B的坐标(0,4),点D(x,x+3),点Q(,);(Ⅰ)当∠BDQ为直角时,如图1,过点D作y轴的平行线交过点Q与x轴的平行线于点M,交过点B与x轴的平行线于点N,∵∠NDB+∠NBD=90°,∠NDB+∠MDQ=90°,∴∠MDQ=∠NBD,∴tan∠MDQ=tan∠NBD,即,而MQ=x﹣=,MD=x+3﹣=,BN=x,ND=4﹣(x﹣3)=1﹣x,,解得:x=或﹣3(舍去﹣3),故x=;(Ⅱ)当∠BQD为直角时,如图2,同理可得:tan∠QDN=tan∠MQB,即,则,解得:x=0或﹣3(舍去);(3)当∠QBD为直角时,同理可得:x=;综上,当△BDQ为直角三角形时,x的值是或.4.解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∵CD∥AB,∴C,D关于直线x=1对称,∴D点坐标为:(2,﹣3);(2)如图,过点A作AN⊥CD交CD的延长线于N,对于y=a(x2﹣2mx﹣3m2),当y=0,则0=a(x2﹣2mx﹣3m2),解得:x1=﹣m,x2=3m,当x=0,y=﹣3am2,可得:A(﹣m,0),B(3m,0),C(0,﹣3am2),∵点C,点D关于对称轴直线x=m对称,∴点D(2m,﹣3am2)∴CD=2m,∵OM=2CD=4m,∴点E横坐标为4m,∴点E坐标(4m,5am2),∵A(﹣m,0),B(3m,0),C(0,﹣3am2),点E坐标(4m,5am2),点D(2m,﹣3am2),∴AM=5m,EM=5am2,DN=3m,AN=3am2,∵tan∠EAB==am,tan∠ADC==am,∴tan∠EAB=tan∠ADC∴∠EAB=∠ADC;(3)存在,理由:当x=m时,y=a(m2﹣2m2﹣3m2)=﹣4am2,∴F(m,﹣4am2),∵A(﹣m,0),点E的坐标为(4m,5am2),点D的坐标为(2m,﹣3am2),设P(b,0),∴PF2=(m﹣b)2+16(am2)2,AD2=9m2+9(am2)2,AE2=25m2+25(am2)2,∴(m﹣b)2+9m2=25m2,解得:b1=﹣3m,b2=5m∴P(﹣3m,0)或(5m,0).5.解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,∴,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴,∵B(4,0),∴OB=4,∵BD=5DE,∴==,∴BF=×OB=×4=,∴OF=BF﹣OB=﹣4=,将x=﹣代入直线AC:y=2x+4中,得y=2×(﹣)+4=,∴E(﹣,),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,﹣x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=﹣x2+x+4﹣1=﹣x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=﹣x2+x+3,QH=PG=x﹣1,∴R(﹣x2+x+4,2﹣x)由①知,直线BD的解析式为y=﹣x+2,∴﹣(﹣x2+x+4)+2=2﹣x,∴x=2或x=﹣4(舍),当x=2时,y=﹣x2+x+4=﹣×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,﹣x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=﹣x2+x+4﹣1=﹣x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=﹣x2+x+3,QH'=P'G'=x﹣1,∴R'(x2﹣x﹣2,x),由①知,直线BD的解析式为y=﹣x+2,∴﹣(x2﹣x﹣2)+2=x,∴x=﹣1+或x=﹣1﹣(舍),当x=﹣1+时,y=﹣x2+x+4=2﹣4,∴P'(﹣1+,2﹣4),即满足条件的点P的坐标为(2,4)或(﹣1+,2﹣4).6.解:(1)直线y=﹣2x+10中,令x=0,则y=10,令y=0,则x=5,∴A(5,0),B(0,10),∵点C是OB中点,∴C(0,5),将A和C代入抛物线y=x2+bx+c中,,解得:,∴抛物线表达式为:y=x2﹣6x+5;(2)联立:,解得:或,∴直线AB与抛物线交于点(﹣1,12)和(5,0),∵点D是直线AB下方抛物线上的一点,设D(m,m2﹣6m+5),∴﹣1<m<5,过点D作DE⊥x轴,交直线AB于点E,∴E(m,﹣2m+10),∴DE=﹣2m+10﹣m2+6m﹣5=﹣m2+4m+5,∴S△ABD===,解得:m=2,∴点D的坐标为(2,﹣3);(3)抛物线表达式为:y=x2﹣6x+5,∵△APB是以AB为直角边的直角三角形,设点P(n,n2﹣6n+5),∵A(5,0),B(0,10),∴AP2=(n﹣5)2+(n2﹣6n+5)2,BP2=n2+(n2﹣6n+5﹣10)2,AB2=125,当点A为直角顶点时,BP2=AB2+AP2,解得:n=或5(舍),当点B为直角顶点时,AP2=AB2+BP2,解得:n=或,而抛物线对称轴为直线x=3,则3﹣=,﹣3=,3﹣=,综上:点P到抛物线对称轴的距离为:或或.7.解:(1)令y=0,得y=x﹣6=0,解得x=6,∴B(6,0),令x=0,得y=x﹣6=﹣6,∴D(0,﹣6),∵点C与点D关于x轴对称,∴C(0,6),把B、C点坐标代入y=﹣x2+bx+c中,得,解得,,∴抛物线的解析式为:y=﹣x2+5x+6;(2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),则MN=﹣m2+4m+12,∴△MDB的面积==﹣3m2+12m+36=﹣3(m﹣2)2+48,∵﹣3<0,∴当m=2时,△MDB的面积最大,此时,P点的坐标为(2,0);(3)由(2)知,M(2,12),N(2,﹣4),当∠QMN=90°时,QM∥x轴,则Q(0,12);当∠MNQ=90°时,NQ∥x轴,则Q(0,﹣4);当∠MQN=90°时,设Q(0,n),则QM2+QN2=MN2,即4+(12﹣n)2+4+(n+4)2=(12+4)2,解得,n=4±2,∴Q(0,4+2)或(0,4﹣2).综上,存在以Q,M,N三点为顶点的三角形是直角三角形.其Q点坐标为(0,12)或(0,﹣4)或(0,4+2)或(0,4﹣2).8.解:(1)对于抛物线y=﹣ax2+2ax+3a,对称轴x=﹣=1,∴E(1,0),故答案为(1,0).(2)如图,连接EC.对于抛物线y=﹣ax2+2ax+3a,令x=0,得到y=3a,令y=0,﹣ax2+2ax+3a=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),C(0,3a),∵C,D关于对称轴对称,∴D(2,3a),CD=2,EC=DE,当∠HEF=90°时,∵ED=EC,∴∠ECD=∠EDC,∵∠DCF=90°,∴∠CFD+∠EDC=90°,∠ECF+∠ECD=90°,∴∠ECF=∠EFC,∴EC=EF=DE,∵EA∥DH,∴F A=AH,∴AE=DH,∵AE=2,∴DH=4,∵HE⊥DFEF=ED,∴FH=DH=4,在Rt△CFH中,则有42=22+(6a)2,解得a=或﹣(不符合题意舍弃),∴a=.当∠HFE=90°时,∵OA=OE,FO⊥AE,∴F A=FE,∴OF=OA=OE=1,∴3a=1,∴a=,综上所述,满足条件的a的值为或.(3)结论:EH∥GK.理由:由题意A(﹣1,0),F(0,﹣3a),D(2,3a),H(﹣2,3a),E(1,0),∴直线AF的解析式y=﹣3ax﹣3a,直线DF的解析式为y=3ax﹣3a,由,解得或,∴K(6,﹣21a),由,解得或,∴G(﹣3,﹣12a),∴直线HE的解析式为y=﹣ax+a,直线GK的解析式为y=﹣ax﹣15a,∵k相同,a≠﹣15a,∴HE∥GK.9.解:(1)令x=0时,y=3,∴函数的图象与y轴交点坐标为(0,3),故答案为:(0,3);(2)①令y=0,则ax2+(3a+1)x+3=0,∴(ax+1)(x+3)=0,∴x1=﹣,x2=﹣3,∵二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数.∴a=﹣1,∴二次函数的表达式为y=﹣x2﹣2x+3;②图象如图所示:(3)设点P(m,﹣m2﹣2m+3),当点P为直角顶点时,如图,过点P作PF⊥y轴于F,过点A作AE⊥PF,交FP的延长线于E,∵∠APC=90°,∴∠APE+∠CPF=90°,∵∠APE+∠EAP=90°,∴∠CPF=∠EAP,又∵∠AEP=∠CFP=90°,∴△APE∽△PCF,∴,∴=∴∴﹣(m﹣1)(m+2)=1,∴m1=,m2=,经检验,m1=,m2=是原方程的根;∴点P坐标为(,)或(,);若点A为直角顶点时,如图,过点P作PH⊥x轴于P,∵点A(﹣3,0),点C(0,3),∴OA=OC,又∵∠AOC=90°,∴∠CAO=∠ACO=45°,∵∠CAP=90°,∴∠P AH=45°,∵PH⊥x轴,∴∠P AH=∠APH=45°,∴AH=PH,∴m+3=m2+2m﹣3∴m1=﹣3(舍去),m2=2,∴点P坐标为(2,﹣5);若点C为直角顶点,过点P作PE⊥y轴于E,∵∠ACP=90°,∠ACO=45°,∴∠PCE=45°,∵PE⊥y轴,∴∠PCE=∠CPE=45°,∴PE=CE,∴﹣m=﹣m2﹣2m+3﹣3,∴m1=0(舍去),m2=﹣1,∴点P坐标为(﹣1,4);综上所述:点P坐标为(,)或(,)或(2,﹣5)或(﹣1,4).10.解:(1)∵二次函数y=ax2+bx+4的图象与y轴交于点C,∴C(0,4),∴OC=4,∵A(﹣3,0),∴OA=3,∴AC===5,∵t=3,∴AD=OE=3,AE=6,当△ADE∽△ACB时,∴,即,∴AB=10,∴B(7,0),∵二次函数y=ax2+bx+4的图象过点A(﹣3,0),点B(7,0),∴解得:∴抛物线解析式为:,当△ADE∽△ABC时,,即,∴(舍去),综上,二次函数的表达式为:;(2)若△ADE可以为直角三角形,显然∠ADE=90°,∴△ADE∽△AOC,∴,∴,解得:.设B(x,0),则,设抛物线对称轴为直线,∵A(﹣3,0),∴①.把x=﹣3,y=0代入y=ax2+bx+4,得②,把②代入①,∵a<0,解得:.11.解:(1)∵直线y=﹣x+2经过B,C两点.∴点C(0,2),∵二次函数y=ax2+bx+c(a≠0)的图象经过A(1,0),B(4,0),点C(0,2),∴,解得:,∴抛物线解析式为y=x2﹣x+2,故答案为:y=x2﹣x+2;(2)∵直线BC解析式为:y=﹣x+2,∴设平移后的解析式为:y=﹣x+2+m,∵平移后直线BC与抛物线有唯一公共点Q∴x2﹣x+2=﹣x+2+m,∴△=4﹣4××(﹣m)=0,∴m=﹣2,∴设平移后的解析式为:y=﹣x,联立方程组得:,∴,∴点Q(2,﹣1);(3)设点M的坐标为(m,m2﹣m+2),∵以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似,∴当△MEN∽△OBC时,∴∠MEN=∠OBC,过点M作MH⊥x轴于H,∴∠EHM=90°=∠BOC,∴△EHM∽△BOC,∴,∴MH=|m2﹣m+2|,EH=|m﹣2|,∵OB=4,OC=2.∴=2或,∴m=3±或m=2±或m=﹣4或m=﹣1或m=1或m=12,当m=3+时,m2﹣m+2=,∴M(3+,),当m=3﹣时,m2﹣m+2=,∴M(3﹣,),当m=2+时,m2﹣m+2=﹣,∴M(2+,﹣),当m=2﹣时,m2﹣m+2=,∴M(2﹣,),当m=﹣4时,m2﹣m+2=20,∴M(﹣4,20),当m=﹣1时,m2﹣m+2=5,∴M(﹣1,5),当m=1时,m2﹣m+2=0,∴M(1,0),当m=12时,m2﹣m+2=44,∴M(12,44),即满足条件的点M共有8个,其点的坐标为(3+,)或(3﹣,)或(2+,﹣)或(2﹣,)或(﹣4,20)或(﹣1,5)或(1,0)或(12,44).12.解:(1)∵抛物线y=ax2+bx+c经过点B(﹣1,0)、E(3,0),∴抛物线的对称轴为x=1,∵点C与点A关于抛物线的对称轴对称,点A(0,﹣3),∴C(2,﹣3),抛物线表达式为y=a(x﹣3)(x+1)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,∴抛物线的表达式为y=x2﹣2x﹣3;(2)如图,过点P作y轴的平行线交AE于点H,由点A,E的坐标得直线AE的表达式为y=x﹣3,设点P(t,t2﹣2t﹣3),则点H(t,t﹣3),∴△P AE的面积S=PH×OE=(t﹣3﹣t2+2t+3)=(﹣t2+3t)=﹣,∴当t=时,S有最大值;(3)∵直线AE表达式中的k值为1,∴∠AEO=45°,①当∠PEA=90°时,∵PE⊥AE,∴直线PE与x轴的夹角为45°,∴设直线PE的表达式为y=﹣x+b,将点E的坐标代入并解得b=3,∴直线PE的表达式为y=﹣x+3,联立得,解得x=﹣2或3(不合题意,舍去)故点P的坐标为(﹣2,5),②当∠P AE=90°时,同理可得,点P(1,﹣4),综上,点P的坐标为(﹣2,5)或(1,﹣4).13.解:(1)由题意,,解得,∴抛物线的解析式为:y=﹣x2+2x+3.(2)如图1中,连接BC,由题意,点P在第四象限,所以∠CBP=90°,过点B作BP⊥BC交抛物线于P,连接PC.对于抛物线y=﹣x2+2x+3,令y=0,可得x2﹣2x﹣3=0,解得x=﹣1或3,∴B(﹣1,0),∵C(0,3),∴直线BC的解析式为y=3x+3,∵PB⊥BC,∴直线PB的解析式为y=﹣x﹣,由,解得或,∴P(,).(3)如图2中,当∠CPB=∠PQB时,∵∠CPB+∠PCB=90°,∴∠PQB+∠PCB=90°,∴∠CPQ=90°,∴PQ⊥PC,∵C(0,3),P(,﹣),∴直线PC的解析式为y=﹣x+3,∴直线PQ的解析式为y=x﹣,由,解得,∴Q(﹣,﹣),根据对称性可知,点Q关于点B的对称点Q′也满足条件,可得Q′(,),综上所述,满足条件的点Q的坐标为(,)或(,).14.解:(1)∵抛物线L1:y=ax2﹣2x的对称轴为直线x=﹣2,∴﹣=﹣2,∴a=﹣.(2)∵抛物线L1:y=﹣x2﹣2x=﹣(x+2)2+2,∴抛物线L1的顶点A(﹣2,2),∵将抛物线L1沿y轴对称,得到抛物线L2,顶点为B,∴B(2,2),∴抛物线L2的解析式为y=﹣(x﹣2)2+2,即y=﹣x2+2x.(3)如图,观察图象可知,以A或B为直角顶点时,可得P(﹣2,﹣6)或(2,﹣6)当AB为斜边时,∵A(﹣2,2),B(2,2),∴OA=OB=2,AB=4,∴AB2=OA2+OB2,∴∠AOB=90°,∴当点P与O重合时,△APB是直角三角形,综上所述,满足条件的点P的坐标为(﹣2,﹣6)或(2,﹣6)或(0,0).15.解:(1)直线l:y=x﹣3,当x=0时,y=﹣3,∴顶点(0,﹣3),∴抛物线的解析式为:y=x2﹣3,即k=﹣3;(2)由题意得:x2﹣3=x﹣3,解得:x1=0,x2=1,∴C(1,﹣2),当点B与点C重合时,如图1,顶点P(1,﹣2),∴平移后抛物线的解析式为:y=(x﹣1)2﹣2=x2﹣2x﹣1;(3)∵抛物线顶点P始终保持在直线l上,∴设P(m,m﹣3),则平移后的抛物线的解析式为:y=(x﹣m)2+m﹣3,∴,解得:,∴B(,),∵抛物线x2﹣3沿直线l向右上方平移,∴当△ABP为直角三角形时,∠P AB不可能为直角,所以分两种情况:①当∠APB=90°时,如图2,AP2+BP2=AB2,∴+=,∴m(m﹣1)(m﹣3)=0,∴m1=0(舍),m2=1(舍),m3=3,∴P(3,0);②当∠ABP=90°时,如图3,过B作EF⊥y轴于F,过P作PE⊥EF于E,∴∠ABF+∠EBP=∠EBP+∠EPB=90°,∴∠ABF=∠EPB,∴tan∠ABF=tan∠EPB,即,∴=,解得:m1=﹣(舍),m2=,∴P(,﹣3),综上,P点的坐标是(3,0)或(,﹣3).16.解:(1)∵点A(﹣1,0),C(4,0),∴AC=5,OC=4,∵AC=BC=5,∴B(4,5),把A(﹣1,0)和B(4,5)代入二次函数y=x2+bx+c中得:,解得:,∴二次函数的解析式为:y=x2﹣2x﹣3;(2)如图1,∵直线AB经过点A(﹣1,0),B(4,5),设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3),∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),∴S△ABF===.(3)存在,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴设P(1,m),分三种情况:①以点B为直角顶点时,由勾股定理得:PB2+AB2=P A2,∴(4﹣1)2+(m﹣5)2+(4+1)2+52=(1+1)2+m2,解得:m=8,∴P(1,8);②以点A为直角顶点时,由勾股定理得:P A2+AB2=PB2,∴(1+1)2+m2+(4+1)2+52=(4﹣1)2+(m﹣5)2,解得:m=﹣2,∴P(1,﹣2);③以点P为直角顶点时,由勾股定理得:PB2+P A2=BA2,∴(1+1)2+m2+(4﹣1)2+(m﹣5)2=(4+1)2+52,解得:m=6或﹣1,∴P(1,6)或(1,﹣1);综上,点P的坐标为(1,8)或(1,﹣2)或(1,6)或(1,﹣1).17.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴,∴,∴抛物线的解析式为y=﹣x2+2x+3;(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∵y=﹣x2+2x+3与x轴交于另一点B,∴令y=0,﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)如图,∵P、D、C构成以PC为底边的等腰三角形,∴点D在PC的垂直平分线上,∴点C与点P关于对称轴直线x=1对称,∴点P的坐标为(2,3),∵S四边形PBCD=S△DCP+S△CBP,∴S四边形PBCD=×2×(4﹣3)+×2×3=4.18.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠P AD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.19.解:(1)∵抛物线C的顶点坐标为(2,8),∴可以假设抛物线C的解析式为y=a(x﹣2)2+8,把(0,6)代入y=a(x﹣2)2+8,得a=﹣,∴抛物线C的解析式为y=﹣(x﹣2)2+8,即y=﹣x2+2x+6,令y=0,则有﹣x2+2x+6=0,解得x=﹣2或6,∴A(﹣2,0),B(6,0).(2)设直线BD的解析式为y=kx+b,则,解得,∴直线BD的解析式为y=﹣x+6,设P(t,﹣t+6),则0<t<6,Q(t,﹣t2+2t+6),∵E,Q关于x=2的长,∴E(﹣t+4,﹣t2+2t+6),∴QP=﹣t2+2t+6﹣(﹣t+6)=﹣t2+3t,QE=|2t﹣4|,∵QP⊥x轴,QE∥x轴,∴∠PQE=90°,∴当QE=PQ时,△PQE是等腰直角三角形,即﹣t2+3t=|2t﹣4|,①当﹣t2+3t=2t﹣4时,解得t=4或﹣2(舍弃),此时P(4,2).②当﹣t2+3t=﹣2t+4时,解得t=5﹣或5+(舍弃),此时P(5﹣,1+).∴满足条件的抛物线C′的解析式为y=﹣(x﹣4)2+2或y=﹣(x﹣5+)2+1+.20.解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,而抛物线对称轴为x=1,∴DG=x﹣1,DF=(x﹣1),∴DE+DF=﹣x2+2x+3+(x﹣1)=﹣x2+(2+)x+3﹣=﹣(x﹣)2+,∵﹣1<0,∴当x=,DE+DF有最大值为;(3)①存在;如图2,过点C作AC的垂线交抛物线于点P1,∵直线AC的解析式为y=3x+3,则直线AC倾斜角的正切值为3,则直线P1C倾斜角的正切值为,∴直线P1C的解析式可设为y=﹣x+m,把C(0,3)代入得m=3,∴直线P1C的解析式为y=﹣x+3,解方程组,解得,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于P2,同理可设直线AP2的解析式可设为y=﹣x+n,把A(﹣1,0)代入上式并解得n=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得,则此时P2点坐标为(,﹣),综上所述,符合条件的点P的坐标为(,)或(,﹣);②答:﹣<t<1或2<t<.如图3,抛物线y=﹣x2+2x+3对称轴为直线x=1,过点C作CQ1⊥AC交对称轴于Q1,过点A作AQ2⊥AC交对称轴于Q2,∵A(﹣1,0),C(0,3),∴直线AC解析式为y=3x+3,∵CQ1⊥AC,∴直线CQ1解析式为y=﹣x+3,令x=1,得y=﹣×1+3=,∴Q1(1,);∵AQ2⊥AC,∴直线AQ2解析式为y═﹣x﹣,令x=1,得y=﹣×1﹣=﹣,∵∠AQC=90°时,AQ2+CQ2=AC2,∴(﹣1﹣1)2+t2+(1﹣0)2+(t﹣3)2=()2,解得:t1=1,t2=2,∴当1≤t≤2时,∠AQC≥90°,∵△ACQ为锐角三角形,点Q(1,t)必须在线段Q1Q2上(不含端点Q1、Q2),∴﹣<t<1或2<t<。
2021年中考数学压轴题满分训练–几何综合问题(圆的专题)(二)1.如图,以△ABC的边AC为直径的⊙O恰好经过顶点B,∠ABC的平分线交⊙O于点D,过点D作⊙O的切线交BC的延长线于点E.(1)求证:DE∥AC;(2)若AB=8,BC=4,求DE的长.2.如图,⊙O经过Rt△ABC的顶点A,与BC相切于点D,交AC于E,交AB于F,连接AD,DE,DF,EF,∠C=90°.(1)求证:DE=DF.(2)若AE=3,CD=2,求BD的长.3.如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,连接AD,过点D 作⊙O的切线交AC于点E,交AB的延长线于点F.(1)求证:DE⊥AC.(2)如果⊙O的半径为5,cos∠DAB=,求BF的长.4.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作⊙O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).(1)当α=90°时,求证:BH是⊙O的切线;(2)当BH与⊙O相切时,求旋转角α和点H运动路径的长;(3)当△AHB面积最大时,请直接写出此时点H到AB的距离.5.如图,在⊙O中,AB是直径,AC是弦,AC=AD,连接CD交⊙O于点E,∠ACD =∠DAE.(1)求证:AD是⊙O的切线;(2)过点E作EF⊥AB于F,交AC于G,已知,EG=3.求AG的长;(3)在(2)的条件下,求△ACE的面积.6.如图,在▱ABCD中,AD=8,▱ABCD的面积是72,⊙O与▱ABCD的三条边分别相切于点D、E、F,交AD于点G,DG=3AG.(1)求⊙O的半径的长;(2)求阴影部分的面积(保留π).7.[提出问题]如图1,△ABC是圆O的内接三角形,且AB=AC,D是圆上一点,作AE⊥BD于E.要研究BE,DE,CD之间的关系.[特例分析](1)如图2,当△ABC是等边三角形时,且当D在∠ABC的平分线上时,假设DE=a,则DC=,BE=,BE,DE,CD之间的关系为.[猜想探究](2)在图1中,上述结论是否依然成立,请证明你的猜想.[结论应用](3)如图3,△ABC是等边三角形,∠CBD=15°,AC=,则△BCD的周长为.8.问题发现:(1)如图1,P是半径为2的⊙O上一点,直线m是⊙O外一直线,圆心O到直线m的距离为3,PQ⊥m于点Q,则PQ的最大值为;问题探究:(2)如图2,将两个含有30°角的直角三角板的60°角的顶点重合(其中∠A=∠A'=30°,∠C=∠C'=90°),绕点B旋转△C'A'B,当旋转至CC′=4时,求AA'的长;问题解决:(3)如图3,点O为等腰Rt△ABC的斜边AB的中点,AC=BC=5,OE=2,连接BE,作Rt△BEF,其中∠BEF=90°,tan∠EBF=,连接AF,求四边形ACBF的面积的最大值.9.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D在AB上,AD=2,以点A为圆心,AD长为半径的弧交AC于点E,与BC交于点F,G,P是上一点.将AP绕点A逆时针旋转120°,得到AQ,连接CQ,AF.(1)若BP与所在圆相切,判断CQ与所在圆的位置关系.并加以证明;(2)求BF的长及扇形EAF的面积;(3)若∠PAB=m°,当∠ACQ=30°,直接写出m的值.10.如图,⊙O是△ABC的外接圆,AB=AC,BO的延长线交AC于点D.(1)求证:∠BAC=2∠ABD;(2)若=,求tan∠ABD.11.已知:如图,在△ABC中,点I是△ABC的内心(三角形三条角平分线的交点),延长AI与△ABC的外接圆交于点D,连接BD,DC.求证:(1)DI=DB;(2)若∠BAC=60°,BC=2,求DI的长.12.有一些代数问题,我们也可以通过几何方法进行求解,例如下面的问题:已知:a>b>0,求证:>.经过思考,小明给出了几何方法的证明,如图:①在直线l上依次取AB=a,BC=b;②以AC为直径作半圆,圆心为O;③过B点作直线l的垂线,与半圆交于点D,连接OD.请回答:(1)连接AD,CD,由作图的过程判断,∠ADC=90°,其依据是;(2)根据作图过程,试求线段BD、OD(用a,b的代数式表示),请写出过程;(3)由BD⊥AC,可知BD<OD,其依据是,由此即证明了这个不等式.13.如图,⊙O是△ABC的外接圆,∠ACB=90°.D是⊙O上一点,连接CD,与AB 交于点F,过点A作⊙O的切线交DC延长线于点E,已知AC=EC.(1)求证:AD=AE;(2)若AE=2,EF=2,求⊙O的直径.14.如图,已知扇形AOB的半径OA=4,∠AOB=90°,点C、D分别在半径OA、OB 上(点C不与点A重合),联结CD.点P是弧AB上一点,PC=PD.(1)当cot∠ODC=,以CD为半径的圆D与圆O相切时,求CD的长;(2)当点D与点B重合,点P为弧AB的中点时,求∠OCD的度数;(3)如果OC=2,且四边形ODPC是梯形,求的值.15.如图,已知半圆O的直径AB=4,点P在线段OA上,半圆P与半圆O相切于点A,点C在半圆P上,CO⊥AB,AC的延长线与半圆O相交于点D,OD与BC相交于点E.(1)求证:AD•AP=OD•AC;(2)设半圆P的半径为x,线段CD的长为y,求y与x之间的函数解析式,并写出定义域;(3)当点E在半圆P上时,求半圆P的半径.参考答案1.(1)证明:连接CD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=∠ABC=45°,又∵DE是⊙O的切线,∴∠CDE=∠CBD=45°,∵∠ABD=∠ACD=45°,∴∠ACD=∠CDE,∴AC∥DE;(2)解:连接OD,过点C作CF⊥DE,垂足为F,则四边形ODFC是正方形,在Rt△ABC中,AC===4,∴DF=FC=OC=OD=2,∵∠E=∠ACB,∠CFE=∠ABC=90°,∴△ABC∽△CFE,∴===,∴EF=CF=,∴DE=DF+EF=2+=3.2.(1)证明:如图,连接OD交EF于G,∵BC是⊙O的切线,∴∠ODB=90°,∵∠C=90°,∴OD∥AC,∴∠ODA=∠EAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EAD,∴=,∴DE=DF;(2)解:∵=,∴OD垂直平分EF,∵∠C=∠CDG=∠DGE=90°,∴四边形CDGE为矩形,∴EG=CD=2,∠AEF=90°,∴EF=2EG=4,在R△AEF中,AF==5,∵O是AF的中点,G是EF的中点,∴OG=AE=,∴CE=DG=OD﹣OG==1,∴AC=AE+CE=4,∵OD∥AC,∴△BOD∽△ABC,∴,∴,∴BD=.3.(1)证明:连接OD,如图,∵AB为⊙O的直径,∴AD⊥BC,∵AB=AC,∴AD平分BC,∴∠CAD=∠BAD,∵OA=OD,∴∠DAO=∠ADO,∴∠EAD=∠ADO,∴AE∥OD,∵EF是⊙O的切线,∴OD⊥EF,∴DE⊥AC;(2)解:∵cos∠DAB=,而AB=10,∴AD=8,在Rt△ADE中,cos∠DAE==,∴AE=,∵OD∥AE,∴△FDO∽△FEA,∴,即=,∴BF=.4.解:(1)证明:∵α=90°,∠AOB=90°,∴∠AOP=∠BOH,又OA=OB=4,OP=OH,在△AOP和△BOH中,,∴△AOP≌△BOH(SAS),∴∠OPA=∠OHB,∵AP是⊙O的切线,∴∠OPA=90°,∠OHB=90°,即OH⊥BH于点H,∴BH是⊙O的切线;(2)如图,过点B作⊙O的切线BC,BD,切点分别为C,D,连接OC,OD,则有OC⊥BC,OD⊥BD,∵OC=2,OB=4,∴,∴∠BOC=60°,同理∠BOD=60°,当点H与点C重合时,由(1)知:α=90°,∴∠OHB=90°.∵圆弧PH的长为;当点H与点D重合时,α=∠POC+∠BOC+∠BOD=90°+2×60°=210°,∴圆弧PH的长为,∴当BH与⊙O相切时,旋转角α=90°或210°,点H运动路径的长为π或;(3)S△AHB=AB•h,h表示点H到直线AB的距离,作ON⊥AB于点N,H在圆O上,在Rt△ONB中,∠OBN=45°,OB=4,∴ON=4cos45°=2,∴h min=ON﹣r=2,h max=2+2,∴当△AHB面积最大时,点H到AB的距离为2.5.(1)证明:如图1,连接BE,则∠B=∠C,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCE+∠BAE=180°,∴∠ACD+∠DAE=90°,∵∠ACD=∠DAE,∴∠DAE+∠BAE=90°,∴∠BAD=90°,∴BD是⊙O的切线;(2)如图2,延长EF,交⊙O于H,∵EF⊥AB,AB是⊙O的直径,∴=,∴∠ECA=∠AEH,∵∠EAC=∠GAE,∴△EAC∽△GAE,∴=,∵AC=AD,∴∠C=∠D,∵∠C=∠DAE,∴∠D=∠DAE,∴AE=DE=2,∵∠BFE=∠BAD=90°,∴AD∥EF,∴∠D=∠CEF,∴∠C=∠CEF,∴CG=GE=3,∴AC=AG+CG=AG+3,∴=,∴AG=5(负值舍去);(3)如图3,由(2)知,AG=5,CG=3,∵EG∥DA,∴△CEG∽△CDA,∴,∴=,∴CE=,过点E作EM⊥AC于M,设CM=x,在Rt△CME中,根据勾股定理得,EM2=CE2﹣CM2=()2﹣x2,在Rt△AME中,根据勾股定理得,EM2=AE2﹣AM2=(2)2﹣(8﹣x)2,∴()2﹣x2=(2)2﹣(8﹣x)2,∴x=,∴EM2=()2﹣x2,∴EM=(舍去负值),∴S△ACE=AC•EM=×8×=.6.解:(1)连接FO并延长交AD于点H,∵BC与⊙O相切于点F,∴HF⊥BC,∴HF=÷=9,又∵平行四边形ABCD中,AD∥BC,∠HFC=90°,∴∠FHD=90°,∴HF⊥AD,∴DH=DG=3,设⊙O的半径为r,在Rt△DOH中,(3)2+(9﹣r)2=r2,∴r=3;(2)连接OD,OG,在Rt△DOH中,sin∠ODG=,∴∠ODG=30°,又∵OD=OG,∴∠OGD=∠ODG,∴∠GOD=120°,∴阴影部分的面积等于=.7.解:(1)如下图:∵△ABC是等边三角形,∴∠ABC=60°.∵BD是∠ABC的平分线,∵∠DCA=∠ABD,∴∠DCE=30°.∵AE⊥BD,∴CD=2DE=2a.∵BD是圆的直径,∴∠BCD=90°.∵∠DBC=30°∴AB=2CD=4a.∴BE=BD﹣DE=3a.∵DE+CD=3a,∴BE=DE+CD.故答案为:2a;3a;BE=DE+CD.(2)成立.理由:如图,过A作AF⊥CD,交DC延长线于F,连接AD,∵AF⊥CD,AE⊥BD,∴∠AEB=∠AFC=90°.∵同弧所对的圆周角相等,∠ABE=∠ACD.在△ABE和△ACD中,.∴△ABE≌△ACD(AAS).∴AE=AF,BE=CF.在Rt△ADE和Rt△ADF中,.∴Rt△ADE≌Rt△ADF(HL).∴DE=DF.∵CF=CD+DF=CD+DE,∴BE=DE+CD.故结论成立.(3)∵AB=AC,D是圆上一点,AE⊥BD于E,由(2)的结论可得:BE=DE+CD.∵△ABC是等边三角形,∴AB=BC=AC=,∠ABC=60°.∵∠CBD=15°,∴∠ABE=∠ABC﹣∠CBD=45°.∵AE⊥BD,∴AE=BE=AB=×=.∴BE=DE+CD=.∴△BCD的周长为:BC+CD+BD=BC+CD+DE+BE=BC+2BE=+2.故答案为:+2.8.解:(1)如图1,当点P距离直线m最远时,即过点P且垂直于m的直线经过圆心O时,PQ最大,最大值为2+3=5.故答案为:5.(2)如图2,由已知可得:BC=BC′,BA=BA′,∠CBA=∠C′BA′=60°.∴.∵∠CBA=∠C′BA′=60°,∴∠CBA+∠ABC′=∠C′BA′+∠ABC′.即∠CBC′=∠ABA′.∴△CBC′~△ABA′.∴.∵,∴.∴AA′=2CC′=2×4=8.(3)∵四边形ACBF的面积=S△ABC+S△FAB,△ABC的面积为定值,∴△ABF面积最大时,四边形ACBF的面积最大.∵AB=5且位置不变,∴点F距离AB最大时,△ABF面积最大.∵OE=2,∴点E在以O为圆心,半径为2的圆上,如下图所示:∵∠BEF=90°,∴当O,E,F三点在一条直线上,即BE与该圆相切时,△ABF面积最大.过F作FD⊥OB于D,∵AC=BC=5,∴AB=AC=10.∵O为AB的中点,∴BO=5.∵BE⊥OF,∴BE=.∵tan∠EBF=,∴.∴EF=.∴OF=OE+EF=2+.在Rt△BEO中,sin∠EOB=.在Rt△ODF中,sin∠EOB==.∴DF=OF••(2+)=+.∴△ABF面积最大值为×AB×DF=2+.∴四边形ACBF的面积的最大值=S△ABC+S△FAB=×AC×BC+2+=2+.9.解:(1)CQ与所在圆相切;证明:由旋转知,AP=AQ,∠PAQ=120°,∵∠BAC=120°,∴∠PAQ=∠BAC,∴∠PAQ﹣∠PAC=∠BAC﹣∠PAC,∴∠ACQ=∠ABP,∵AC=AB,∴△ACQ≌△ABP(SAS),∴∠AQC=∠APB,∵BP与所在圆相切,∴∠APB=90°,∴∠AQC=90°,∵AQ=AP,∴CQ与所在圆相切;(2)如图,过点A作AN⊥BC于N,∵AB=AC=2,∠BAC=120°,∴∠ABC=30°,∴AN=AB=,∴BN=AN=3,①当点F在点G的左边时,过点F作FM⊥AB于M,设FM=m,在Rt△BMF中,BF=2m,BM=m,∴AM=AB﹣BM=(2﹣m),在Rt△AMF中,根据勾股定理得,FM2+AM2=AF2,∴m2+[(2﹣m)]2=22,∴m=1或m=2,∴BF=2m=2或4(舍),∴BF=AF,∴∠BAF=∠ABC=30°,∴∠EAF=90°,∴S扇形EAF==π;②当点F在点G的右边时,同①的方法得,BF=4,S扇形EAF=﹣=;即当BF=2时,扇形EAF的面积为π,当BF=4时,扇形EAF的面积为;(3)由(1)知,△ACQ≌△ABP,∴∠ABP=∠ACQ=30°,∵∠ABP=30°,∴点P在BC上,即点P与点F或G重合,当点P与点F重合时,∠PAB=∠BAF,由(2)知,∠BAF=30°,∴m=30,当点P与点G重合时,∠PAB=∠BAG=90°,∴m=90,即m的值为30或90.10.解:(1)连接AO,并延长交BC于点H,∵AB=AC,∴.∴AH⊥BC.∴AH平分∠BAC.∴∠BAC=2∠BAH.∵OA=OB,∴∠ABD=∠BAH.∴∠BAC=2∠ABD.(2)过A作AE∥BC,交BD延长线于点E,∴.∵AB=AC,AH⊥BC,∴BH=BC.∴.∵AE∥BC,∴.设OB=OA=4a,则OH=3a.∴BH=.AH=OA+OH=7a.∵∠ABD=∠BAH,∴tan∠ABD=tan∠BAH=.11.(1)证明:连接BI,如图1所示:∵点I是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠CAD,∠ABI=∠CBI,∵∠BID=∠BAI+∠IBA,∠IBD=∠CBI+∠CBD,∠CBD=∠CAD,∴∠BID=∠IBD,∴DI=DB;(2)解:过点D作DE⊥BC于E,如图2所示:由(1)得:∠BAD=∠CAD,∴,∵DE⊥BC,∴BE=CE=BC=,∵∠BAC=60°,∴∠BAD=∠CAD=30°,∴∠DBC=∠BCD=30°,∴DE=BE=1,BD=2DE=2,∴DI=BD=2.12.解:(1)∵AC为直径,∴∠ADC=90°(直径所对的圆周角是直角).故答案为:直径所对的圆周角是直角;(2)∵BD⊥AC,∴∠ABD=∠CBD=90°.∴∠BAD+∠ADB=90°.∵∠ADC=90°,∴∠CDB+∠ADB=90°.∴∠BAD=∠CDB.∴.∴BD2=AB•BC=ab.∴BD=.∵AB=a,BC=b,∴AC=a+b.∴OD=.(3)∵BD⊥AC,∴BD<OD(直线外一点到直线上各点的所有连线中,垂线段最短).∴>.故答案为:垂线段最短.13.(1)证明:∵∠ACB=90°.∴AB是⊙O的直径,∵EA是⊙O的切线,∴BA⊥EA,∴∠EAC+∠CAB=90°,∵∠B+∠CAB=90°,∴∠EAC=∠B,∵AC=EC,∴∠EAC=∠E,∴∠E=∠B,∵∠B=∠D,∴∠E=∠D,∴AD=AE;(2)解:∵∠EAF=90°,AE=2,EF=2,∴AF==2,由(1)知:AD=AE=2,∵∠B=∠E,∠ACB=∠EAF=90°,∴=,∴AB=AC,如图,过点A作AG⊥CD于点G,设AC=EC=t,则CF=2﹣t,∵tan∠E==,sin∠E===,∴AG=,∴FG==,∴EG=EC+CG,∴CG=CF﹣FG=2﹣t﹣=﹣t,∵AC2=AG2+CG2,∴t2=()2+(﹣t)2,解得t=,∴AB=AC=t=3.∴⊙O的直径是3.14.解:(1)如图1中,∵∠COD=90°,cot∠ODC==,∴可以假设OD=3k,OC=4k,则CD=5k,∵以CD为半径的圆D与圆O相切,∴CD=DB=5k,∴OB=OC=8k,∴AC=OC=4k=2,∴k=,∴CD=.(2)如图2中,连接OP,过点P作PE⊥OA于E,PF⊥OB于F.∵=,∴∠AOP=∠POB,∵PE⊥OA,PF⊥OB,∴PE=PF,∵∠PEC=∠PFB=90°,PD=PC,∴Rt△PEC≌Rt△PFB(HL),∴∠EPC=∠FPB,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠CPB=90°,∴∠PCB=∠PBC=45°,∵OP=OB,∠POB=45°,∴∠OBP=∠OPB=67.5°,∴∠CBO=67.5°﹣45°=22.5°,∴∠OCD=90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC∥PD时,∵OC∥PD,∴∠PDO=∠AOD=90°,∵CE⊥PD,∴∠CED=90°,∴四边形OCED是矩形,∴OC=DE=2,CE=OD,设PC=PD=x,EC=OD=y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD=2﹣2,∴==﹣1.如图3﹣2中,当PC∥OD时,∴∠COD=∠OCE=∠CED=90°,∴四边形OCED是矩形,∴OC=DE=2,CE=OD,∵OP=4,OC=2,∴PC===2,∴PD=PC=2,∴PE===2,∴EC=OD=2﹣2,∴===3+,综上所述,的值为﹣1或3+.15.解:(1)连接CP,如图:∵AP=CP,AO=DO,∴∠A=∠ACP=∠ADO,∴△ACP∽△ADO,∴,∴AD•CP=OD•AC,∴AD•AP=OD•AC;(2)∵半圆O的直径AB=4,∴AO=2,∵半圆P的半径为x,∴OP=2﹣x,∴∠COP=90°,∴CO2=CP2﹣OP2=x2﹣(2﹣x)2=4x﹣4,Rt△AOC中,AC==2,∵∠A=∠ACP=∠ADO,∴CP∥DO,∴,又线段CD的长为y,∴,变形得:y=,x范围是0<x≤2;(3)设半圆P与AB交于G,连接EG,过E作EH⊥AB于H,如图:设半圆P的半径为x,由(2)知AC=2,∵CO⊥AB,∴BC=AC=2,∵CP∥DO,∴,而OB=2,PB=4﹣x,∴,∴BE=,∵点E在半圆P上,∴∠EGB=∠ACB,且∠B=∠B,∴△CAB∽△GEB,∴=,∴,∴EG=,∵AC=BC,∴EG=BG,而BG=AB﹣AG=4﹣2x,∴=4﹣2x,解得x=或(大于2,舍去),∴半圆P的半径为x=.。
2021中考数学复习《探索二次函数综合型压轴题解题技巧》分类训练二:与角的度量关系相关的压轴题(附答案)方法提炼:1.将角的度量关系转化为边的数量,利用边的数量关系求解问题的答案。2.利用角的度量关系,寻找问题中的特殊角,结合三角函数求解。3.利用角的度量关系,构建图形的全等、相似,利用图形的全等、相似的性质求解典例引领:例:如图,抛物线y=ax2+3x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=4.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S:S△CDF=4:3时,求点D的坐标.△COF(3)如图2,点E的坐标为(0,﹣2),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.14.解:(1)∵OB=OC=4,∴B(4,0),C(0,4),把B(4,0),C(0,4)代入y=ax2+3x+c,得,解得∴抛物线的函数解析式为y=﹣x2+3x+4;(2)如图1,设直线BC解析式为y=kx+b,则,解得∴直线BC解析式为y=﹣x+4,令点D、F的横坐标分别为x D,x F,∵S△COF:S△CDF=4:3,∴S△COF=S△COD,即OC•x F=×OC•x D,∴x D=x F,设点D横坐标为7t,点F横坐标为4t,∵点F在直线BC上,∴F(4t,4﹣4t),设直线OF解析式为y=k′x,则4﹣4t=4tk′,∴k′==,∴直线OF解析式为y=x,∵点D在直线OF上,∴D(7t,7﹣7t),将D(7t,7﹣7t)代入y=﹣x2+3x+4中,得7﹣7t=﹣(7t)2+3×7t+4,解得:t1=,t2=,∴D的坐标为(1,6)或(3,4);(3)①当∠PEB=2∠OBE,且点P在x轴上方时,如图2,作BE的垂直平分线交OB于F,连接EF,在∠BEO内部作射线EP交x轴于G,交抛物线于P,使∠PEB=∠EFO,过点G作GH⊥BE于H,则BF=EF,设BF=EF=m,∴OF=OB﹣BF=4﹣m在Rt△OEF中,∠EOF=90°,∵OE2+OF2=EF2∴22+(4﹣m)2=m2,解得:m=,∴BF=EF=,OF=4﹣=,∴tan∠OBE===,tan∠OFE===,∵BF=EF∴∠BEF=∠OBE∵∠OFE=∠BEF+∠OBE∴∠OFE=2∠OBE∵∠PEB=2∠OBE∴∠PEB=∠OFE∴tan∠PEB==tan∠OFE=,设GH=4a,则EH=3a,∴BE===2,BH=2﹣3a∵=tan∠∠OBE=,∴=,解得:a=,∴GH=,BH=∴BG==∴OG=OB﹣BG=4﹣=∴G(,0),设直线EG解析式为y=k″x+b″,则,解得∴直线EG解析式为y=x﹣2,联立方程组,解得:(舍去),,∴P(,),②当∠PEB=2∠OBE,且点P在x轴下方时,如图3,过点E作EF⊥y轴,作点B关于直线EF 的对称点G,连接BG交EF于F,射线EG交抛物线于点P,∵E(0,﹣2),∴直线EF为:y=﹣2∵B(4,0),∴G(4,﹣4)∴直线EG解析式为y=﹣x﹣2,解方程组,得,(不符合题意,舍去),∴P(,);③当∠PBE=2∠OBE,且点P在x轴上方时,如图4,在y轴正半轴上截取OF=OE=2,作射线BF交抛物线于P,在△BOE和△BOF中,∴△BOE≌△BOF(SAS)∴∠PBO=∠OBE∴∠PBE=2∠OBE易求得直线PF解析式为y=﹣x+2,联立方程组,解得(不符合题意,舍去),,∴P(﹣,);④当∠PBE=2∠OBE,且点P在x轴下方时,如图5,过点E作EF⊥BE交直线BP于F,过F 作FG⊥y轴于G,由①知:tan∠PBE==,BE=2∴EF=∵∠EGF=∠BOE=∠BEF=90°∴∠BEO+∠FEG=∠BEO+OBE=90°∴∠FEG=∠OBE∴△EFG∽△BEO∴==,即==∴FG=,EG=∴OG=OE+EG=2+=∴F(,﹣)易求得直线BF解析式为y=x﹣22,联立方程组,解得(舍去),∴∴P(﹣,﹣);综上所述,符合条件的点P的坐标为:(,)、(,)、(﹣,)、(﹣,﹣).跟踪训练:1.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点.(1)求该抛物线的解析式;(2)点P是抛物线上一点,且位于第一象限,当△ABP的面积为3时,求出点P的坐标;(3)过B作BC⊥OA于C,连接OB,点G是抛物线上一点,当∠BAG+∠OBC=∠BAO时,请直接写出此时点G的坐标.2.如图,抛物线y=ax2+bx+与x轴交于点A(﹣5,0),B(1,0),顶点为D,与y轴交于点C.(1)求抛物线的表达式及D点坐标;(2)在直线AC上方的抛物线上是否存在点E,使得∠ECA=2∠CAB,如果存在这样的点E,求出△ACE面积,如果不存在,请说明理由.3.如图1,抛物线y=﹣+bx+c经过原点(0,0),A(12,0)两点.(1)求b的值;(2)如图2,点P是第一象限内抛物线y=﹣+bx+c上一点,连接PO,若tan∠POA=,求点P的坐标;(3)如图3,在(2)的条件下,过点P的直线y=﹣x+m与x轴交于点F,作CF=OF,连接OC交抛物线于点Q,点B在线段OF上,连接CP、CB、PB,PB交CF于点E,若∠PBA=2∠PCB,∠BEF=2∠BCF,求点Q的坐标.4.如图,抛物线y=﹣+bx+c交x轴于点A、B(A在B左侧),交y轴于点C,直线y=﹣x+6经过点B、C.(1)求抛物线解析式;(2)点P为第一象限抛物线上一点,连接P A交BC于点D,设点P的横坐标为t,的值为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点E为线段OB上一点,连接CE,过点O作CE的垂线交BC于点G,连接PG并延长交OB于点F,若∠OGC=∠BGF,F为BE中点,求t的值.5.抛物线y=ax2+c经过点(0,﹣1),交x轴于A(﹣1,0),B两点,点P是第一象限内抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图1已知直线l的解析式为y=x﹣2,过点P作直线l的垂线,垂足为H,当PH=时,求点P的坐标;(3)如图2,当∠APB=45°时,求点P的坐标.6.已知抛物线y=x2﹣mx﹣m﹣1与x轴交于A、B两点,点A在点B的左边,与y轴交于点C(0,﹣3).(1)求点A、B的坐标;(2)点D是抛物线上一点,且∠ACO+∠BCD=45°,求点D的坐标;(3)将抛物线向上平移m个单位,交线段BC于点M,N,若∠MON=45°,求m的值.7.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),D(﹣3,0),C(﹣4,3),四边形ABCD是平行四边形.现将▱ABCD沿x轴方向平移n个单位,得到▱A1B1C1D1,抛物线M经过点A1,C1,D1.(1)若抛物线M的对称轴为直线x=4,求抛物线M的解析式;(2)抛物线M的顶点为E,若以A,E,C1为顶点的三角形的面积等于▱ABCD的面积的一半,求n的值;(3)在(2)的条件下,在y轴上是否存在点P,使得∠C1P A=∠C1EA?若存在,请直接写出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A、B,交y轴于点C,A、B两点横坐标为﹣1和3,C点纵坐标为﹣4.(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求D点坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,求出点Q的坐标,不存在说明理由.9.抛物线y=﹣x2+bx+c与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C.直线y=﹣2x+6经过B、C两点,连接AC.(1)求抛物线的解析式:(2)点P是第一象限抛物线上一点,P点横坐标为t,连接PC、PB,设△PBC的面积为S,求S与t之间的函数关系式(直接写出自变量t的取值范围):(3)在(2)问的条件下,当S=3且t<2时,连接PB,在抛物线上是否存在一点Q,使∠PBQ=∠ACB?若存在求出Q点坐标,若不存在,说明理由.10.如图,在平面直角坐标系中,抛物线与x轴交于A、B两点,与y轴交于C点,B点与C点是直线y=x﹣3与x轴、y轴的交点.D为线段AB上一点.(1)求抛物线的解析式及A点坐标.(2)若点D在线段OB上,过D点作x轴的垂线与抛物线交于点E,求出点E到直线BC的距离的最大值.(3)D为线段AB上一点,连接CD,作点B关于CD的对称点B′,连接AB′、B′D①当点B′落坐标轴上时,求点D的坐标.②在点D的运动过程中,△AB′D的内角能否等于45°,若能,求此时点B′的坐标;若不能,请说明理由.11.如图,在平面直角坐标系中,抛物线y=ax2+x+c交x轴于点A、点B,交y轴于点C.直线y=﹣x+2经过于点C、点B,(1)求抛物线的解析式;(2)点D为第一象限抛物线上一动点,过点D作y轴的平行线交线段BC于点E,交x轴于点Q,当DE=5EQ时,求点D的坐标;(3)在(2)的条件下,点M为第二象限抛物线上一动点,连接DM,DM交线段OC于点H,点F在线段OB上,连接HF、DF、DC、DB,当HF=,∠CDB=2∠MDF时,求点M的坐标.12.已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣1,0)、B两点,与y轴交于点C,且过点P(5,12).(1)求抛物线的解析式.(2)如图,点Q为线段CP上一动点,过点Q作QF⊥x轴于点F,交抛物线于点D,连接CD,PD,若S△QDC:S△QDP=2:3,求直线PD的解析式.(3)过点B的直线交抛物线于M,是否存在点M使∠ABM=∠PCO,若存在,求出点M的坐标.若不存在,说明理由.13.如图1,抛物线C1:y=x2+(m﹣2)x﹣2m(m>0)与x轴交于点A、B(A在B的左侧),与y轴交于点C,连接AC、BC,S△ABC=3.(1)求m的值;(2)如图2,将射线BC绕点B顺时针方向旋转交抛物线C1第二象限的图象于点D,连接DC.当x轴恰好三等分△DBC的面积时,求此时点D的横坐标;(3)将抛物线C1向右平移,使新抛物线C2经过原点,如图3,C2的对称轴l交抛物线C2于E,交直线y=4于F,直线y=4交C2于点G、H(G在H的左侧),点M、N分别从点G、H同时出发,以1个单位长度/秒向点F运动.设点M运动时间为t(秒),点M、N到达F时,运动停止,点W在l上,WF=,连MW、NE.当∠MWF=3∠FEN时,求t的值.参考答案1.解:(1)将点A、B的坐标代入抛物线表达式并解得:a=﹣1,b=4,故抛物线的表达式为:y=﹣x2+4x…①;(2)过点P作直线m交x轴于点M,过点P作PH⊥AB于点H,过点A作AN⊥直线m,在AB下方作直线n距离直线AB的长度为PH,△ABP的面积S=AB×PH=×3×PH=3,解得:PH==AN,直线AB的倾斜角为45°,故直线m、n所在直线的k值为:﹣1,则AM=AH=2,故点M(6,0),则直线m的表达式为:y=﹣x+6…②,同理直线n的表达式为:y=﹣x+2…③,联立②①并解得:x=2或3,联立③①并解得:x=(舍去);综上,点P的坐标为:(3,3)或(2,4)或(,);(3)∵BC=AC=3,故∠BAO=45°=∠BAG+∠OBC,①当点G在AB上方时,如图2(左侧图),设抛物线对称轴交x轴于点M,连接BM,OC=OM=1,故∠CBM=∠OBC,则∠CAB=45°=∠CBM+∠MBA=∠OBC+∠ABM,而45°=∠BAG+∠OBC,故∠ABM=∠GAB,则AG∥BM,直线BM表达式中的k值为:3,故直线AG的表达式为:y=﹣3x+b,将点A的坐标代入上式并解得:直线AG的表达式为:y=﹣3x+12…④;联立①④并解得:x=3或4(舍去4);②当点G在AB下方时,如图2(右侧图),∠BAG+∠OBC=∠BAO=45°,而∠BAG+∠GAC=45°,∴∠OBC=∠GAC,而tan∠OBC===tan∠GAC,则直线AG的表达式为:y=﹣x+b′,将点A坐标代入上式并解得:直线AG的表达式为:y=﹣x2+…⑤,联立⑤①并解得:x=或4(舍去4).综上,点P的坐标为:(3,3)或(,).2.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣5,0),B(1,0),∴,∴∴抛物线的表达式为:y=﹣x2﹣2x+,∴顶点D(﹣2,)(2)如图,过点C作CM∥AB,过点E作EF⊥CM,设点E(m,﹣m2﹣2m+)∵y=﹣x2﹣2x+交y轴交于点C,∴点C(0,),∴OC=,∵CM∥AB,∴∠MCA=∠CAB,∵∠ECA=2∠CAB=∠ECF+∠MCA,∴∠ECF=∠CAB,且∠AOC=∠EFC=90°,∴△CEF∽△ACO,∴,∴=∴m=0(不合题意),m=﹣3,∴点E(﹣3,4),∴S△AEC=×(+4)×3+×4×2﹣×5×=.3.解:(1)∵抛物线y=﹣+bx+c经过原点(0,0),A(12,0)两点.∴c=0,0=﹣×144+12b+c∴b=;(2)如图2,过点P作PE⊥OA于点E,∵c=0,b=,∴抛物线解析式为:y=﹣+x∵点P是第一象限内抛物线y=﹣+x上一点,∴设点P(m,﹣m2+m),(m>0)∵tan∠POA==,∴=,∴m=8,∴点P(8,4);(3)连接OP,∵直线y=﹣x+m过点P(8,4),∴m=,∴直线解析式为y=﹣x+,当y=0,x=,∴点F(,0),∵∠BEF=∠BCF+∠PBC,且∠BEF=2∠BCF,∴∠PBC=∠BCF,∵∠PBA=2∠PCB,∠BEF=2∠BCF,∴∠EFB=180°﹣2∠PCB﹣2∠PBC,∵OF=CF,∴∠COF=∠PCB+∠PBC=∠OCF,∵∠CPB=180°﹣∠BCP﹣∠PBC,∴∠CPB+∠COF=180°,∴点O,点B,点P,点C四点共圆,∴∠PBA=∠OCP,∠OCB=∠OPB,∠BCP=∠BOP,∵∠PBA=2∠PCB,∠PBA=∠OCP=∠OCB+∠BCP,∴∠OCB=∠BCP,∴∠BPO=∠POB,∴OB=PB,设点B(a,0)∴OB=BP=a,∴a=∴a=7∴点B(7,0)设过点O,点B,点P,点C四点的圆的圆心M(,y),∵MO=MP,∴()2+y2=(8﹣)2+(4﹣y)2,∴y=,∴M(,),设点C(a,n)∵MO=MC,OF=CF,∴(a﹣)2+(b﹣)2=()2+()2 ①,(a﹣)2+b2=()2 ②,∴由①②组成方程组可求b=a,设直线OC解析式为:y=kx,且过点C(a,b)∴b=ka,∴k=∴直线OC解析式为:y=x,∴x=﹣+x∴x1=0(不合题意舍去),x2=4,∴点Q(4,4)4.解:(1)直线y=﹣x+6经过点B、C,则点B、C的坐标分别为:(6,0)、(0,6),则c=6,将点A的坐标代入抛物线表达式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+6…①;(2)点P(t,﹣t2+2t+6),将点P、A的坐标代入一次函数表达式:y=kx+b并解得:直线AP的表达式为:y=﹣(t﹣6)x+(6﹣t),将上式与直线BC的表达式联立并解得:x=,故点D(,+6),则=,则d==﹣1=﹣t2+t(0<t<6);(3)设OE=a,则点E(a,0),设OG交CE于点H,∵∠ECO+∠COH=90°,∠COH+∠HOE=90°,∴∠HOE=∠OCH, tan∠OCH===tan∠HOE,则直线OH的表达式为:y=x…②,联立①②并解得:x=,故点G(,),则BG==,则CG=BC﹣BG=,∵OB=OC=6,故∠OCB=∠OBC=45°,而∠OGC=∠BGF,则△CGO∽△BGF,即:,即:,解得:BF=a,F为BE中点,则OE=EF=FB,故a=2,故点F(4,0),点G(,);将点F、G的坐标代入一次函数表达式并解得:直线FG的表达式为:y=3x﹣12…③,联立①③并解得:x=﹣1(舍去负值),故t=﹣1+.5.解:(1)∵抛物线y=ax2+c经过点(0,﹣1),A(﹣1,0),∴,∴,∴抛物线的解析式的解析式为y=x2﹣1;(2)过点P作y轴的平行线交直线l于点M,∵直线l的解析式为y=x﹣2,∴直线与y轴的夹角为45°,∴∠PMH=45°,∵PH⊥MH,PH=,∴PM=7,设P(a,a2﹣1),则M(a,a﹣2),∴PM=a2﹣1﹣a+2=7,∴a1=3,a2=﹣2(舍去),∴P(3,8);(3)如图2,在y轴上取点D(0,1),则△ABD为等腰直角三角形,∵AO=BO=1,∠ADB=90°,∴=,以点D为圆心、AD长为半径画圆,则点P在优弧AB上时总有∠APB=45°,连结PD,设P点坐标为(m,m2﹣1),∴PD==,∴m2+(m2﹣2)2=2,解得:,(舍去),m3=1(舍去),m4=﹣1(舍去),∴P(,1).6.解:(1)﹣m﹣1=﹣3,解得:m=2,故抛物线的表达式为:y=x2﹣2x﹣3…①,令y=0,解得:x=3或﹣1,故点A、B的坐标分别为:(﹣1,0)、(3,0);(2)①当点D在BC下方时,∵∠ACO+∠BCD=45°,则AC⊥CD,则直线CD的表达式为:y=x﹣3…②,联立①②并解得:x=0或,故点D(,﹣);②当点D(D′)在BC上方时,过点D作DE⊥BC交BC于点H,交CD′于点E,直线BC的表达式为:y=x﹣3…③则ED的表达式为:y=﹣x+…④,联立③④并解得:x=,故点H(,﹣),点E的坐标为:(,﹣),则直线CE的表达式为:y=3x﹣3…⑤,联立①⑤并解得:x=0或5(舍去0),故点D(D′)的坐标为:(5,12),综上,点D的坐标为:(,﹣)或(5,12);(3)如图2,抛物线平移后的图象为虚线部分,则抛物线的表达式为:y=x2﹣2x﹣3+m(m>0),设点M、N的坐标分别为:(x1,y1)、(x2、y2),则x1+x2=3,x1x2=m,x2=,∵∠MON=45°=∠OCM,∠ONM=∠ONM,∴△NOM∽△NCO,∴NO2=MN•CN,而NO2=(x22+y22),MN=(x2﹣x1),CN=x22,即(x22+y22)=2x2(x2﹣x1),即2x1x2=x22﹣y22,而y2=x2﹣3,故=+m,解得:m=(﹣1+)(不合题意的值已舍去).7.解:(1)四边形ABCD是平行四边形,则点B的坐标为:(﹣2,3),即点B在AD的中垂线上,过点A、D的二次函数表达式为:y=a(x+1)(x+3)=a(x2+4x+3),将点C的坐标代入上式并解得:a=1,则过A、C、D的抛物线为:y=x2+4x+3=(x+2)2﹣1,抛物线M的对称轴为直线x=4,相当于将上述抛物线向右平移了6个单位,故抛物线M的表达式为:y=(x﹣4)2﹣1;(2)将▱ABCD沿x轴方向平移n个单位,则点C1、E的坐标分别为:(n﹣4,3)、(n﹣2,﹣1),点A(﹣1,0),连接C1E交x轴于点M,将点C1、E的坐标代入一次函数表达式:y=kx+b并解得:直线C1、E的表达式为:y=﹣2x+(2n﹣5),则点M的坐标为:(,0),S△AEC1=×AM×(y C1﹣y E)=(+1)×4=S▱ABCD=×2×3=3,解得:n=3;(3)存在,理由:由(2)知点C(﹣1,3),点A(﹣1,0),则AC⊥x轴,故点A、C1、E作圆Q,则点Q在AC1的中垂线上,设点Q(m,),则此时,∠C1P A=∠C1EA,由QC1=QE得:(m+1)2+(3﹣)2=(m﹣1)2+(1+)2,解得:m=1,则点Q(1,),设点P(0,t),由QP=QE得:1+(﹣t)2=()2,解得:t=,故点P的坐标为:(0,).8.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣4,解得:a=,故抛物线的表达式为:y=x2﹣x﹣4;(2)过点D作y轴的平行线交BC于点N,由B、C的坐标可得直线BC的表达式为:y=x﹣4,设点D(x,x2﹣x﹣4),点N(x,x﹣4),S△BCD=×OB×ND=3×(x﹣4﹣x2+x+4)=﹣2x2+6x,∵﹣2<0,故S有最大值,此时,x=,点D(,﹣5);(3)存在,理由:直线BC的表达式为:y=x﹣4,抛物线的对称轴为:x=1,故点H(1,﹣),过点Q作QM⊥BC于点M,tan∠OCB==tanα,∠QBC=45°,设QM=3x,则HM=4x,MB=3x,BH=HM+MB=7x==,解得:x=,QH=5x=,则y Q=y H+=﹣,故点Q(1,).9.解:(1)直线y=﹣2x+6经过B、C两点,则点B、C的坐标为:(3,0),(0,6),将点B、C的坐标代入抛物线表达式并解得:b=1,c=6,故抛物线的表达式为:y=﹣x2+x+6…①;(2)过点P作y轴的平行线交BC于点H,设点P(t,﹣t2+t+6),则点H(t,﹣2t+6),S=×PH×OB=(﹣t2+t+6+2t﹣6)=﹣t2+t(0<t<3);(3)S=3,即:﹣t2+t=3,解得:t=1或2(舍去2),故点P(1,6),而点B(0,3),则直线PB的表达式为:y=﹣x+9,则点M(0,9),tan∠BMO=,过点A作AL⊥BC于点L,S△ABC=OC×AB=×BC×AL,即3×5=×AL×3,解得:AL=,sin∠ACB==,则∠ACB=45°=∠MBQ,设BQ交y轴于点H,过点H作HN⊥MB于点N,tan∠BMO=,∠MBQ=45°,设:HN=x,则BN=x,MN=3x,MB=4x=,解得:x=,HB=x=,则OH2=BH2﹣OB2=,则点H(0,),则BH的函数表达式为:y=﹣x+…②,联立①②并解得:x=﹣(不合题意值已舍去),则点Q(﹣,).10.解:(1)∵B点与C点是直线y=x﹣3与x轴、y轴的交点.∴B(3,0),C(0,﹣3),∴,解得:,∴抛物线的解析式为,令y=0,,解得x1=﹣2,x2=3,∴A(﹣2,0),(2)设E点到直线BC的距离为d,E点横坐标为m,F(m,m﹣3),∵B(3,0),C(0,﹣3),∴∠OBC=45°,如图1,过点E作EH⊥BC于点H,则△EFH为等腰直角三角形,∴EH=,EF=y F﹣y E=m﹣3﹣(,=(0≤m≤3),=,当时,EF的最大值为,∴d=EF==.即E到BC的最大距离为.(3)①点B′在以C为圆心,CB为半径的圆C上;(Ⅰ)当B′点落在x轴上时,D1(0,0);(Ⅱ)当B′点落在y轴上时,如图2,CB′=CB=3,∵∠OB′D=45°∴OD=OB'=3﹣3,∴;②分别画出图形进行讨论求解:(Ⅰ)∠B′DA=45°时,如图2,OB′=3﹣3,B′(0,3﹣3)(Ⅱ)如图3,连接CB′,∠B′DA=∠CBD=45°,∴DB′∥BC,可得四边形DB′CB是菱形,B′(﹣3,﹣3).(Ⅲ)∠B′AD=45°,如图4,连接CB′,过点B′分别作坐标轴的垂线,垂足为E、F,设线段FB'的长为m,B′E=AE=2﹣m,可得CF=5﹣m,在直角三角形CFB'中,m2+(5﹣m)2=(3)2,解得m=,故B′(),(Ⅳ)如图5,∠AB′D=45°,连接CB',过点B′作y轴的垂线,垂足为点F,由轴对称性质可得,∠CB′D=∠CBD=45°,所以当∠AB′D=45°时,点A在线段CB′上,∴,设线段FB′的长为2m,FC=3m,(2m)2+(3m)2=(3,解得:m=,B′(﹣,综合以上可得B′坐标为(0,)或或()或(﹣).11.解:(1)针对于直线y=﹣x+2,令x=0,则y=2,∴C(0,2),令y=0,则0=﹣x+2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=ax2+x+c中,得∴,∴抛物线的解析式为y=﹣x2+x+2;(2)如图1,由(1)知,抛物线的解析式为y=﹣x2+x+2,设点D坐标为(m,﹣m2+m+2),∵DE⊥x轴交BC于E,直线BC的解析式为y=﹣x+2,∴D(m,﹣m+2),∴DE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,DQ=﹣m+2,∵DE=5EQ,∴﹣m2+m=5(﹣m+2),∴m=3或m=4(点B的横坐标,舍去),∴D(3,3);(3)如图2,由(2)知,D(3,3),由(1)知,B(4,0),C(0,2),∴DB=,DC=,BC=2,∴DC=DB,DB2+DC2=BC2,∴△BDC是等腰直角三角形,∴∠BDC=90°,∵BDC=2∠FDM=90°,∴∠FDM=45°,过点D作DP⊥y轴于P,则DQ=DP,OP=3,∴CP=1=BQ,∴△DPC≌△DQB(SAS),在CP的延长线取一点G,使PG=QF=n,∴OF=3﹣n,OG=3+n,∴△DPG≌△DQF(SAS),∴DG=DF,∠PDG=∠QDF,∴∠FDG=∠PDG+∠PDF=∠QDF+∠PDG=∠PDQ=90°∴∠GDM=90°﹣∠FDM=45°=∠GDM,∵DH=DH,∴△GDH≌△FDH(SAS),∴GH=FH=,∴OH=OG﹣GH=3+n﹣=n+,在Rt△HOF中,根据勾股定理得,(n+)2+(3﹣n)2=,∴n=1或n=(此时,OH=n+=2,所以点H与点C重合,舍去),∴H(0,),∵C(3,3),∴直线CH的解析式为y=x+①,∵抛物线的解析式为y=﹣x2+x+2②,联立①②解得,或(由于点M在第二象限,所以舍去),∴M(﹣,).12.解:(1)∵抛物线y=ax2+bx﹣3过点A(﹣1,0)、P(5,12)两点,∴,解得:,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,过点P作PN⊥y轴,QM⊥y轴,∵S△QDC:S△QDP=2:3,∴,∴,∵PN⊥y轴,QM⊥y轴,∴QM∥PN,∴△CQM∽△CPN,∴,∵PN=5,∴QM=2,∵QF⊥x轴于点F,交抛物线于点D,∴D点的横坐标为2,把x=2代入y=x2﹣2x﹣3=4﹣4﹣3=﹣3,∴D(2,﹣3),设直线PD的解析式为y=kx+b,∴,解得:,∴直线PD的解析式为y=5x﹣13; (3)如图2,过点P作PN⊥y轴,∵P(5,12),C(0,﹣3),∴CN=OC+ON=12+3=15,PN=5,∴,∵∠ABM=∠PCO,∴,如图2,若点M在x轴上方,∵OB=3,∴在y轴上取E(0,1),tan∠OBE=,设直线BE的解析式为y=mx+n,∴,解得:m=﹣,∴直线BE的解析式为y=﹣,∴,解得:x1=3,,∴M(﹣),如图3,当点M在x轴下方,同理取点D(0,﹣1),求得直线BD的解析式为y=x﹣1,∴,解得:,∴M(﹣,﹣),综合以上可得M点的坐标为(﹣或(﹣).13.解:(1)在y=x2+(m﹣2)x﹣2m(m>0)中,令x=0,得y=﹣2m,∴C(0,﹣2m),令y=0,得x2+(m﹣2)x﹣2m=0,解得:x1=2,x2=﹣m,∴A(﹣m,0),B(2,0),∴AB=2﹣(﹣m)=m+2,OC=2m∵S△ABC=3∴(m+2)•2m=3,解得:m1=1,m2=﹣3(不符合题意)∴m=1;∴抛物线C1:y=x2﹣x﹣2(2)如图2,设D(t,t2﹣t﹣2),CD交x轴于K,作DT⊥x轴于T,由(1)得:B(2,0),C(0,﹣2)∵当x轴恰好三等分△DBC的面积时,有S△BDK=S△BCD或S△BDK=S△BCD ∴=或=,①当=时,=∴DT=OC∴t2﹣t﹣2=×2,解得:t1=,t2=,∵点D在第二象限,∴t<0∴t=,②当=时,=2∴DT=2OC∴t2﹣t﹣2=2×2,解得:t1=3,t2=﹣2,∵t<0∴t=﹣2综上所述,当x轴恰好三等分△DBC的面积时,点D的横坐标为或﹣2;(3)如图3,取WE中点T,过点T作TR⊥EF交EN于点R,连接WR,WN,由题意知:抛物线C1:y=x2﹣x﹣2=﹣,将抛物线C1向右平移,使新抛物线C2经过原点,∴新抛物线C2解析式为y=(x﹣)2﹣=x2﹣3x,对称轴为:直线x=,顶点E(,﹣),∴F(,4),EF=在y=x2﹣3x中,令y=4,则4=x2﹣3x,解得:x1=﹣1,x2=4∴G(﹣1,4),H(4,4)∴GH=5∵GM=NH=t,WF=,∴MF=NF=﹣t,WE=﹣=5,WT=TE=WE=,∵∠EFM=∠EFN=90°,WF=NF∴△MWF≌△NWF(SAS)∴∠MWF=∠NWF∵∠MWF=3∠FEN∴∠NWF=3∠FEN∵∠NWF=∠FEN+∠ENW∴∠ENW=2∠FEN∵WT=ET,TR⊥EF∴RW=RE∴∠FEN=∠EWR∴∠NRW=2∠FEN∴∠ENW=∠NRW∴RW=WN∴RE=WN由勾股定理得:EN2=EF2+NF2=+,WN2=WF2+NF2=+,∵△ERT∽△ENF∴=,即ER=EN∴ER2=EN2=[+],∴[+]=+,解得:t1=(不符合题意,舍去),t2=,故t=(秒).。
2021年福建省龙岩市中考数学压轴题总复习解析版1.已知二次函数y=ax2+bx+6的图象开口向下,与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P是该函数图象上的一个动点(不与点C重合).
(1)求二次函数的关系式;
(2)如图1,当点P是该函数图象上一个动点且在线段AC的上方,若△PCA的面积为12,求点P的坐标;
(3)如图2,该函数图象的顶点为D,在该函数图象上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E的坐标;若不存在请说明理由.
解:(1)因为点A(﹣6,0)和点B(2,0),
设函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),
则﹣12a=6,解得:a=−1 2,
函数的表达式为:y=−1
2x
2﹣2x+6…①,
顶点D坐标为(﹣2,8);
(2)解法一:如图1所示,过点P作直线m∥AC交抛物线于点P′,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,
∵OA=OC,
∴∠PHG =∠CAB =45°,则HP =√2PG ,
S △PCA =12PG ×AC =12×√22
PG ×6√2=12,解得:PH =4, 直线AC 的表达式为:y =x +6,
则直线m 的表达式为:y =x +10…②,
联立①②并解得:x =﹣2或﹣4,
则点P 坐标为(﹣2,8)或(﹣4,6);
解法二:如图1,过点P 作PH ∥y 轴交AC 于点H ,
设P (x ,−12x 2﹣2x +6).
∵△PCA 的面积为12,
∴12OA •PH =12,即12×6•PH =12. ∴PH =4,
∴12PH •|x A ﹣x P |+12PH •|x P |=12,即12×4•|﹣6﹣x P |+12×4•|x P |=12, ∴x P =﹣2或﹣4,
则点P 坐标为(﹣2,8)或(﹣4,6);
(3)点A 、B 、C 、D 的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),
则AC =√72,CD =√8,AD =√80,
则∠ACD =90°,sin ∠DAC =DC AD =√1010,
延长DC 至D ′使CD =CD ′,连接AD ′,过点D 作DH ⊥AD ′,
则DD ′=2√8,AD =AD ′=√80,
S △ADD ′=12DD ′×AC =12DH ×AD ′,
即:2√8×√72=DH ×√80,解得:DH =5, sin2∠DAC =sin ∠DAD ′=DH AD′=12580=35
=sin ∠EAB , 则tan ∠EAB =34,
①当点E 在AB 上方时, 则直线AE 的表达式为:y =34x +b ,
将点A 坐标代入上式并解得: 直线AE 的表达式为:y =34x +92⋯④, 联立①④并解得:x =12(不合题意值已舍去),
即点E (12,398);
②当点E 在AB 下方时,
同理可得:点E (72,−578
). 综上,点E (12,398)或(7
2,−
578). 2.如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =﹣2相交于点D ,点A 是
直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,△ABC 的面积为s .
(1)当t =2时,请直接写出点B 的坐标;
(2)s 关于t 的函数解析式为s ={14t 2+bt −54,t <−1或t >5a(t +1)(t −5),−1<t <5
,其图象如图2所示,
结合图1、2的信息,求出a与b的值;
(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.
解:(1)如图1,连接AG,
当t=2时,A(﹣2,2),
设B(x,x+1),
在y=x+1中,当x=0时,y=1,
∴G(0,1),
∵AB⊥l1,
∴∠ABG=90°,
∴AB2+BG2=AG2,
即(x+2)2+(x+1﹣2)2+x2+(x+1﹣1)2=(﹣2)2+(2﹣1)2,
解得:x1=0(舍),x2=−1 2,
∴B(−1
2,
1
2
);
(2)如图2可知:当t=7时,s=4,。