数值预报简介
- 格式:ppt
- 大小:4.98 MB
- 文档页数:83
气象学中的天气预报技术与方法气象学是研究大气现象的科学,而天气预报作为气象学的一个重要分支,旨在准确预测未来一段时间内的天气情况。
随着科技的进步和气象观测手段的不断发展,天气预报技术也在日益提升。
本文将介绍气象学中常用的天气预报技术与方法。
一、气象观测技术气象观测是天气预报的基础,只有准确了解当前的天气情况,才能进行有效的预报。
气象观测技术包括地面观测和卫星观测两种。
地面观测主要依靠气象观测站进行,观测参数包括气温、湿度、气压、风向风速等。
观测站通常会配备各种气象仪器和设备,如温度计、湿度计、气压计、风速仪等。
观测人员会按照规定的时间间隔进行观测,并及时将观测数据报送给气象部门。
卫星观测则是利用气象卫星对大气进行遥感观测。
气象卫星搭载多种传感器,可以获取地球大气层各个高度的信息。
这些卫星观测数据可以提供大范围、全天候的观测数据,为天气预报提供重要参考依据。
二、数值模式预报数值模式预报是一种基于数学模型的天气预报方法。
通过建立大气运动方程和各种物理方程,模拟大气的运动和变化。
根据当前的气象观测数据,将其输入数值模式,模拟得到未来一段时间的天气情况。
数值模式预报通常采用计算机进行,需要进行大量的计算和数据处理。
模型的准确性和预报结果的可靠性,很大程度上取决于模型的精度和输入数据的准确性。
因此,气象观测数据的准确性和及时性对数值模式预报具有重要意义。
三、统计预报方法统计预报方法是一种基于历史气象数据的预报方法。
通过分析过去一段时间内的天气情况和相应的观测数据,建立统计模型。
然后根据当前的观测数据和模型的预测结果,预测未来一段时间的天气情况。
统计预报方法通常需要建立大量的样本数据,并采用适当的统计分析方法,如回归分析、聚类分析等。
这种方法可以应用于没有可靠数值模型或者观测数据不足的情况下,但其预报结果相对精度较低。
四、雷达和卫星图像分析雷达和卫星图像分析是一种基于气象雷达和卫星图像的预报方法。
通过分析雷达和卫星图像上的云层、降水带等特征,判断天气发展态势,并预测未来的天气情况。
天气预报的科学原理与技术手段天气预报对于我们的生产、生活和出行都有着重要的影响。
而现在,随着科技的不断进步,我们的天气预报也变得越来越准确。
那么,天气预报的科学原理和技术手段是什么呢?一、气象学原理天气预报的基础在于气象学,它是一门涉及大自然的气体和水的物理、化学、生物学及地球物理学等相关内容的科学。
气象学主要研究大气物理学、大气化学、大气动力学、云物理学、天气学等。
大气物理学是研究大气的基本物理过程的科学,涉及的内容包括气压、气温、风力、云、降水等。
大气化学是研究大气中各种物质和它们的相互作用的科学,如空气中水蒸气的含量、臭氧层的形成和破坏等。
大气动力学是研究大气中的运动、能量传输和物质输送等的科学,比如风的形成和变化等。
云物理学主要研究云的性质、形成和发展等。
天气学则是教我们如何判断未来的天气变化。
二、天气预报技术手段天气预报的准确性与其技术手段有着很大的关系,下面就来简单了解一下它的几个主要技术手段。
1.卫星遥感探测技术卫星遥感探测技术是通过高空卫星对近地球的大气进行探测,以了解大气运动、云团位置、云量、温度、湿度、大气环流等信息。
卫星遥感探测技术可以实现不同高度、不同位置、不同方向、不同天气的大规模、多时相的观测,具有实时性、高精度及避免人力干扰等优点。
2.雷达探测技术雷达探测技术是利用微波雷达对大气参数进行探测无线电技术。
雷达探测技术可以测量气象物理量如降雨、风暴、气压、温度等,能够提供气调资料。
相对于卫星遥感技术,雷达探测技术的空间分辨率更高,能够实现多个向径的观测和高精度立体测量。
3.数值预报技术数值预报技术是将大气运动的动力方程通过计算机求解得到大气状态的变化,从而预测未来的天气变化。
数值预报技术能够分析和估计气象要素的数值,包括温度、湿度、压力及风场等。
数值预报技术能够覆盖世界各地,并能够模拟地球系统中各个不同的元素。
4.地面气象观测技术它是通过在地面布置气象观测仪器,实时测量气象参数,例如温度、湿度、大气压力、风速、降水量等气象要素的现场测量数据。
区域数值预报产品说明1grib2数据来源为GRAPES-RAFS中尺度数值模式,数据压缩方案为jpeg2000。
2所有产品逐小时提供一个文件,文件名按“中华人民共和国气象行业标准”(详见附件)如下:Z_NAFP_C_BABJ_20160318000000_P_NWPC-GRAPES-3KM-CN-FFFMM.grib2,其中,Z:为数据类型编码方式,为不符合WMO编码格式的气象传输标识;NAFP:为数据类型识别,数值预报模式获得的预报产品;C:为数据生成中心编码方式,按编报中心进行编码;BABJ:为数据生成中心标识,北京;20160318000000为文件的生成时间yyyyMMddhhmmss,使用国际协调时(UTC);P:为文件属性,预报产品;NWPC:固定编码,标识数据制作单位。
“NWPC”表示中国气象局数值预报中心。
GRAPES:固定编码,标识模式名称。
RAFS:固定编码,表示区域预报模式系统。
CN:固定编码,表示该数据为高分辨率中国区域。
FFFMM:预报输出的时效。
“FFF”为小时(000-240)“MM”为分钟grib2:固定编码,标识文件为grib2格式编码。
每个文件正常大小约27MB,其中000时效约24MB,其他时效27MB4提供利用wgrib2方式直接提取数据转为二进制码和使用GRADS软件直接绘图的说明(附件3)5在/warms9km/readme提供NCL绘图范例draw_case.ncl(附件4) 。
附件3 应用GRADS画图的方法:使用grads绘图需要先使用wgrib2里的g2ctl.pl和gribmap建立数据索引g2ctl.pl -verf GRIB2filename.grb2 > filename.ctlgribmap -i filename.ctl你会看到filename.ctl 和 GRIB2filename.grb2.idx两个数据索引文件然后使用建立的数据索引使用grads读取数据绘图Grads>open filename.ctl>q fileFile 1 : GRIB2filename.grb2Descriptor: filename.ctlBinary: GRIB2filename.grb2Type = GriddedXsize = 751 Ysize = 501 Zsize = 10 Tsize = 1 Esize = 1Number of Variables = 16apcpsfc 0 0,1,8,1 ** surface Total Precipitation [kg/m^2]capesfc 0 0,7,6 ** surface Convective Available Potential Energy [J/kg]cinsfc 0 0,7,7 ** surface Convective Inhibition [J/kg]deprprs 10 0,0,7 ** (1000 925 850 700 600.. 500 400 300 200 100) Dew Point Depression (or Deficit) [K]hgtprs 10 0,3,5 ** (1000 925 850 700 600.. 500 400 300 200 100) Geopotential Height [gpm]pressfc 0 0,3,0 ** surface Pressure [Pa]prmslmsl 0 0,3,1 ** mean sea level Pressure Reduced to MSL [Pa] rhprs 10 0,1,1 ** (1000 925 850 700 600.. 500 400 300 200 100) Relative Humidity [%]rh2m 0 0,1,1 ** 2 m above ground Relative Humidity [%]tmpprs 10 0,0,0 ** (1000 925 850 700 600.. 500 400 300 200 100) Temperature [K]tmp2m 0 0,0,0 ** 2 m above ground Temperature [K]ugrdprs 10 0,2,2 ** (1000 925 850 700 600.. 500 400 300 200 100) U-Component of Wind [m/s]ugrd10m 0 0,2,2 ** 10 m above ground U-Component of Wind [m/s] vgrdprs 10 0,2,3 ** (1000 925 850 700 600.. 500 400 300 200 100) V-Component of Wind [m/s]vgrd10m 0 0,2,3 ** 10 m above ground V-Component of Wind [m/s] var016224sfc 0 0,16,224 ** surface desc [unit]>d apcpsfc附件4 应用NCL绘图脚本范例(animate.ncl):;==================================================================== ==; animate_2.ncl;; Concepts illustrated:; - Creating animations; - Animating TMP of all levels;==================================================================== ==load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl";==================================================================== ==; The main code;==================================================================== ==begin;---Read desired datasrcFileName = "/cma/g1/nwp_sp/NWP_PST_DATA/TOGRIB2/rundir/output/test/shanghai_2016 080212024.grb2"sfile = addfile(srcFileName,"r")TMP = sfile->TMP_P0_L100_GLL0TMP@lat2d = sfile->lat_0 ; for plottingTMP@lon2d = sfile->lon_0printVarSummary(TMP)printVarSummary(sfile->lat_0)printVarSummary(sfile->lon_0);---For zooming in on mapminlat = 15.0maxlat = 55.0minlon = 70.0maxlon = 140.0;---Get dimensionsdims = dimsizes(TMP)nlev = dims(0)nlat = dims(1)nlon = dims(2);---Set some resourcesres = Trueres@gsnMaximize = Trueres@cnFillOn = Trueres@cnLinesOn = Falseres@cnLineLabelsOn = Falseres@cnLevelSelectionMode = "ExplicitLevels"res@cnLevels = ispan(200,323,3)res@cnFillPalette = "WhViBlGrYeOrReWh"res@mpMinLatF = minlatres@mpMaxLatF = maxlatres@mpMinLonF = minlonres@mpMaxLonF = maxlonres@mpCenterLonF = (minlon+maxlon)*0.5res@mpCenterLatF = (minlat+maxlat)*0.5res@pmTickMarkDisplayMode = "Always"res@lbLabelFontHeightF = 0.01res@gsnAddCyclic = False ; this is regional data;---Loop across each level and plot to a different PNG file every time do n=0,nlev-1wks = gsn_open_wks("png","animate"+sprinti("%02i",n)) ; animate_00.png, animate_01.png, etcprint("level(" + n + ") = " + TMP&lv_ISBL0(n))res@gsnRightString = "level = " + TMP&lv_ISBL0(n) + " (" + TMP&lv_ISBL0@units + ")"plot = gsn_csm_contour_map(wks,TMP(n,:,:),res)delete(wks) ; Make sure PNG file is closedend do;---Convert PNG images to animated GIFcmd = "convert -delay 25 animate*.png animate_2.gif"system(cmd)end。
GRAPES中国气象局新一代数值预报系统创新研究计划及阶段成果中国气象科学研究院数值预报研究中心(2004年3月1日)一、计划简介2000年10月,中国气象局党组做出一项战略性决策,依托中国气象科学研究院、国家气象中心、国家卫星中心,联合组建数值预报研究创新基地,即数值预报研究中心,集中人力、物力自主创新研制中国气象局新一代数值预报系统:GRAPES系统(英文缩略词为:G lobal/R egional A ssimilation and P r E diction S ystem,全球/区域同化预报系统)。
2000年9月,国家科技部批准“十五”国家重点科技攻关项目“中国气象数值预报系统技术创新研究”立项(以下简称GRAPES项目),GRAPES的研究开发工作正式启动。
GRAPES项目研究的主要目的是在可预见的21世纪初叶高性能巨型计算机能力和可获取的高时空分辨率气象观测资料条件下,充分吸收国内外的研究新成果,自主开发建立起中国新一代气象数值预报体系。
总体目标是以四维变分同化技术、建立在新的通用动力框架基础上的、模块化的不同尺度气象数值预报模式及数值预报支持系统为研究重点,自主开发建立一套具有持续自主创新能力的气象数值预报新体系,包括资料四维变分同化系统、有限区域中尺度数值预报系统、全球中期天气数值预报系统以及环境支持系统,其技术性能达到国际同期先进水平。
最终通过对气象数值预报技术的创新研究、系统的更新换代,实现数值预报技术的跨越发展,并建立起持续发展创新的基础平台,使21世纪的中国气象数值预报达到发达国家的同期先进水平,满足国民经济和社会发展对气象预报服务不断增长的要求。
该模式系统将融合国内外最近几年在大气科学、探测技术、计算机等方面的最新成果,并将作为新的气候模式系统的大气环流模式原型,将成为我国新一代全球中期天气预报和区域中尺度天气预报业务系统的基础与核心,最终为气象科研人员提供一个业务与科研共享、大气科学及相关应用基础科学数值模拟研究的共用平台,这对于加强研究机构与业务单位之间的合作,加快研究成果向业务转化的步伐具有重要的意义。
天有可测风云——数值天气预报的诞生过去,人们对天气的预测主要是凭经验。
在民间有许多天气的谚语,然而这种预测是很不准确的。
如何准确地预测天气情况呢?数学家们把数学计算方法引入了天气的分析,从而诞生了数值天气预报。
数值天气预报,指的是运用数学方法,通过数值计算进行天气预报的方法和相关的理论,是现代天气预报及天气变化预测的主要方式。
人能算天古代中国人,很早就有通过数的计算来预测天气变化的想法。
在中国古代学者看来,天气的变化也是“天文”的一个组成部分,历代的《天文志》都有关于异常天气或气象的记载。
既然当时人们已成功地计算出日月星辰的运行,对它们的未来位置进行预测,为什么不能算出天气的变化呢?不过,要说对天气数值预报进行可行性的探讨却是在很久以后。
1631年,意大利学者G·伽利略发明了温度计,1643年,他的学生E·托里拆利提出了气压计原理,这使人们有可能对形成天气的某些要素作定量考察。
牛顿力学体系的建立和微积分学的创立提供了用数学方法研究气象问题的真正的可能性。
但对大气现象的确切的数学表述却是在两个世纪之后了。
这一段时间,许多科学家的成果为之奠定了基础。
流体动力学方程,波义耳—查理定律,热力学第一定律等以及赫尔姆霍茨、开尔文、瑞利等人的出色的工作等等。
1904年挪威气象学家别克内斯指出,天气预报的中心问题就是:已知大气状态在一个时刻的观测值来解一般形式的流体力学方程。
这是别克内斯对气象学的一个重大贡献——解决了从数学上怎样作预报的问题。
首次明确设法求解流体力学方程的则是英国学者L·F·理查逊,他于1910年推出了解流体力学方程这类非线性偏微分方程的数值解法——有限差方法。
这个方法是把连续变量的特征用大量固定而离散的点上的值来表示,对变量的连续变化用它在离散而密布的点上的差来逼近。
实际上是用有限差分近似地把所给的偏微分方程化为一系列代数方程,而这些代数方程的解是可以计算出来的。
气象数值预报中的数值模拟方法气象数值预报是利用计算机模拟大气运动规律,预测未来几天、十天、数十天甚至更长时间内的天气变化趋势。
数值模拟方法是气象数值预报的核心技术之一,也是气象学、计算机科学和数学的交叉领域。
在这篇文章中,我们将探讨气象数值预报中的数值模拟方法,包括数值模拟的基本原理、模拟过程中的误差和校正方法、以及数值预报的发展趋势等方面。
1. 数值模拟的基本原理气象数值预报中的数值模拟方法是基于大气的动力学、热力学和水文学定律的数学模型。
它通过数学方程组求解来预测未来的大气状态。
数值模拟的基本流程是将大气分成一系列网格,然后在每个网格内求解大气的物理量(如气压、温度、湿度、风速等)和动力学量(如上升速度、水平速度等)。
这些物理量和动力学量是根据气象学原理和观测数据、资料进行计算的,同时也会受到气体运动的摩擦、辐射、降水等作用的影响。
具体来讲,数值模拟的过程可以被分为时间步进和空间离散两个部分。
时间步进将连续时间转化为离散的时间步,即将预报时段分为若干个小的时间段,每个时间段内大气的状态是一个离散的数值。
空间离散将大气分成若干个网格,每个网格内气压、温度、湿度等物理量以及经度、纬度等位置信息都是一个离散的数值。
在数值模拟的过程中,可以使用不同的模型和算法来求解方程组。
基于前述基本原理,刘一霖等人(2007)把数值模拟方法分为两种:一类是基于大气动力学方程组的全球模式和区域模式,另一类是基于统计方法的天气预报模式。
前者包括众多模型,如欧洲中心数值预报模式(ECMWF)、美国大气研究中心全球气象模式(GFS)、中国气象局气象数值预报模式(CNMNM)、日本气象局全球数值预报模式(JMA-GSM)等。
后者包括集合平均模式、人工神经网络模型、回归模型等。
2. 模拟过程中的误差和校正方法气象数值预报的数值模拟精度受许多因素影响,如初始场选择、模型选择、参数调整等。
在数值模拟过程中,误差来源较多,可分为三类:物理误差、数值误差和初始场误差。
第六章数值预报产品数值天气预报(Numerical Weather Prediction, NWP)是根据大气实际情况,在一定初值和边值条件下,通过数值计算,求解描写天气演变过程的流体力学和热力学方程组,预报未来天气的方法。
和一般用天气学方法、并结合经验制作出来的天气预报不同,这种预报是定量和客观的预报。
预报所用或所根据的方程组和大气动力学中所用的方程组相同,即由连续方程、热力学方程、水汽方程、状态方程和3个运动方程(见大气动力方程) 共7个方程所构成的方程组。
方程组中,含有7个预报量(速度沿x,y,z三个方向的分量u,v,w和温度T,气压P,空气密度ρ以及比湿q)和7个预报方程。
方程组中的粘性力F,非绝热加热量Q 和水汽量S一般都当作时间、空间和这7个预报量的函数。
通过高性能计算机求解方程组,获得未来7个未知数的时空分析,即未来天气分布。
数值天气预报与经典的以天气学方法作天气预报不同,它是一种定量的和客观的预报,正因为如此,数值天气预报首先要求建立一个较好的反映预报时段的(短期的、中期的)数值预报模式和误差较小、计算稳定并相对运算较快的计算方法。
其次,由于数值天气预报要利用各种手段(常规的观测,雷达观测,船舶观测,卫星观测等)获取气象资料,因此,必须恰当地作气象资料的调整、处理和客观分析。
第三,由于数值天气预报的计算数据非常之多,很难用手工或小型计算机去完成,因此,必须要用高性能的计算机。
数值预报模式简介在中国,1982年开展数值预报业务。
目前数值预报已经成为各种业务天气预报的最重要的基础和持续提高业务天气预报准确率的根本途径。
日常工作中,我们经常要用到ECMWF全球谱模式、日本的全球谱模式(GSM)和远东区域谱模式(ASM)、美国NCEP模式、中国国家气象中心的T639模式以及MM5、WRF、GRAPES、AREMS等中尺度模式,下面分别进行简要介绍。
6.1 全球模式6.1.1 ECMWF全球谱模式TL511L60欧盟主要国家于1976年组建了ECMWF,至1979年建立了全球中期数值预报业务系统,并正式投入运行。