基于labview的远程数据采集系统设计
- 格式:doc
- 大小:1.70 MB
- 文档页数:58
LabVIEW与远程监控实现远程数据访问与控制LabVIEW与远程监控:实现远程数据访问与控制LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是由美国国家仪器公司开发的一套图形化编程环境,广泛应用于实验室、自动化控制和数据采集等领域。
LabVIEW提供了丰富的工具和函数库,使得开发人员能够快速、便捷地创建各种虚拟仪器。
远程监控是指通过网络等远程手段对实验设备、工业过程和环境进行监测、控制与管理。
传统的远程监控通常需要通过专用的硬件设备和复杂的网络搭建,但是借助LabVIEW的强大功能,我们能够实现更加简洁高效的远程数据访问与控制。
一、LabVIEW远程数据访问通过LabVIEW可以实现对远程设备和服务器的数据访问,可以获取实时数据、历史数据等,以及进行数据分析和处理。
1. 远程数据获取LabVIEW可以利用网络通信协议(如TCP/IP、UDP等)与远程设备进行连接,通过读取设备传感器或者其他数据源的数据,实现实时数据的采集。
开发人员可以自定义数据采集频率和采集间隔,将采集到的数据进行缓存和处理。
2. 数据传输与存储通过LabVIEW,采集到的数据可以实时传输至本地或远程的数据库、文件存储系统等。
借助LabVIEW提供的数据库工具和文件操作函数,可以快速实现数据的存储和管理。
同时,LabVIEW还支持各种数据格式的导入和导出,方便数据的交互和共享。
二、LabVIEW远程控制功能除了数据访问,LabVIEW还可以实现对远程设备的远程控制,以实现实时的远程监控和控制。
1. 远程命令执行通过LabVIEW,我们可以向远程设备发送命令,实现对设备的各种操作。
例如,我们可以通过LabVIEW发送控制指令,来改变设备的状态、调整参数设置等。
这种远程控制功能使得无人值守的远程监控和控制成为可能。
2. 虚拟仪器控制借助LabVIEW的虚拟仪器控制功能,我们可以远程操控各种实验设备,实时获取设备状态、监测各种参数,并进行相应的控制操作。
基于LabVIEW的实验室远程监控系统设计与实现毕业论文目录摘要Abstract第1章绪论 (1)1.1 课题的来源和意义 (1)1.2 国外研究现状及展望 (1)1.3 课题主要研究容和关键技术 (3)1.3.1 课题主要研究容 (3)1.3.2 关键技术研究 (3)第2章系统总体方案设计 (4)2.1 系统需求分析 (4)2.2 系统网络架构 (4)2.3 系统功能模块划分 (6)第3章可视化远程监控采集系统设计 (7)3.1 系统硬件构成 (7)3.2 传感器的选型 (8)第4章基于LabVIEW的监控系统设计 (12)4.1 系统模块划分 (12)4.2 用户认证模块设计 (12)4.3 用户界面设计 (14)4.4 程序结构设计 (16)4.5 数据采集模块设计 (17)4.5.1模拟信号采集与显示模块设计 (18)4.5.2 开关信号采集与显示模块设计 (18)4.5.3 空调与照明开关输出模块设计 (19)4.5.4 称重实验模块设计 (19)4.5.5 涡流实验模块设计 (21)4.5.6 转速测控实验模块设计 (22)4.5.7 振动实验模块设计 (24)4.6 图像采集及压缩 (25)4.6.1 图像采集 (25)4.6.2 图像压缩与远程传输 (27)4.7 系统远程发布的实现 (31)4.7.1 基于DataSocket的远程通信方式 (31)4.7.2 远程Web访问 (32)4.7.3 可视化监控系统远程发布实现 (33)第5章系统实现与运行 (38)第6章结束语 (43)答谢辞参献第1章绪论1.1 课题的来源和意义本课题来源于信息职业技术学院国家示院校建设项目传感器实验室改造及网络课程建设项目。
其目的是基于虚拟仪器技术以及Internet技术构建实验室远程监控系统。
虚拟仪器技术的出现,尤其是其基于Web的远程网络技术的发展为解决上述问题,提供了新的途径。
所谓虚拟仪器,就是用户在通用计算机平台上,根据需求定义和设计仪器的测试功能,使得使用者在操作这台虚拟仪器时,就像是在操作一台他自己设计的测试仪器一样。
基于LabVIEW 的单片机数据采集系统设计与实现摘要:本文设计了一种基于LabVIEW与STC89C54RD+单片机的数据采集系统。
单片机采集到的数据通过PL2303HX芯片的RS232转USB接口的双向功能,实现了只用一条USB线就可以把采集上的数据传输到LabVIEW中进行显示和存储。
从下位机和上位机两个部分阐述了系统的设计。
1. 引言LabVIEW是美国国家仪器公司(National Instru-ment)开发的一种虚拟仪器平台,它功能强大,提供了丰富的数据采集、分析和存储库函数以及包括DAQ,GPIB,PXI,VXI,RS 232/485在内的各种仪器通信总线标准的所有功能函数。
利用LabVIEW设计的数据采集系统,可模拟采集各种信号,但是配备NI公司的数据采集板卡比较贵,在实际开发中可选用单片机小系统对数据进行采集。
本系统的数据采集模块由DS18B20温度传感器和STC89C52RD+单片机以及MAX232、PL2303HX组成。
由单片机组成的小系统对温度信号进行采集和转换,然后通过MAX232将单片机的TTL电平转换成RS 232电平,再经过PL2303HX芯片将RS232转换成USB接口信号,实现将数据传送给上位机,在LabVIEW开发平台下,对数据进行各种处理、分析,并对信号进行存储和显示,从而实现了一种在LabVIEW 环境下的单片机温度测试系统。
2.单片机系统的设计根据实际情况,本次设计选用STC89C54RD+单片机。
下位机整体模块如下图1所示。
图1. 整体系统组成框图2.1. 温度传感器模块本次设计采用的是美国DALLAS 的DS18B20半导体温度传感器,它支持“一线总线”接口,具有微型化、低功耗、高性能、抗干扰能力强、易配微处理器等优点,可直接将温度转化成串行数字信号供处理器处理。
单片机开发板上的DS18B20 电路接法如图2.1所示。
2.2. 单片机处理模块STC89C54RD+是一种低功耗、高性能CMOS8位微控制器,具有 16K 在系统可编程Flash 存储器。
学士学位论文题目:基于labview的远程数据采集系统设计学生:雷子指导教师:很牛的讲师年级:2008级10班专业:计算机科学与技术系别:计算机科学系学院:计算机科学与信息工程学院说明本表需在指导教师和有关领导审查批准的情况下,要求学生认真填写。
说明课题的来源(自拟题目或指导教师承担的科研任务)、课题研究的目的和意义、课题在国内外研究现状和发展趋势。
若课题因故变动时,应向指导教师提出申请,提交题目变动论证报告。
学士学位论文题目基于labview的远程数据采集系统设计学生雷子指导教师很牛的讲师年级 2008级10班专业计算机科学与技术系别计算机科学系学院计算机科学与信息工程学院家里蹲大学2012年5月摘要:虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。
本设计采用NI PCI-6221数据采集卡,运用虚拟仪器及其相关技术于多通道数据采集系统的设计。
该系统具有数据同时采集、采集数据实时显示、存储与管理、报警记录等功能,最后使用Web技术实现了采集数据的远程访问。
本文首先概述了测控技术和虚拟仪器技术在国内外的发展及以后的发展趋势,探讨了虚拟仪器的总线及其标准、框架结构、LabVIEW开发平台,然后介绍了数据采集的相关理论,给出了数据采集系统的硬件结构图。
在分析本系统功能需求的基础上,介绍了程序模块化设计、数据库、Web、多线程等设计中用到的技术,最后一章给出了本设计的前面板图。
本设计是虚拟仪器在测控领域的一次成功尝试。
实践证明虚拟仪器是一种优秀的解决方案,能够高效的实现各种测控任务。
关键词:虚拟仪器;数据采集;MySQL;PHP;LabVIEW1目录第一章绪论 (4)1.1 引言 (4)1.2 课题背景 (4)1.2.1 测控技术的国内外发展现状 (4)1.2.2 虚拟仪器技术发展趋势 (5)1.3 本设计所做的工作 (6)1.3.1 远程数据采集系统的设计 (6)1.3.2 远程数据检索的设计 (6)第二章虚拟仪器 (7)2.1 虚拟仪器技术概述 (7)2.1.1 虚拟仪器的概念 (7)2.1.2 虚拟仪器的特点及优势 (7)2.1.3 虚拟仪器和传统仪器的比较 (8)2.1.4虚拟仪器测试系统的组成 (9)2.1.5 虚拟仪器I/O接口设备 (9)2.1.6 虚拟仪器的软件结构 (10)2.2虚拟仪器的开发软件 (11)2.2.1虚拟仪器的开发语言 (11)2.2.2 图形化虚拟仪器开发平台——LabVIEW (11)2.2.3基于LabVIEW平台的虚拟仪器程序设计 (11)第三章系统设计理论及硬件平台的实现 (13)3.1 PC机 (13)3.2 数据采集理论 (13)3.2.1 数据采集技术概论 (13)3.2.2采集系统的一般组成及各部分功能描述 (14)3.2.3传感器 (15)3.2.4信号调理 (15)3.2.5 输入信号的类型 (16)3.2.6输入信号的连接方式 (18)3.2.2测量系统分类 (18)3.2.8选择合适的测量系统 (20)3.3数据采集卡的选择 (21)3.3.1数据采集卡的主要性能指标 (21)3.3.2数据采集卡(DAQ卡)的组成 (22)3.3.3 NI PCI-6221数据采集卡 (22)3.4多通道数据采集系统总体硬件框图 (23)第四章系统软件设计的相关技术 (24)4.1程序模块化设计概述 (24)4.1.1程序设计的模块化原则 (24)4.1.2软件系统的模块化设计原则 (24)4.1.3本设计的软件系统模块划分 (25)4.2数据库技术 (26)4.2.1数据库技术概述 (26)4.2.2 ADO与数据库的交互技术 (27)4.2.3 MySQL数据库 (27)4.3 Web技术 (28)4.3.1 Web技术概述 (28)4.3.2 PHP技术 (29)4.3.3远程数据访问系统 (30)4.4多线程技术 (30)4.4.1 Windows的多线程机制 (30)4.4.2 LabVIEW与多线程 (30)4.4.3多线程技术在本设计中的应用 (31)4.5系统具体应用程序的实现 (31)4.5.1数据采集程序 (31)4.5.2数据保存程序 (31)4.5.3历史数据查询程序 (32)4.5.4报警记录程序 (32)第五章系统软件的具体实现 (34)5.1登录系统 (34)5.2通道参数配置 (35)5.3实时数据显示 (35)5.4历史数据查询 (36)5.5报警记录 (37)第六章总结 (39)Abstract (40)参考文献 (41)致谢 (42)第一章绪论1.1 引言测控技术在现代科学技术、工业生产和国防科技等诸多领域中应用十分广泛,它的现代化已被认为是科学技术、国防现代化的重要条件和明显标志。
20世纪70年代以来,计算机、微电子等技术迅猛发展,在其推动下,测控仪器与技术不断进步,相继诞生了智能仪器、PC 仪器、VXI仪器、虚拟仪器及互换性虚拟仪器等微机化仪器及其自动测控系统,计算机与现代化仪器设备间的界限日渐模糊,测控领域和范围不断拓宽[1]。
近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控系统得到越来越多的应用,尤其是在航空航天等国防科技领域。
网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置越来越多的被个人计算机所占据,其中,软件系统是计算机系统的核心,甚至是整个测控系统的灵魂,应用于测控领域的软件系统称为监控软件。
传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。
因此,这种“监控软件-数据采集系统”构架的测控系统结构在很多领域都得到了广泛的应用,并形成了一套完整的理论。
1.2 课题背景1.2.1 测控技术的国内外发展现状早期的测控系统采用大型仪表集中对各个重要设备的状态进行监控,通过操作盘进行集中式操作;而计算机测控系统是以计算机为主体,加上检测装置、执行机构与被控对象(生产过程)共同构成的整体。
系统中的计算机实现生产过程的检测、监督和控制功能。
由于通信协议不开放,因此这种测控系统是一个自封闭系统,一般只能完成单一的测控功能,一般通过接口,如RS-232或GPIB接口可与本地计算机或其他仪器设备进行简单互连[1]。
随着科学技术的发展,在我国国防、通信、航天、航空、气象、环境监测、制造等领域,要求测控和处理的信息量越来越大、速度越来越快。
同时测控对象的空间位置日益分散,测控任务日益复杂,测控系统日益庞大,因此,提出了测控现场化、远程化、网络化的要求。
传统的单机仪器己远远不能适应大数量、高质量的信息采集要求,产生了由计算机控制的测控系统,系统内单元通过各种总线互连,进行信息的传输。
网络化的测控技术兴起于国外,是在计算机网络技术、通信技术高速发展,以及对大容量分布式测控的大量需求背景下发展起来。
主要可分为以下几个阶段。
第一阶段:起始于20世纪70年代通用仪器总线(GPIB)的出现,GPIB实现了计算机与测控系统的首次结合,使得测量仪器从独立的手工操作单台仪器开始走向计算机控制的多台仪器的测控系统。
此阶段是网络化测控系统的雏形与起始阶段。
第二阶段:起始于20世纪80年代VXI标准化仪器总线的出现,VXI系统可以将大型计算机昂贵的外设、VXI设备、通信线路等硬件资源以及大型数据库程序等软件资源纳入网络,使得这些宝贵的资源得以共享。
此阶段是网络化测控系统的初步发展阶段。
第三阶段:随着技术的发展,现场总线技术的出现带动了现场总线控制系统(FCS)的迅速发展,使得可以在一个工厂范围内通过总线将成千上万个智能传感器/变送器等智能化的仪表组成一个网络化测控仪器系统,此阶段是网络化测控系统的快速发展阶段。
第四阶段:在对现代化要求极高的领域,传统的测控系统已经逐渐无法满足用户的要求。
许多部门或大型企业迫切要求构建基于Internet或大型局域网的网络化测控系统,即通常所说的分布式测控网络,此阶段是网络化测控系统发展的成熟阶段。
1.2.2 虚拟仪器技术发展趋势虚拟仪器是微电子、通信、计算机等现代科学技术高速发展的产物。
自从1785年库仑发明静电扭秤,1834年哈里斯提出静电电表结构以来,电测仪表和电子仪器随相关技术的进步、仪器仪表元器件质量的提高和测量理论方法的改进得到飞速发展。
有一种较普遍地说法将测量仪器的发展分为五个阶段,如图1.1所示。
图1.1测量技术的发展从十九世纪初到二十世纪末,测量仪器经历了模拟仪器、电子仪器、数字仪器、智能仪器等阶段,发展到现在的虚拟仪器。
模拟仪器主要有模拟式电压表、电流表等,这些仪表解决了当时对某些量的测量的需求。
从二十世纪初到五十年代左右,测量仪器的材料性能得到改善出现了电子管,同时测量理论和方法与电子技术、控制技术相结合,出现了以记录仪和示波器为代表的电子仪表五十年代以后随着晶体管和集成电路的出现以及应用电子技术的发展将数字技术成功地应用到测量仪器。
这时电子控制集成电路和计算机技术开始融为一体成为测量仪器的主要特征。
七十年代初第一片微处理器问世,微型计算机技术从此发展迅猛,在其影响下测量仪器呈现出新的活力并取得了长足进步。
伴随微电子技术、计算机技术、网络技术的迅速发展及在电工电子测量技术领域的应用,测量仪器也不断进步和发展,出现了智能仪器。
智能仪器是将微机置于仪器内部,使仪器具有控制、存储、运算、逻辑判断及自动操作等智能特点,并在测量准确度、灵敏度、可靠性、自动化程度、运用能力及解决测量技术问题的深度和广度等方面都有明显的进步。
这种内置微处理器的仪器,既能进行自动测试又能完成数据处理,可取代部分的脑力劳动。
随着电子技术、微计算机技术的发展,智能仪器的智能水平不断提高。
但是在数字化仪器、智能仪器阶段基本上没有摆脱传统仪器那种独立使用、手动操作的模式,难以胜任更复杂、多任务的测量需求。
为解决这样的问题,总线式仪器与系统应运而生。
人们发明制造出CAMAC、RS-232和GPIB等多种仪器通讯接口总线,用于将多台智能仪器连在一起,以构成更复杂的测试系统。
1982年美国西北仪器公司总裁德·伯克提出了微机化仪器的概念,也就是人们现在常提到的卡式仪器。
卡式仪器是虚拟仪器的雏形,是将传统独立式仪器的测量电路部分与接口部分集合在一起制成仪器功能卡,将其插入微机的内部插槽或外部插件箱中形成的仪器。
PC总线仪器系统是卡式仪器的一种,它是利用PC机内部的总线,把若干块仪器卡插在PC机内部或外部扩展机箱内而组成的。
插卡总线机箱与PC 机间的通信,可利用RS-232、GPIB接口总线或以太网电缆等进行。