称多县高寒草甸草地资源健康评价研究
- 格式:pdf
- 大小:310.13 KB
- 文档页数:4
玛曲高寒草甸沙化特征及沙化驱动机制研究的开题报告
一、研究背景
高寒草甸是青藏高原重要的生态系统类型,也是全球生物多样性最为丰富的区域之一。
但近年来,草甸沙漠化的现象越来越严重,这对草甸生态系统的稳定性造成了很大的威胁。
本研究旨在探究玛曲高寒草甸的沙化特征及沙化驱动机制,为草甸生态系统的保护与恢复提供科学依据。
二、研究目的
1. 系统调查玛曲高寒草甸沙化程度及其分布特征;
2. 分析玛曲高寒草甸沙化的环境因素及其与沙化的关系;
3. 探究玛曲高寒草甸沙化的驱动机制;
4. 提出相应的防治对策,推动草甸沙漠化治理。
三、研究内容
本研究将从以下几个方面展开:
1. 玛曲高寒草甸沙化程度及其分布特征的调查;
2. 环境因素与草甸沙漠化的相关性分析,包括降水、气温、人类活动等因素;
3. 沙化驱动机制的探究,包括自然因素和人为因素;
4. 针对沙漠化现象提出相应的防治对策和措施。
四、研究方法
本研究采用实地调查和数据统计相结合的方法,具体包括:
1. 对玛曲高寒草甸沙化程度及其分布的实地调查;
2. 获取气象、土壤、水资源等环境数据分析其与草甸沙漠化的相关性;
3. 利用遥感技术分析沙化过程的演变;
4. 通过实验和统计学方法探究沙漠化驱动机制;
5. 提出针对性的防治措施。
五、预期成果
1. 对玛曲高寒草甸沙化的分布特征及其影响因素进行深入研究,揭示玛曲高寒草甸沙化驱动机制;
2. 提出针对性的治理和防控措施,有助于草甸生态系统恢复和改善;
3. 在玛曲地区探索草甸地区沙漠化治理的可行性和途径;
4. 发表高水平的学术论文,提高自身研究水平和学术影响力。
第32卷 第3期V o l .32 No .3草 地 学 报A C T A A G R E S T I A S I N I C A2024年 3月M a r . 2024d o i :10.11733/j.i s s n .1007-0435.2024.03.017引用格式:曹 铭,王文颖,徐 进,等.青海高寒草甸马勃蘑菇圈增温作用的影响研究[J ].草地学报,2024,32(3):812-817C A O M i n g ,WA N G W e n -y i n g ,X UJ i n ,e t a l .T h e S t u d y a b o u t T h e r m a l e f f e c t o fQ i n g h a i L y c o p e r d a l e s F u n gu s F a i r -y R i n g [J ].A c t aA gr e s t i aS i n i c a ,2024,32(3):812-817青海高寒草甸马勃蘑菇圈增温作用的影响研究曹 铭1,王文颖2,3*,徐 进4,周华坤5,刘艳方1,德却拉姆2,杨玉青2(1.青海师范大学地理科学学院,青海西宁810008;2.青海师范大学生命科学学院,青海西宁810008;3.青海省青藏高原药用动植物资源重点实验室,青海西宁810016;4.山西农业大学园艺学院,山西太古030801;5.中国科学院西北高原生物研究所,青海西宁810008)收稿日期:2023-09-14;修回日期:2023-09-20基金项目:国家重点研发课题(2023Y F F 1304305)和青海省2021年度第一批中央引导地方科技发展专项资金(2021Z Y 002)资助作者简介:曹铭(1989-),男,回族,甘肃兰州人,博士研究生,主要从事蘑菇圈真菌相关研究,E -m a i l :791957817@q q.c o m ;*通信作者A u -t h o r f o r c o r r e s p o n d e n c e ,E -m a i l :w a n g w y0106@163.c o m 摘要:蘑菇圈是广泛存在于草地和森林的大型真菌子实体环状群落㊂有些蘑菇圈如马勃蘑菇圈会显著促进周围植物生长,其蘑菇圈真菌促进植物生长的机理一直是一个热点科学问题㊂本研究选取青海海北高寒草甸马勃蘑菇圈,从2023年6月15日至7月15日,对蘑菇圈土壤温度进行连续监测,使用红外热成像仪对蘑菇圈子实体进行拍照,同时测定了土壤理化性质与酶活性,检验蘑菇圈真菌生长对土壤温度和土壤酶活的影响及其相互关系㊂结果表明:蘑菇圈圈上土壤温度变化与圈内㊁圈外有明显差异,在当日23时后至次日凌晨5时,蘑菇圈上土壤温度高于圈外与圈内0.3ħ~1.6ħ,红外影像显示蘑菇圈真菌子实体温度显著高于环境温度4ħ㊂蘑菇圈圈上速效养分含量显著高于圈内圈外(P <0.05)㊂蘑菇圈土壤脲酶㊁酸性磷酸酶㊁蔗糖酶㊁过氧化氢酶活性显著高于圈内和圈外㊂因此马勃蘑菇圈真菌的生长增加了土壤环境温度㊁提高土壤酶活,通过增加土壤速效养分促进了蘑菇圈上植物的生长㊂关键词:蘑菇圈;高寒草甸;土壤增温;土壤酶活中图分类号:S 718.81 文献标识码:A 文章编号:1007-0435(2024)03-0812-06T h e S t u d y a b o u t T h e r m a l E f f e c t o f Q i n g h a i L y c o p e r d a l e s F u n g u s F a i r y R i n gC A O M i n g 1,WA N G W e n -y i n g 2,3*,X UJ i n 4,Z H O U H u a -k u n 5,L I U Y a n -f a n g 1,D E Q U EL a -m u 2,Y A N G Y u -q i n g2(1.C o l l e g e o fG e o g r a p h i c a l S c i e n c e ,Q i n g h a iN o r m a lU n i v e r s i t y ,X i n i n g ,Q i n g h a i P r o v i n c e ,810008,C h i n a ;2.C o l l e g e o fL i f eS c i e n c e ,Q i n g h a iN o r m a lU n i v e r s i t y ,X i n i n g ,Q i n g h a i P r o v i n c e 810008;3.Q i n g h a iK e y L a b o r a t o r y o fM e d i c i n a lA n i m a l a n dP l a n tR e s o u r c e s o f T i b e t a nP l a t e a u ,X i n i n g ,Q i n g h a i P r o v i n c e 810016,C h i n a ;4.C o l l e g e o fH o r t i c u l t u r e ,S h a n x iA g r i c u l t u r a lU n i v e r s i t y ,T a i g u ,Q i n gh a i P r o v i n c e 030801,C h i n a ;5.N o r t h w e s t I n s t i t u t e o f P l a t e a uB i o l o g y ,C h i n e s eA c a d e m y o f S c i e n c e s ,X i n i n g ,Q i n gh a i P r o v i n c e 810008,C h i n a )A b s t r a c t :F a i r y r i n g ,n a t u r a l l y o c c u r r i n g c i r c l e sm a d e u p o fm u s h r o o m s ,h a v e b e e n o b s e r v e d t o i n f l u e n c e t h e gr o w t h o f s u r r o u n d i n g p l a n t s ,p a r t i c u l a r l y p r o m o t i n g t h e g r o w t ho f p l a n t s i n t h eO Nz o n e .T h em e c h a n i s mo fm u s h r o o mr i n gf u ng i p r o m o t i n g p l a n t sh a s a l w a y s b e e n a c o n c e r n o f r e s e a r c h e r s .T hi s s t u d y f o c u s e s o n t h em e c h a n i s m s b y w h i c h f a i r yr i n g f u n g i ,s p e c i f i c a l l y H a i b e i L y c o p e r d a l e s ,e n h a n c e p l a n t g r o w t h .W em o n i t o r e d t h e s o i l t e m p e r a t u r eo f t h em u s h -r o o mc i r c l e s ,a n d t e s t e d t h e s o i l s p h y s i c a l a n d c h e m i c a l p r o p e r t i e s ,a sw e l l a s s o i l e n z ym e s .T h e r e s u l t s f o u n d t h a t t h e s o i l t e m p e r a t u r e c h a n g e s o n t h eO N z o n ew e r e s i g n i f i c a n t l y d i f f e r e n t f r o m t h o s e i n s i d e a n d o u t s i d e t h e f a i r y r i n g ,e s pe -c i a l l yf r o m11o c l o c k a t n igh t t o 5o 'c l o c ki n t h em o r n i n g .T h e a v e r a g e s o i l t e m p e r a t u r e o n t h e f a i r y r i n g w a s h i gh e r t h a n t h a t o u t s i d e t h e f a i r y r i n g a n d i n s i d e t h e f a i r y r i n g .W i t h i n o n em o n t h o f d e t e c t i o n ,t h e t e m pe r a t u r e o n t h e c i r c l e a t 5a mw a s h i g h e r b y 0.3t o 1.6d e g r e e sC e l s i u s t h a n t h a t o u t s i d e t h e c i r c l e a n d i n s i d e t h e c i r c l e .U s i n g an i n f r a r e d t e m p e r a t u r e c a m e r a t o c o m p a r e t h e p h y s i c a l a n d c h e m i c a l p r o pe r t i e s of t h e s o i l i n t h em u s h r o o mc i r c l e ,i tw a s f o u n d t h a t t h e t e m p e r a t u r e o f t h e f u ng u s f r u i t i n g b o d y o f th em u s h r o o mci r c l ew a s s i g n i f i c a n t l y h i g h e r t h a n t h e s u r r o u n d i n ge n v i r o n m e n t .Af t e r a n a l y z i ng th e p h y si c a l a n d c h e m i c a l p r o pe r t i e s of t h e s o i l ,i t w a s f o u n d t h a t t h e c o n t e n t o f a v a i l a b l e n u t r i e n t s i n t h em u s h r o o mc i r c l ew a s s ig n i f i c a n t l yhi g h e r t h a n t h a t o u t s i d e t h e i n n e r c i r c l e ,s i g n i f i c a n t l y h i gh e r t h a n I N z o n e a n d o u t z o n e a n dO U Tz o n e .A c i d p h o s p h a t a s e e n z y m e (S -A C P ),s u c r a s e e n z y m e s (S -S C ),c a t a l a s e e n z ym e s (S -C A T )a n d u r e a s e e n z y m e s (S -U E )w e r e d e t e c t e d f r o md i f f e r e n t s i t e s f r o m t h r e e f a i r y r i n g.T h e c a t a l a s e c o n c e n t r a t i o n第3期曹铭等:青海高寒草甸马勃蘑菇圈增温作用的影响研究o n t h e c i r c l ew a s s i g n i f i c a n t l y h i g h e r t h a n t h a t o u t s i d e t h e c i r c l e a n d i n s i d e t h e c i r c l e.T h e s o i l e n z y m e s a c t i v i t y i n I N z o n ew e r e h i g h e r t h a n i n t h eO U T z o n e,i n d i c a t i n g a l o n g-t e r me f f e c t o f m u s h r o o mc i r c l e f u n g i o n s o i l e n z y m e a c t i v i t y.I n c o n c l u s i o n,o u r e x p e r i m e n t a l r e s u l t s s u g g e s t t h a tm u s h r o o mr i n g f u n g i c a n a f f e c t s o i l a v a i l a b l e n u t r i e n t c o n c e n t r a-t i o n,e n z y m e a c t i v i t y a n d s o i l t e m p e r a t u r e.C h a n g e s i n t h e s e f a c t o r sm a y b e i m p o r t a n t f a c t o r s a f f e c t i n g p l a n t g r o w t h. K e y w o r d s:F a i r y r i n g;A l p i n em e a d o w;S o i lw a r m i n g;S o i l e n z y m e s蘑菇圈是大型真菌辐射生长形成的子实体环状带,蘑菇圈会影响周围草地植物的生长,即靠近蘑菇圈的植物生长茂盛,形成 绿草圈 [1]㊂关于蘑菇圈真菌如何影响植物生长,研究者做了相关研究,主流的研究结论是蘑菇圈真菌通过分解土壤有机质,将有机质中养分以可溶性形式释放出来,促进植物吸收矿物质,刺激植物生长[2-3]㊂青藏高原地处世界第三极,草甸植物的生长长期受到低温的限制㊂温度是制约该地区植物生长的重要因素㊂目前高寒草甸蘑菇圈真菌产热对植物生长影响的研究尚未见报道㊂蘑菇圈真菌作为一种草甸上常见的土壤真菌,分解吸收土壤有机质,在这个过程必然会产生热量,前人的检测结果表明蘑菇圈真菌会显著消耗圈上有机碳,导致圈上有机碳与植物地下部分显著低于圈外[5]㊂这说明圈上碳分解的过程要比圈外剧烈㊂而这个过程产生的热量还未能引起相关研究者的重视㊂研究蘑菇圈真菌产生热量对周围微环境的影响对全面了解蘑菇圈微生态互作有重要的意义㊂土壤酶活是衡量土壤环境和肥力变化的重要手段㊂对于探讨蘑菇圈真菌如何影响草地生态系统结构有很重要的研究意义㊂土壤酶是生态循环中重要的 催化剂,没有土壤酶,土壤有机物的转化㊁腐殖质的生成都不会发生㊂土壤酶在复杂的土壤物质转换起到关键的作用,土壤酶活性与土壤养分循环速率紧密相关㊂而土壤酶活对多种环境因子变化十分敏感,如土壤C㊁N㊁P含量㊁土壤温度均会显著影响土壤酶活性[6]㊂土壤微生物碳㊁氮与脲酶㊁蔗糖酶等酶活性显著正相关[7],刘琳等[8]发现模拟增温条件下土壤酶活性有显著增强,增温对土壤纤维素酶㊁过氧化物酶㊁脲酶和磷酸酶活性显著相关㊂因此,本研究以马勃蘑菇圈为研究对象,探寻蘑菇圈真菌生长对土壤温度和酶活的影响,为深入理解蘑菇圈植物㊁真菌㊁土壤之间的关系提供科学依据㊂1材料与方法1.1研究区自然地理概况本研究在海北高寒草地生态系统野外科学观测研究站开展㊂该站地理位置37.48ʎ~37.75ʎN, 101.20ʎ~101.38ʎE,海拔为3200m[17]㊂气候条件表现为只有冷暖季,暖季潮湿多雨,7月份温度达到峰值,最高气温为27.6ħ㊂冷季寒冷干燥,1月份极端最低气温为-37.1ħ㊂年均降水量为580m m,集中在5-8月份,占全年降水总量的80%㊂全年日照时间为2462.7h[9]㊂高寒草甸主要优势种为矮嵩草(K o b r e s i a h u m i l i s)㊁藏嵩草(K o b r e s i a t i b e t i c a)等㊂植被生长期为5-8月,5月份为植被返青期,6-8月为植被生长期,9月份进入枯黄期㊂土壤类型为高寒草甸土,土壤为草毡寒冻雏形土,土层厚度60c m左右[9]㊂1.2样方设置与取样马勃蘑菇圈(L y c o p e r d a l e s f u n g u s f a i r y r i n g)是高寒草甸常见的生态景观,也是研究蘑菇圈大型真菌影响草甸生态学的理想地点㊂海北站蘑菇圈通常半径几米到几十米不等,圈上植物比圈内和圈外生长旺盛,且蘑菇圈上禾本科植物多度显著高于圈外㊂本研究选择三个完整的马勃蘑菇圈(L y c o p e r d a l e s f u n g u s f a i r y r i n g),分别在三个蘑菇圈圈上(O Nz o n e)㊁圈内(I Nz o n e)和圈外(O U Tz o n e)放置Y Y W-S7I N1多参数温度传感器㊂传感器由江苏云与雾科技有限公司生产,测量精度为ʃ0.2ħ,共9个传感器㊂将传感器探针刺入土层深10c m处,进行温度测量,每十五分钟自动记录土温与气温,监测时间从6月15日持续到7月15日;在2023年7月15日使用艾睿天眼T2热成像仪对蘑菇圈子实体进行拍照,艾睿天眼T2热成像仪由北京普利斯特科技有限公司生产,测量精度为ʃ0.3ħ;在三个蘑菇圈圈上㊁圈内㊁圈外随机选择3个50c mˑ50c m的样方(共27个样方),进行样品采集㊂每个样方测定植物群落盖度和物种分盖度,然后将各植株从基部剪下,烘干后测定每种植物的地上生物量㊂完成地上生物量取样后,用土壤钻在样方内随机采集土壤3钻(5c m直径,10c m深)㊂分为两份,一份用于理化性质检测,一份用于土壤酶活测定㊂1.3土壤理化特性的分析土壤p H使用电位计法测量(德国s a r t o r i u s P B-10),土壤总氮(T N%)㊁总碳(T C%)含量应用燃烧法在元素分析仪(V a r i o M a xC N;E l e m e n t a r,G e r m a n y)上测定㊂土壤铵态氮㊁硝态氮含量应用连续流动注射318草 地 学 报第32卷分析系统(C o n t i n u o u s F l o w A n a l y s i s S ys t e m ,C F A )测定㊂方法同陈立红等[10]的相关研究文献㊂1.4 土壤酶活性的测定本研究测定了土壤脲酶活性㊁过氧化氢酶活性㊁蔗糖酶活性㊁酸性磷酸酶活性㊂脲酶活性采用苯酚钠-次氯酸钠比色法测定;蔗糖酶酶活使用3,5-二硝基水杨酸比色法测定;过氧化氢酶采用分光光度法测量;磷酸酶活性采用磷酸苯二钠比色法测定,测定方法见关松荫所著文献[11]㊂2 结果与分析2.1 蘑菇圈生长对植物群落组成和地上生物量的影响蘑菇圈上㊁圈内和圈外植物群落种类组成和地上生物量结果见表1㊂蘑菇圈上生物量最大,达到353.66g ㊃m -2,显著高于圈内(215.73g ㊃m -2)和圈外(255.31g ㊃m -2)㊂圈上㊁圈内和圈外禾本科牧草地上生物量分别为248.98,115.31和142.62g㊃m -2,尤其是垂穗披碱草圈上显著高于圈外,圈外显著高于圈内㊂莎草科牧草地上生物量在圈上㊁圈内和圈外差异不显著㊂圈上㊁圈内和圈外阔叶杂类草生物量分别为98.85,100.42和111.69g㊃m -2,圈上㊁圈外和圈内无显著差异㊂从表1可以看出,蘑菇圈的生长显著提升了圈上地上生物量特别是禾草科植物的生物量㊂但是也注意到,有一些矮小的杂类草在蘑菇圈上是缺失的,比如唐松草(T h a l i c t r u ma l pi n u m ),肉果草(L a n c e a t i b e t i c a ),假龙胆(G e n t i a n e l l am o e n c h ),矮生忍冬(L o n i c e r a m i n u t a ),线叶龙胆(G e n t i a n a f a r r e r i )㊂表1 蘑菇圈上㊁圈内㊁圈外植物群落种类组成及地上生物量T a b l e 1 C o m p o s i t i o no f s p e c i e s a n d t h e a b o v e g r o u n db i o m a s s o n f a i r y r i n g a n d i n s i d e ,o u t s i d e o f f a i r y r i n g单位:g㊃m -2植物种类P l a n t s pe c i e s 圈上生物量B i o m a s s i nO Nz o n e圈内生物量B i o m a s s i n I Nz o n e圈外生物量B i o m a s s i nO U Tz o n e禾草科P o a c e a e 248.98ʃ51.34a115.31ʃ26.03b142.62ʃ34.02b针茅S t i p a c a p i l l a t a 1.43ʃ0.34b3.20ʃ0.89a 2.52ʃ1.45a冷地早熟禾P o a a n n u a 102.21ʃ16.86a 76.46ʃ18.79b 94.45ʃ23.95a b 垂穗披碱草E l ym u s n u t a n s 145.34ʃ26.35a 35.65ʃ5.99b 46.65ʃ9.28b 莎草科C y p e r a c e a e 4.49ʃ0.94a6.19ʃ1.29a 5.02ʃ1.45a 矮嵩草K o b r e s i a h u m i l i s4.49ʃ0.94a 6.19ʃ1.29a 5.02ʃ1.45a 阔叶杂草103.46ʃ19.02a87.27ʃ6.46b101.20ʃ19.76a钝苞雪莲S a u s s u r e a n i g r e s c e n s 33.93ʃ5.02a --青海苜蓿M e d i c a g o a r c h i d u c i s -n i c o l a i 4.48ʃ2.35a2.14ʃ0.42b1.99ʃ0.46b披针叶黄华T h e r m o ps i s l a n c e o l a t a 0.17ʃ0.15b2.64ʃ0.46a 2.67ʃ0.45a 高山豆T ib e t i a h i m a l a ic a 0.59ʃ0.08b 10.03ʃ0.37a10.52ʃ1.90a 麻花艽G e n t i a n a s t r a m i n e a 7.30ʃ0.59b 4.67ʃ0.93c 13.77ʃ1.02a 细叶亚菊A j a n i a t e n u i f o l i a 0.41ʃ0.14b 1.21ʃ0.48a 1.26ʃ0.39a 蓬子菜G a l i u mv e r u m 2.71ʃ0.86a --湿地繁缕S t e l l a r i a u d a 8.71ʃ2.35a1.21ʃ0.64b1.33ʃ0.02b 野决明T h e r m o p s i s l u p i n o i d e s 3.21ʃ2.10a-1.12ʃ0.12b 圆萼刺参M o r i n a c h i n e n s i s 24.54ʃ3.91a 9.21ʃ0.66b18.67ʃ4.09a b 棉毛茛R a n u n c u l u sm e m b r a n a c e u s 0.65ʃ0.06b -1.27ʃ0.66a 钉柱委陵菜P o t e n t i l l a a n s e r i n a 0.43ʃ0.39b 1.23ʃ0.32a 1.51ʃ0.10a 甘肃马先蒿P e d i c u l a r i s k a n s u e n s i s 1.43ʃ0.28b 3.67ʃ0.68a 3.91ʃ0.89a 疏齿银莲花A n e m o n e o b t u s i l o b a 1.26ʃ0.23b 2.77ʃ0.25a 2.61ʃ0.89a 硬毛拉拉藤G a l i u mb o r e a l e v a r .c i l i a t u m-1.33ʃ0.22a 1.65ʃ0.27a 唐松草T h a l i c t r u ma l p i n u m -10.11ʃ0.48a 5.67ʃ0.33b 美丽风毛菊S a u s s u r e a s u pe r b a -4.45ʃ0.93b 6.32ʃ2.79a 肉果草L a n c e a t i b e t i c a -15.71ʃ0.59a 11.34ʃ3.14a 假龙胆G e n t i a n e l l am o e n c h -5.58ʃ0.43a 4.79ʃ1.18a 矮生忍冬L o n i c e r am i n u t a -1.42ʃ0.40a 0.91ʃ0.21b 线叶龙胆G e n t i a n af a r r e r i -8.34ʃ0.42b 10.34ʃ0.85a狭苞紫菀A s t e r f a r r e r i13.74ʃ0.50a2.32ʃ0.28b -总地上生物量A b o v e -gr o u n db i o m a s s 353.66ʃ63.42a215.73ʃ46.78b255.31ʃ54.84b 注:同行不同小写字母代表圈上㊁圈内和圈外生物量差异显著(P <0.05)N o t e :D i f f e r e n t l o w e r c a s e l e t t e r sw i t h i n t h e s a m e r o wi n d i c a t e s i g n i f i c a n t d i f f e r e n c e s o f d i f f e r e n t s pe c i e s b i o m a s s a t t h e 0.05l e v e l 418第3期曹 铭等:青海高寒草甸马勃蘑菇圈增温作用的影响研究2.2 蘑菇圈圈上㊁圈内㊁圈外土壤碳氮磷含量特征蘑菇圈圈内㊁圈上和圈外土壤碳氮磷含量见表2㊂从表中可以看出,圈上土壤总碳含量(2.81g ㊃k g -1)显著低于圈内(3.57m g ㊃k g -1)与圈外(4.00m g ㊃k g -1)㊂土壤总氮和总磷含量在圈内㊁圈上和圈外之间无显著差异性㊂但是圈上土壤速效养分(铵态氮:27.58m g ㊃k g -1;硝态氮20.61m g ㊃k g -1;可溶性磷84.66m g ㊃k g -1)显著高于圈内(铵态氮:13.38m g ㊃k g -1;硝态氮8.40m g ㊃k g -1;可溶性磷65.44m g ㊃k g -1)与圈外(铵态氮:14.81m g k g -1;硝态氮8.78m g ㊃k g -1;可溶性磷72.81m g ㊃k g -1)㊂表2 蘑菇圈圈内㊁圈上㊁圈外土壤碳氮磷含量特征T a b l e 2 s o i l C ,N ,Pc o n t e n t p r o p e r t i e s o f f a i r y r i n g采样位置S t u d y si t e 土壤总碳S o i lT C/g ㊃k g-1土壤总氮S o i lT N/g ㊃k g-1土壤总磷S o i lT P/g k g-1土壤铵态氮S o i lN H +4/m g ㊃k g-1土壤硝态氮S o i lN O -3/m g ㊃k g-1速效磷S o i lA P /m g ㊃k g-1C /N圈内I Nz o n e3.57ʃ0.66a0.32ʃ0.06a1.87ʃ0.18a13.38ʃ4.34b8.40ʃ0.89b65.44ʃ12.04b11.09ʃ1.15a圈上O Nz o n e2.81ʃ0.25b0.28ʃ0.03a 1.86ʃ0.30a 27.58ʃ5.08a 20.61ʃ1.71a84.66ʃ6.39a 10.79ʃ0.72a 圈外O U Tz o n e4.00ʃ1.01a 0.25ʃ0.01a 1.62ʃ0.16a 14.81ʃ3.34b 8.78ʃ1.97b 72.81ʃ3.96b 11.82ʃ0.39a 注:同列不同小写字母代表圈上㊁圈内和圈外土壤碳氮指数差异显著(P <0.05)N o t e :D i f f e r e n t l o w e r c a s e l e t t e r sw i t h i n t h e s a m e c o l u m n i n d i c a t e s i gn i f i c a n t d i f f e r e n c e s a t t h e 0.05l e v e l 2.3 蘑菇圈土壤酶活性特征蘑菇圈土壤酶活特征见图1,蘑菇圈圈内和圈上土壤脲酶活性显著高于圈外㊂土壤酸性磷酸酶㊁蔗糖酶㊁过氧化氢酶活性均表现为圈上显著高于圈外和圈内㊂2.4 蘑菇圈微环境气温和土壤温度特征应用远红外摄像机拍摄的蘑菇圈子实体及周围环境温度照片见图2㊂可以看出:蘑菇圈子实体温度显著高于周围环境温度㊂子实体温度最高为22.3ħ,比周围环境温度平均可高4ħ㊂图1 三个蘑菇圈土壤脲酶㊁酸性磷酸酶㊁过氧化氢酶㊁蔗糖酶活性特征F i g .1 S -U E ,S -A C P ,S -S C ,S -C A Te n z y m e a c t i v i t yi n I Nz o n e ,O Nz o n e a n dO U Tz o n e 注:同行不同小写字母代表圈上㊁圈内和圈外酶活性差异显著(P <0.05)N o t e :D i f f e r e n t l o w e r c a s e l e t t e r s i n d i c a t e s i gn i f i c a n t d i f f e r e n c e s o f d i f f e r e n t t r e a t m e n t s a t t h e 0.05l e v e l 518草 地 学 报第32卷图2 蘑菇圈马勃子实体红外热成像图F i g .2 T h e r m a l i m a g e o fm u s h r o o mo nF a i r y r i n g以2023年7月2日全天土壤温度监测结果为例发现:凌晨到日出前(7:30分前),蘑菇圈土壤平均温度高于圈外与圈内,而7:30分以后蘑菇圈外和圈内土壤温度迅速回升,到下午两点达到峰值,而这一阶段蘑菇圈上土壤温度增温速度没有圈内与圈外快㊂随后太阳逐渐落下,圈上土壤温度下降速度较圈外和圈内缓慢,直至夜晚10:00圈上土壤平均温度明显高于圈内和圈外㊂查看全月每日温度数据,除一些暂时气候异常变化(阵雨,强降温,强风)外,每日蘑菇圈土壤温度变化按照图3所示规律循环变化㊂考虑到清晨日光升温因素的干扰,我们选取30天凌晨5点蘑菇圈圈内㊁圈上㊁圈外气温和土壤温度变化进行研究,发现从6月15日到7月14日凌晨5点气温逐渐上升,蘑菇圈圈上㊁圈内和圈外土壤温度也波动上升(图4),6月15日 7月15日凌晨五点的气温在-4ħ~6ħ,土壤温度在8ħ~13ħ之间波动,但圈上土壤温度始终高于圈外㊁圈内0.3ħ至1.5ħ㊂蘑菇圈圈上土壤温度在夜晚高于圈内与圈外不是偶然事件,而是稳定存在的㊂图3 蘑菇圈圈上㊁圈内㊁圈外土壤温度24小时变化规律F i g .3 S o i l t e m p e r a t u r e o f a l l -d a y va r i a t i o no f I Nz o n e ,O Nz o n e ,O U Tz o n e i n J u l y2图4 蘑菇圈圈内㊁圈上和圈外凌晨5时气温和土壤温度变化特征F i g .4 T h e 5a mt e m pe r a t u r e v a r i a t i o nf r o mJ u n e 15t o J u l y 15i n f a i r y r i n g3 讨论本研究发现蘑菇圈圈上土壤总碳含量显著低于圈内与圈外,推断大量的有机质在蘑菇圈真菌生长过程中被蘑菇圈真菌吸收消耗了,蘑菇圈真菌分解有机质㊁新陈代谢的过程不可避免会产生热量,远红外热成像仪子实体的成像侧面证明蘑菇圈真菌会增加环境温度㊂增温效应对高寒草地植物的影响一直是生态工作者关注的热点之一㊂有相关研究发现地温变化1ħ就会引起植物生长发育和矿物吸收的显著变化[12]㊂M a v s t r o m 等[13]对极地不同地区的植物进行研究发现,在气温低的区域温度是植物生长的主要限制因子,温度较高的地区矿物营养是主要限制因子,增温会显著增加植物的高度与生物量㊂赵艳超等[14]在增温实验中发现青藏高原4个功能群(豆科㊁莎草㊁禾草㊁杂草)地上生物量要显著高于控制组㊂微生物在进行呼吸作用的时候会产生热量,这种热量与微生物的代谢强度和活性息息相关㊂H o l l e s e n 等[15]在格陵兰岛冻土层的6个地点采集了21个天然冻土并发现气候变化和微生物产生的热量促使冻土层融化并加剧了C O 2释放,他们的模型模拟结果显示,土壤温度和碳分解之间存在一种反馈,土壤微生物产生热量的研究在全球增温的大背景下尤为重要㊂温度传感器对蘑菇圈土壤温度24小时监测结果显示:日出后气温逐渐上升,蘑菇圈外和圈内土壤温度上升速率高于圈上,甚至在全天气温最高点,圈上平均土壤温度低于圈外与圈内㊂然而日落后随气温迅速降低,圈外和圈内土壤温度下降速度也比圈上快,到日出前圈上土壤温度高于圈外与圈内㊂造成这618第3期曹铭等:青海高寒草甸马勃蘑菇圈增温作用的影响研究种结果的原因,一方面是由于蘑菇圈圈上植物比圈内圈外茂盛,植物构成保温层,减少土壤热量向空气流失,另一方面,蘑菇圈真菌分解有机质,进行新陈代谢呼吸过程会释放一部分热量,这一部分热量在白天由于相较日光过于微弱,但是在无光照的夜晚对土温的维持是不可忽视的㊂对蘑菇圈30天的土壤温度监测结果看:凌晨5点圈上土壤平均温度要比圈外㊁圈内土壤温度高0.3ħ~1.5ħ,在青藏高原高寒地区,这种夜晚的增温作用不可忽视㊂科学家已经证实了土壤微生物呼吸作用产生的热量对周围环境的增温作用,格陵兰岛冰原上发现冰层下土壤微生物的呼吸作用会显著影响地上冰层与冻土的消融,苔藓植物的生长,微弱的气温升高会 激活 极地土壤微生物结束休眠,对环境造成 正反馈 效用[15]㊂土壤酶活是一种重要的衡量土壤肥力的指标㊂现已在土壤中检测出60多种土壤酶[16],土壤酶活性对土壤中物质循环有重要作用㊂大部分土壤酶来源于土壤微生物,植物和动物也贡献了一部分土壤酶[18]㊂土壤酶能水解大分子有机物质如纤维素㊁蛋白质㊁腐殖质[19]㊂脲酶能促进有机分子中肽键的水解,专门参与土壤含N有机化合物的转化㊂磷酸酶可以促进有机磷化合物的分解,能增加土壤中可溶性磷㊂蔗糖酶促进蔗糖分解为葡萄糖和果糖㊂过氧化氢酶反映土壤有机质氧化程度㊂过氧化氢酶促进过氧化氢的分解,一般与土壤腐殖化强度和有机质积累强度有关㊂本研究结果表明蘑菇圈圈上脲酶㊁蔗糖酶㊁磷酸酶㊁过氧化氢酶活性平均值均高于圈外㊂土壤酶活对植物生长有显著的影响㊂脲酶可以将含氮有机物分解为植物可以利用的速效氮,过氧化氢酶可以促进腐殖质合成,减轻过氧化物对植物的毒害作用,磷酸酶可以将有机磷分解成可利用的可溶性磷酸,这些酶活性增强在一定程度上会促进植物生长㊂4结论高寒草甸马勃蘑菇圈真菌生长提高土壤温度,显著提升土壤脲酶㊁蔗糖酶㊁氧化氢酶㊁磷酸酶的活性与速效养分的含量,促进蘑菇圈圈上植物生长㊂本研究对蘑菇圈环境温度-土壤-植物间互作关系有了新的发现,对高寒草地蘑菇圈绿草环形成机制有了进一步的理解㊂参考文献[1]M I L L E RSL,G O N G L O F F A.F a i r y r i n g s,a s s o c i a t e df u n g i,a n d a s s e s s m e n t o f t h e i r d i s t r ib u t i o n ac r o s s e n v i r o n m e n t a l v a r i-a b l e s u s i n g G I S[J].F u n g a l E c o l o g y,2021,50,101040[2] S HA N T Z H L,P I E M E I S E LR L.F u n g u s f a i r y r i n g s i ne a s t-e r nC o l o r a d oa n dt h e i ref f e c to nv eg e t a t i o n[J].A g r i c u l t u r a lR e s e a r c h,1917,11:191-246[3] Z O T T IM,D EF I L I P P I SF,C E S A R A N O G,e t a l.O n e r i n g t or u l e t h e ma l l:A ne c o s y s t e me n g i n e e r f u n g u s f o s t e r s p l a n t a n d m i c r o b i a ld i v e r s i t y i n a M e d i t e r r a n e a n g r a s s l a n d[J].N e w P h y t o l o g i s t,2020,227(3):884-898[4] C A E S A R-T O N T H A T TC,E S P E L A N DE,C A E S A R AJ,e t a l.E f f e c t s o fA g a r i c u s l i l a c e p s f a i r y r i n g s o ns o i l a g g r e g a t i o na n dm i-c r o b i a l c o m m u n i t y s t r u c t u r e i nr e l a t i o nt o g r o w t hs t i m u l a t i o no fw e s t e r n w h e a t g r a s s(P a s c o p y r u m s m i t h i i)i n E a s t e r n M o n t a n a r a n g e l a n d[J].M i c r o b i a l E c o l o g y,2013,66:120-131[5] F I D A N Z A M A,C I S A RJL,K O S T K ASJ,e t a l.P r e l i m i n a r yi n v e s t i g a t i o no f s o i l c h e m i c a l a n d p h y s i c a l p r o p e r t i e s a s s o c i a t e dw i t h t y p e-I f a i r y r i n g s y m p t o m s i n t u r f g r a s s[J].H y d r o l o g i c a l P r o c e s s e s,2007,21(17):2285-2290[6]裴海昆.不同施肥量对天然草地土壤酶活性的影响[J].青海畜牧兽医杂志,2001,31(2):15-16[7]蔡晓布,钱成,张永清.退化高寒草原土壤生物学性质的变化[J].应用生态学报,2007,18(8):1733-1738[8]刘琳,朱霞,孙庚,等.模拟增温与施肥对高寒草甸土壤酶活性的影响[J].草业科学,2011,28(8):1405-1410[9]中国科学院西北高原生物研究所.中国科学院海北高寒草甸生态系统定位站.中国科学院院刊,2018,33(10):1 [10]陈立红,阎伟,刘健.草原蘑菇圈对牧草长势影响的分析[J].西北植物学报,2002,22(6):1421-1425[11]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:274-339[12]WA L K E RJ M.O n ed e g r e e i n c r e a s m e n t i ns o i l t e m p e r a t u r ea f f e c t sm a i z e s e e d i n gb e h a v i o r[J].S o i lSc i e n c eS o c i e t y o fA-m e r i c a J o u r n a l,1969,33(5):729-736[13]H A V S T R OM M,C A L L A G H A N T V,J O N A S S O NS.D i f f e r-e n t i a l g r o w t h r e s p o n s e so fC a s s i o p e t e t r a g o n a,a na r c t i cd w a r f-s h r u b,t o e n v i r o n m e n t a l p e r t u r b a t i o n s a m o n g t h r e e c o n t r a s t i n gh i g ha n d s u b a r c t i c s i t e s[J].O i k o s,1993:389-402[14]C H O I JH,O HN I S H IT,Y AMA K AWA Y,e t a l.T h es o u r c eo f F a i r y r i n g s :2-a z a h y p o x a n t h i n e a n d i t sm e t a b o l i t e f o u n d i n an o v e l p u r i n e m e t a b o l i c p a t h w a y i n p l a n t s[J].A n g e w a n d t eC h e m i e I n t e r n a t i o n a l E d i t i o n,2014,53(6):1552-1555[15]H O L L E S E NJ,MA T T H I E S E N H,MO L L E RA,e t a l.P e r m a-f r o s t t h a w i ng i n o r g a n i cA r c t i c s o i l s a c c e l e r a t e d b y g r o u n dh e a tp r o d u c t i o n[J].N a t u r eC l i m a t eC h a n g e,2015,5(6):574-578[16]B U R N SR G,D I C K RP.E n z y m e s i n t h eE n v i r o n m e n t:E c o l o-g y,A c t i v i t y a n dA p p l i c a t i o n s[J].S o i lB i o l o g y a n dB i o c h e m i s-t r y,2004,36(10):1525-1698[17]G R AM S SG,V O I G T K D,B E R GMA N N H.F a c t o r s i n f l u e n-c i n g w a t e rs o l u b i l i t y a nd p l a n ta v a i l a b i l i t y o f m i ne r a lc o m-p o u n d si n t h et r i p a r t i t ef a i r y r i n g s o f M a r a s m i u s o r e a d e s(B o l t.:F r.)F R[J].J o u r n a l o fB a s i c M i c r o b i o l o g y:A nI n t e r-n a t i o n a lJ o u r n a lo nB i o c h e m i s t r y,P h y s i o l o g y,G e n e t i c s,M o r-p h o l o g y,a n dE c o l o g y o fM i c r o o r g a n i s m s,2005,45(1):41-54[18]周礼恺.土壤酶学[M].北京:科学出版社,1989:11-34[19]D I C KRP,B R E A K W E L LDP,T U R C ORF.S o i l e n z y m e a c t i v i t i e sa n db i o d i v e r s i t y m e a s u r e m e n t s a s i n t e g r a t i v em ic r o b i o l o g i c a l i nd i c a-t o r s[J].M e t h o d s f o rA s s e s s i n g S o i lQ u a l i t y,1997,49:247-271[20]D I C KRP.S o i l e n z y m e a c t i v i t i e s a s i n d i c a t o r s o f s o i l q u a l i t y[J].D e-f i n i ng S o i lQ u a l i t y f o r a S u s t a i n a b l eE n v i r o n m e n t,1994,35:107-124(责任编辑彭露茜)718。
2017年1月下半月刊近年来,随着旅游业的发展,高寒地区的草原以其独特的景观吸引着越来越多的游客,然而高寒草原的生态比较脆弱,需对高寒草原生态旅游的环境承载力进行研究,以促进高寒草原生态旅游的可持续发展。
本研究选取地处青藏高原东北边缘的甘南藏族自治州为例,运用模糊数学方法,对其生态旅游环境承载力进行评估。
一、甘南高寒草原生态旅游概况甘南高寒草原位于青藏高原东北缘,地处黄河源头,是天然的生态屏障。
甘南草原地形复杂,平均海拔近3000m,属于典型的高寒气候,气温年较差小、日较差大。
植被主要以高山草甸为主,甘南草地总面积超过270万hm2,占甘南州总而积的70%左右,是重要的畜牧业生产基地,也是我国主要的草原牧区之一。
近年来,甘南州草原生态旅游产业发展迅猛,2015年,接待国内外游客770.02万人次,同增长54.18%,实现旅游综合收入34.03亿元,同比增长51.3%。
旅游业总收入和国内外旅游接待人数持续增长。
主要旅游草原有当周草原、美仁大草原、森林公园、勒秀洮河森林、峡谷景观、桑科草原、玛曲黄河首曲草原等。
二、环境承载力评价的研究方法和数据来源本研究用模糊数学来描述草原生态旅游环境承载力综合评价。
它是将生态旅游环境承载力视为一个模糊综合评价过程,通过合成运算,可得出评价对象从整体上对于个体评语等级的隶属度,再通过取大或取小运算就可以确定评价对象的最终评语。
通过查阅甘南发展统计年鉴(2015年)及调查问卷的基础上,甘南高寒草原生态旅游环境承载力评价闫颖慧 段文彬在分析甘南高寒草原生态旅游现状的基础上,构建高寒草原生态旅游环境承载力评价指标体系,设定评价等级标准。
运用模糊数学方法对其生态旅游环境承载力进行评估,结果显示甘南州高寒草原生态旅游环境承载力处于亚适载,草原生态旅游开发潜力较大。
表1 甘南州高寒草原生态旅游环境承载力指标体系、指标权重及分级评价标准准则层领域层指标名称单位指标等级弱载亚适载适载亚超载超载ⅠⅡⅢⅣⅤ自然环境承载力(0.4)自然资源(0.54)高寒草地覆盖率(0.21)%≥8060-8040-6020-40≤20旅游草地面积(0.27)Ha/人≥43-42-31-2≤1旅游气候舒适期(0.23)天/年≥120100-12080-10060-80≤60景观美感度(0.29)%≥9080-9070-8060-70≤60生态环境(0.46)草地退化率(0.38)%≤1010-2520-3535-50≥50水体水质达标率(0.27)%≥9080-9070-8060-70≤60大气污染指数(0.35)%≥9080-9070-8060-70≤60经济环境承载力(0.32)基础设施(0.50)交通运载能力(0.27)万人/年≤3030-3535-4040-45≥45供水能力(0.06)升/人.日≥7060-7050-6040-50≤40住宿接待能力(0.10)m2/人≥2520-2515-2010-15≤10餐饮接待能力(0.13)m2/人≥2015-2010-155-10≤5生活污水处理率(0.08)%≥9080-9070-8060-70≤60固体废物处理率(0.36)%≥9080-9070-8060-70≤60管理水平(0.20)游客投诉率(0.50)起/万人次≤55-77-99-11≥11游览方式影响指数(0.21)种类≥5432≤1旅游就业贡献率(0.29)%≤55-1010-1515-20≥20效益水平(0.30)环保建设投入(0.25)%≤55-1010-1515-20≥20产出投入比(0.35)%≤150150-200200-250250-300≥300旅游产业贡献率(0.40)%≤55-1010-1515-20≥20社会环境承载力(0.28)社会心理(0.33)游居指数(0.50)-≤33-55-77-9≥9单位面积草原承载人口数(0.50)人/Ha≤1010-1515-2020-25≥25人文环境(0.67)当地居民环保意识(0.33)分≥8070-8060-7050-60≤50民族文化多样性(0.67)个≥4030-4020-3010-20≤10基金项目:本研究为“甘肃省高等学校科研项目”阶段性成果之一,项目号:(2016B-105)。
高寒草甸1概述高寒草甸(Alpine meadow)是亚洲中部高山及青藏高原隆起之后所引起的寒冷、湿润气候的产物,指以寒冷中生多年生草本植物为优势而形成的植物群落,主要分布在林线以上、高山冰雪带以下的高山带草地,耐寒的多年生植物形成了一类特殊的地带性植被类型。
北自欧亚大陆和北美洲、冻原带,南至南极附近的岛屿上均有草甸出现。
不过,典型的草甸在北半球的寒温带和温带分布特别广泛。
草甸在中国主要散布于东北、内蒙古、新疆和青藏高原,类型多样,尤其是青藏高原上大面积的高寒草甸是中国植被的特点。
高寒草甸在中国以密丛短根茎地下芽蒿草属(Kobresia)植物建成的群落为主,是青藏高原和高山寒冷中湿气候的产物,是典型的高原地带性和山地垂直地带性植被,主要分布在青藏高原东部和高原东南缘高山以及祁连山、天山和帕米尔等亚洲中部高山,向东延伸到秦岭主峰太白山和小五台山,海拔3200-5200m(王秀红,傅小锋,2004)。
2气候气候因素是植物生长和发育至关重要的环境条件,同时对于植物群落的空间分布格局(水平分布和垂直分布格局)、种类组成、发育节律、层片结构和群落的生物生产量以及能量流动和物质循环起着重要作用。
气温是地区热量高低的表述,热量条件是植物生长和发育的基本因素。
当光照、水分和养分条件基本满足时,温度往往成为植物种、种群、群落和生态系统生长、发育、结构、生物生产力以及能量流动和物质循环的主要驱动因素。
根据青海省和西藏自治区气象台(站)的气象资料可以看出,各地年平均气温的分布殊异(戴加洗,1990)。
青藏高原上有三个相对温暖的地区,即柴达木盆地、青海东部的“河湟”谷地和西藏东南部雅鲁藏布江与三江谷地。
位于青藏高原东南部的墨脱和察隅地区是热量最高的地区,而位于西藏东北部的昌都(海拔3240.7m)因纬度偏北,年平均气温7.6℃,最冷月平均气温-2.5℃,最热月平均气温16.3℃,极端最低气温-19.3℃,极端最高气温33.4℃。
昌都高寒草甸草原3种有毒植物营养成分分析与评价赵世姣;尤延飞;史芳芸;张庚;路浩;吴晨晨;赵宝玉【期刊名称】《动物医学进展》【年(卷),期】2018(039)012【摘要】高寒草甸类草原是西藏昌都地区最主要的草地类型,为评价该草地类型主要优势有毒植物营养价值,为其资源化利用提供基础数据.以瑞香狼毒、茎直黄芪和丛生黄芪为试验材料,采用常规营养指标测定法,对3种有毒植物常规营养成分、矿物质元素和氨基酸含量进行测定.结果显示,3种有毒植物粗蛋白(CP)含量从高至低依次为丛生黄芪17.62%、茎直黄芪14.09%和瑞香狼毒9.74%,粗灰分含量从高至低依次为茎直黄芪13.65%、丛生黄芪12.44%和瑞香狼毒9.28%,粗纤维含量从高至低依次为茎直黄芪24.76%、瑞香狼毒19.97%和丛生黄芪18.49%;矿物质元素(Cu、Mn、Fe、K、Zn、Ca、Mg、P)含量丛生黄芪最为丰富,其次为茎直黄芪.此外,3种有毒植物都含有17种氨基酸,瑞香狼毒总含量为8.03%,茎直黄芪为11.43%,丛生黄芪为26.80%.结果表明,3种有毒植物营养较为丰富,具有饲草化利用的潜力,可作为一种潜在的饲草资源合理利用.【总页数】5页(P133-137)【作者】赵世姣;尤延飞;史芳芸;张庚;路浩;吴晨晨;赵宝玉【作者单位】西北农林科技大学动物医学院,陕西杨凌 712100;西藏昌都市畜牧总站,西藏昌都 854000;西北农林科技大学动物医学院,陕西杨凌 712100;西北农林科技大学动物医学院,陕西杨凌 712100;西北农林科技大学动物医学院,陕西杨凌712100;西北农林科技大学动物医学院,陕西杨凌 712100;西北农林科技大学动物医学院,陕西杨凌 712100;西北农林科技大学动物医学院,陕西杨凌 712100【正文语种】中文【中图分类】S859.87【相关文献】1.高寒草甸草原地表径流的若干特征分析 [J], 朱宝文;常有奎;马晓虹2.西藏昌都地区天然草地有毒植物调查 [J], 赵世姣;赵红阳;高丹;张水平;路浩;吴晨晨;赵宝玉3.高寒草甸主要乡土牧草营养成分的灰色关联综合评价及利用潜力 [J], 于健龙;石红霄4.甘南高寒草甸草原不同海拔土壤理化性质分析 [J], 刘月华;位晓婷;钟梦莹;武瑞鑫;潘多;邵新庆5.黄河源区高寒草地植物营养成分含量特征及营养价值评价 [J], 杨冲;马华清;王文颖;刘攀;毛旭峰;董世魁;周华坤;陈哲;索南吉;靳磊因版权原因,仅展示原文概要,查看原文内容请购买。
基于均方差权值法对不同培育措施高寒草甸的现状评价董云龙;胡新振;陈建纲;邵新庆;张德罡【摘要】在天然草地健康评价中各项指标的权重大小对评价结果有着直接而重要的影响.为探讨青藏高原东缘高寒草地健康状况的合理评价模型,通过均方差权值法对甘南桑科草原不同培育措施高寒草地的植物群落盖度、优势层高度、干草产量和植物根层土壤有机质进行客观赋值综合评价.结果表明:1.各种培育措施对高寒草地植物群落结构和特征均有不同程度的影响;2.施肥处理草地健康状况最好,而放牧干扰草地的最差;3.均方差权值法对草地植物盖度和植物群落优势层高度、干草产量及植物根层土壤有机质含量客观赋值可以用于甘南桑科草原草地健康评价.【期刊名称】《草原与草坪》【年(卷),期】2015(035)006【总页数】5页(P46-50)【关键词】均方差权值法;高寒草甸;草地健康评价;培育措施【作者】董云龙;胡新振;陈建纲;邵新庆;张德罡【作者单位】甘肃农业大学草业学院/草业生态系统教育部重点实验室/甘肃省草业工程实验室/中-美草地畜牧业可持续发展研究中心,甘肃兰州 730070;甘肃农业大学草业学院/草业生态系统教育部重点实验室/甘肃省草业工程实验室/中-美草地畜牧业可持续发展研究中心,甘肃兰州 730070;甘肃农业大学草业学院/草业生态系统教育部重点实验室/甘肃省草业工程实验室/中-美草地畜牧业可持续发展研究中心,甘肃兰州 730070;中国农业大学动物科技学院,北京 100083;甘肃农业大学草业学院/草业生态系统教育部重点实验室/甘肃省草业工程实验室/中-美草地畜牧业可持续发展研究中心,甘肃兰州 730070【正文语种】中文【中图分类】S812天然草地是陆地生态系统的主要组成部分,是全球分布面积最大的植被类型之一[1]。
我国草地面积为4亿hm2,占国土面积的41.7%,占全球草地面积的13.1%[2]。
草地生态系统为人类提供了净初级生产,有气候调节、水源涵养、土壤改良、水土保持,固沙和碳循环调节功能,维持生态系统的多样性的生态服务功能[3]。
黄河源区高寒草甸不同退化阶段草地特征研究
星学军
【期刊名称】《安徽农业科学》
【年(卷),期】2009(037)022
【摘要】[目的]探明黄河源区高寒草甸不同退化阶段的草地特征.[方法]以曲麻莱县麻多乡高寒草甸作为研究对象,通过对不同退化梯度高寒草甸的植物特征、群落特征和土壤特征进行调查和研究,确定这些特征与高寒草甸草地退化之间的关系.[结果]随高寒草甸草地退化程度的加剧,物种多样性指数、可食牧草产量、土壤的养分含量和含水量均表现为降低规律;鼠害在轻度退化和重度退化的草地上表现较为严重,而在原生植被和极度退化草地上的程度则较轻度退化和重度退化的轻.[结论] 黄河源区高寒草甸不同退化阶段草地具有不同特征.
【总页数】4页(P10578-10580,10616)
【作者】星学军
【作者单位】青海省草原总站,青海西宁,810008
【正文语种】中文
【中图分类】S812
【相关文献】
1.东祁连山不同退化阶段高寒草甸群落结构与植物多样性特征研究 [J], 柳小妮;孙九林;张德罡;蒲小鹏;徐广平
2.祁连山东麓高寒草甸不同退化程度草地土壤种子库特征研究 [J], 李春鸣;龙玲;徐
长林;王明明;张德罡
3.黄河源区不同退化程度高寒草地土壤特征研究 [J], 周万海;冯瑞章;满元荣
4.黄河源区不同退化阶段高寒草甸植被特征 [J], 李世雄; 王玉琴; 王彦龙; 尹亚丽
5.基于主成分分析对退化高寒草甸不同恢复方式下草地质量的综合评价 [J], 张光茹; 李红琴; 杨永胜; 王军邦; 祝景彬; 罗谨; 贺慧丹; 李英年
因版权原因,仅展示原文概要,查看原文内容请购买。
青藏高原高寒草地退化原因与防治措施青藏高原是世界上最大的高原,面积达5.2万平方千米。
其高寒草地是青藏高原生态系统的重要组成部分,对于维持该地区的生态平衡和地球环境具有重要意义。
然而,近年来青藏高原高寒草地出现了严重的退化现象,给生态环境和当地居民的生活带来了巨大的威胁。
本文将探讨青藏高原高寒草地退化的原因以及可能的防治措施。
造成青藏高原高寒草地退化的主要原因之一是气候变化。
随着全球气候变暖,青藏高原的平均气温不断上升,降雨量也在减少。
这导致了高寒草地的水源减少,土壤湿度下降,植被生长受到限制。
同时,气候变化还引发了频繁的极端天气事件,如干旱、洪水等,更加剧了高寒草地的退化。
除了气候变化外,人类活动也是青藏高原高寒草地退化的重要原因之一。
过度放牧是其中最主要的人为因素之一。
青藏高原是牧民居住的地区,牧民们依赖畜牧业为生。
然而,过度放牧和不合理的放牧方式导致了大量的草地过度利用和过度退化。
牲畜过量食用草地,超过了草地可持续承载的能力。
不仅如此,过度放牧还破坏了土壤的结构,增加了土壤侵蚀的风险,加速了高寒草地的退化。
此外,未合理利用草原资源也是造成高寒草地退化的原因之一。
在一些地区,农田、道路和城镇的规模不断扩大,无序的城市化和农业活动侵占了大片草地。
未进行适当的规划和管理,导致了草地面积减少和植被破坏,进一步加剧了高寒草地的退化。
为了防治青藏高原高寒草地的退化,采取以下措施是必不可少的。
首先,加强对气候变化的应对。
各国应共同努力,在减少温室气体排放的同时,加大绿色能源的开发和利用。
同时,加强全球气候变化监测和预警系统,提前应对极端天气事件的发生,减少其对高寒草地的影响。
其次,加强保护和管理青藏高原的高寒草地。
建立自然保护区和生态补偿机制,加大对退化草地的修复和保护力度。
同时,加强对畜牧业的管理,限制牲畜的数量和放牧区域,制定合理的放牧政策和管理措施。
第三,加强科学研究和技术创新。
加大对高寒草地退化机理和修复技术的研究力度,推动科学技术在草地保护和管理中的应用。
草地生态系统健康评价的研究现状
梁瑛;王宁;赵莉莉;纪庆文
【期刊名称】《农业科学研究》
【年(卷),期】2006(027)002
【摘要】首先简要回顾和论述了生态系统健康概念的产生、发展及不同的内涵,提出草地生态系统健康的概念具有双重属性,即自然属性和社会属性;介绍了生态系统健康的评价指标和评价体系的发展现状及存在的问题.草地生态系统健康急需解决的问题是如何正确确立评价标准和参照系以及如何综合自然、社会等多方面的因素对草地生态系统进行评价.基于以上存在的问题,提出一些建议,以期为草地生态系统健康的研究及人类合理管理和保护草地生态系统提供依据.
【总页数】4页(P79-81,85)
【作者】梁瑛;王宁;赵莉莉;纪庆文
【作者单位】宁夏大学,农学院,宁夏,银川,750021;宁夏大学,农学院,宁夏,银
川,750021;宁夏大学,农学院,宁夏,银川,750021;宁夏盐池县科委,宁夏,盐池,751500【正文语种】中文
【中图分类】S812
【相关文献】
1.青海河南高寒草地生态系统健康评价 [J], 吴蓉蓉;史惠兰;王维;李江鹏;姚卫康;李希来
2.辉腾锡勒风电场草地生态系统健康评价 [J], 刘春青; 张韬; 刘佳慧; 汪超; 孟勐; 曹
阳
3.基于VOR指数的肃南县草地生态系统健康评价 [J], 姜佳昌;孙斌;潘冬荣;王红霞;李霞;王惠;俞慧云
4.新疆草地生态系统健康评价体系构建 [J], 陈春波;彭建;李刚勇
5.阿勒泰林区放牧前后草地生态系统健康评价 [J], 殷锡凯;叶茂;赵凡凡;周泉
因版权原因,仅展示原文概要,查看原文内容请购买。