不对称短路故障分析与计算(电力系统课程设计)
- 格式:doc
- 大小:361.50 KB
- 文档页数:15
《电力系统分析》
不对称故障的分析与计算
水利与建筑工程学院
电气与动力实验室
1、不对称短路分析与计算
一、实验目的
1、掌握运用Matlab进行电力系统仿真实验的方法;
2、理解导纳矩阵、阻抗矩阵及其求解方法;
3、掌握不对称短路的分析和计算方法;
4、学会编写程序分析不对称故障。
二、预习与思考
1、用Matlab对基本的矩阵进行运算。
2、导纳矩阵、阻抗矩阵有何关系,如何求取阻抗矩阵?
3、不对称短路有哪些,它们的边界条件分别是什么,如何形成它们的复合序网络图?
4、如何用程序实现不对称短路的计算?
三、系统网络及参数
图1 系统网络图
表1 元件参数及阻抗
四、实验步骤和要求
1、根据以上网络和参数,编写程序进行下列故障情况下的故障电流、节点电压和线路电流的计算。
(1)通过故障阻抗Z f=j0.1p.u., 节点3发生三相短路;
(2)通过故障阻抗Z f=j0.1p.u.,节点3发生单相接地短路;
(3)通过故障阻抗Z f=j0.1p.u.,节点3发生相间短路;
(4)通过故障阻抗Z f=j0.1p.u.,节点3发生两相接地短路。
五、实验报告
1、完成下表2-表9。
表2 节点3发生三相对称短路时的故障电流
表3 节点3发生三相对称短路时各节点电压
表4 节点3发生单相短路时的故障电流
表5 节点3发生单相短路时各节点电压
表6 节点3发生相间短路时的故障电流
表7 节点3发生相间短路时各节点电压
表8 节点3发生两相接地短路时的故障电流
表9 节点3发生两相接地短路时各节点电压
2、书面解答本实验的思考题。
电力系统不对称故障的分析计算1. 引言电力系统是现代社会中不可或缺的根底设施之一。
然而,由于各种原因,电力系统可能会发生不对称故障,导致电力系统的正常运行受到严重影响甚至导致短路事故。
因此,对电力系统不对称故障进行分析和计算是非常重要的。
本文将分析电力系统不对称故障的原因、特点以及进行相应计算的方法,并使用Markdown文本格式进行输出。
2. 不对称故障的原因和特点不对称故障是指电力系统中出现相序不对称的故障。
其主要原因包括:单相接地故障、双相接地故障以及两相短路故障等。
不对称故障的特点如下:1.电流和电压的相位不同:在不对称故障中,电流和电压的相位不同,通常表现为电流和电压波形的不对称。
2.非对称系统功率:由于不对称故障,电力系统中的功率将变得非对称。
正常情况下,三相电流和电压的功率应该平衡,但在不对称故障中,这种平衡被破坏。
3.对称分量的存在:在不对称故障中,由于相序的不同,电流和电压中会存在对称正序分量、对称负序分量和零序分量。
3. 不对称故障的分析计算方法对于不对称故障的分析计算,一般可以采用以下步骤:3.1 系统参数获取首先,需要获取电力系统的各项参数,包括发电机、变压器、线路和负载的参数等。
这些参数将用于后续的计算。
3.2 故障状态建模根据故障的类型和位置,对故障状态进行建模。
常见的故障状态包括单相接地故障、双相接地故障和两相短路故障等。
3.3 网络方程建立基于故障状态的建模,可以建立电力系统的节点方程或潮流方程。
通过求解节点方程或潮流方程,可以得到电流和电压的分布情况。
3.4 不对称故障计算根据网络方程的求解结果,可以计算不对称故障中电流、电压和功率的各项指标,包括正序分量电流、负序分量电流、零序电流等。
3.5 故障保护和控制根据不对称故障的计算结果,可以对故障保护和控制系统进行设计和优化。
通过故障保护和控制系统的响应,可以及时检测和隔离故障,保证电力系统的平安运行。
4. 结论电力系统不对称故障的分析计算是确保电力系统平安运行的重要步骤。
不对称短路的分析和计算Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】目录摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。
在电力系统运行过程中,时常会发生故障,且大多是短路故障。
短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。
其中三相短路为对称短路,后三者为不对称短路。
电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。
求解不对称短路,首先应该计算各原件的序参数和画出等值电路。
然后制定各序网络。
根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。
关键词: 不对称短路计算、对称分量法、节点导纳矩阵1电力系统短路故障的基本概念短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
所谓短路:是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。
除中性点外,相与相或相与地之间都是绝缘的。
电力系统短路可分为三相短路,单相接地短路。
两相短路和两相接地短路等。
三相短路的三相回路依旧是对称的,故称为不对称短路。
其他的几种短路的三相回路均不对称,故称为不对称短路。
电力系统运行经念表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。
依照短路发生的地点和持续时间不同,它的后果可能使用户的供电情况部分地或全部地发生故障。
当在有由多发电厂组成的电力系统发生端来了时,其后果更为严重,由于短路造成电网电压的大幅度下降,可能导致并行运行的发电机失去同步,或者导致电网枢纽点电压崩溃,所有这些可能引起电力系统瓦解而造成大面积的停电事故,这是最危险的后果。
信息工程学院课程设计报告书题目: 不对称短路故障分析与计算专业:电气工程及其自动化班级: 0312408班学号: *********学生姓名:**指导教师:***2015年6月20日目录摘要 (3)1设计背景 (5)2原始资料分析 (6)3拟分析方法 (8)4设计步骤 (10)4.1 程序流程图 (10)4.2 程序清单 (10)4.3 手算过程 (13)5结果分析和总结 (18)参考文献 (19)摘要首先简单介绍了基于在MALAB中行潮流计算的原理、意义,然后用具体的实例,简单介绍了如何利用MALAB去进行电力系统中的潮流计算。
电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各线的电压、各元件中流过的功率、系统的功率损耗等等。
牛顿-拉夫逊法在电力系统潮流计算的常用算法之一,它收敛性好,迭代次数少。
本文介绍了电力系统潮流计算机辅助分析的基本知识及潮流计算牛顿-拉夫逊法,最后介绍了利用MTALAB程序运行的结果。
关键词:电力系统潮流计算,牛顿-拉夫逊法,MATLABThe AbstractAt first, this paper briefly introduces the theory and the meaning of the load flow calculation based on MATLAB, and then it briefly introduces how to apply MALAB to the load flow calculation of the electric system by concrete cases.A kind of calculation is the load flow of the electric system, which studies the stable operation-condition of the electric system. It confirms the operation-condition of the whole electric system, such as the voltage of every line, the rate of power crossing each component, the rate of power consumption of the system, according to the given operation-condition and the connected circumstances of the system.Newton-Raphson method is commonly used in the load flow calculation of the electric system for its good stypticity and little iteration. This paper introduces the basic knowledge about the assistant analysis of the load flow computer of electric system and the Newton-Raphson method. Finally, it introduces the results after making use of MALAB procedure.The key word:The load flow calculation of the electric system; Newton-Raphson method;MALAB1设计背景潮流计算是研究电力系统的一种最基本和最重要的计算。
电力系统课程设计报告书目录第一章电力系统故障分析概论 (2)1.1电力系统故障分析作用及意义 (2)1.2电力系统故障概率 (2)1.3 电力系统故障计算的基本原则和规定 (3)第二章不对称故障分析 (5)2.1不对称故障分析概述 (5)2.2不对称故障分析及计算方法 (5)2.3不对称故障分析计算步骤 (5)第三章纵向不对称故障分析 (6)3.1纵向不对称故障分析 (6)3.2断路故障的简略记号 (6)3.3一相断相故障分析 (7)第四章电力系统纵向故障分析实例计算分析 (9)4.1电力系统纵向故障分析实例要求 (9)4.2理论计算过程 (9)4.3 Matelab计算过程 (11)4.4 电力系统故障仿真分析 (14)4.4.1实例仿真模型及各模块参数设置 (14)4.4.2仿真波形结果 (15)课程设计心得 (19)附录 (20)参考文献 (23)摘要本设计分析了电力系统短路故障的电气特征,并利用Matlab/Simulink软件对其进行仿真,进一步研究短路故障的特点。
通过算例对电力系统短路故障进行分析计算。
然后运用Matlab/Simulink对算例进行电力系统短路、断路故障仿真,得出仿真结果。
并将电力系统短路故障的分析计算结果与Matlab仿真的分析结果进行比较,从而得出结论。
结果表明计算结果与仿真结果差别不大,运用Matlab对电力系统短路故障进行分析与仿真,能够准确直观地考察电力系统短路故障的动态特性,验证了Matlab在电力系统仿真中的强大功能。
关键词:短路故障;Simulink分析;短路、断路电流计算AbstractThis introduction to the power syetem short-circuit fault analysis method and simulation of Matlab/simulink basic features.First analysis and calculation of power system short-circuit fault,and then use Matlab/simulink to power system short-circuit fault simulation ,obtain simulation pare power system short-circuit fault analysis and calculation of results with the results of Matlab simulation and analysis so as to arrive at conclusions.It shows that using Matlab power system short-circuit fault analysis and simulation can accurately and visually inspect the dynamic characteristics of power system short –circuit fault analysis and visually inspect the dynamic characteristics of power system short –circuit fault and verified in power system simulation of Matlab.Keywords: Fault analysis; Simulink simulation;Calculation of short-circuit current第一章电力系统故障分析概论1.1电力系统故障分析作用及意义“电力系统故障分析”主要是研究电力系统中由于故障所引起的电磁暂态过程,搞清楚暂态发生的原因、发展过程及后果,从而为预防及消除电力系统的故障准备必要的理论知识。
摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。
关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数。
(3)2.化简各序等值电路并求出各序总等值电抗。
(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(9)5.讨论正序定则及其应用。
并用正序定则直接求在K处发生两相直接短路时的短路电流。
(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。
图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。
二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。
第八章 电力系统不对称故障的分析计算主要内容提示:电力系统中发生的故障分为两类:短路和断路故障。
短路故障包括:单相接地短路、两相短路、三相短路和两相接地短路;断路故障包括:一相断线和两相断线。
除三相短路外,均属于不对称故障,系统中发生不对称故障时,网络中将出现三相不对称的电压和电流,三相电路变成不对称电路。
直接解这种不对称电路相当复杂,这里引用120对称分量法,把不对称的三相电路转换成对称的电路,使解决电力系统中各种不对称故障的计算问题较为方便。
本章主要内容包括:对称分量法,电力系统中主要元件的各序参数及各种不对称故障的分析与计算。
§8—1 对称分量法及其应用利用120对称分量法可将一组不对称的三相量分解为三组对称的三序分量(正序分量、负序分量、零序分量)之和。
设c b a F F F ∙∙∙为三相系统中任意一组不对称的三相量、可分解为三组对称的三序分量如下:()()()()()()()()()021021021c c c c b b b b a a a a F F F F F F F F F F F F ∙∙∙∙∙∙∙∙∙∙∙∙++=++=++= 三组序分量如图8-1所示。
正序分量: ()1a F ∙、()1b F ∙、()1c F ∙三相的正序分量大小相等,彼此相位互差120°,与系统正常对称运行方式下的相序相同,达到最大值的顺序a →b →c ,在电机内部产生正转磁场,这就是正序分量。
此正序分量为一平衡的三相系统,因此有:()()()111c b a F F F ∙∙∙++=0。
负序分量:()2a F ∙、()2b F ∙、()2c F ∙三相的负序分量大小相等,彼此相位互差120°,与系图 8-1 三序分量Fc(0) ·零序F b(0) ·F a(0) ·120°120° 120° 正序F b(1)·F a(1)·F c(1) ·ω120°120°120°负序 F a(2)·F c(2)·F b(2)·ω统正常对称运行方式下的相序相反,达到最大值的顺序a →c →b ,在电机内部产生反转磁场,这就是负序分量。
题目:简单电力系统潮流的计算机解算一、 原始资料:数据: Z 12=(10+j16)Ω 、Z 13=(13.5+j21)Ω 、Z 32=(24+j22)Ω S LD2=(25+j18)MVA 、 S LD3=(20+j15)MVA二、 要求:1、 严格按照给定内容格式书写课程设计报告。
2、 根据原始资料,先用手算,后进行程序设计实现系统潮流计算。
3、 给出算法的运行原理和软件编写流程及程序清单。
4、 给出运行过程中的Y 矩阵和雅可比矩阵。
三、 答辩:1、 以ppt 形式提供该组所做的主要工作。
2、 回答老师提出的问题。
S LD3 LD2题目:复杂电力系统潮流的计算机解算一、原始资料:1、L2、L3、L4对地电容取0.5,每个T型臂取0.25。
L5对地电容取0。
3、以节点一为平衡节点计算。
二、要求:1、严格按照给定内容格式书写课程设计报告。
2、根据原始资料,先用手算,后进行程序设计实现系统潮流计算。
3、给出算法的运行原理和软件编写流程及程序清单。
4、给出运行过程中的Y矩阵和雅可比矩阵。
三、答辩:1、以ppt形式提供该组所做的主要工作。
2、回答老师提出的问题。
题目:三相短路故障分析与计算(手算或计算机算)一、原始资料1、发电机参数已经给定。
2、变压器型号:T1:SF7-10/110-59-16.5-10.5-1.0T2 : SFL7-31.5/110-148-38.5-10.5-0.8T3: SFL7-16/110-86-23.5-10.5-0.93、输电线路型号已给定。
4、需要数据查阅《新编工厂电气设备手册》二、要求:1、严格按照给定内容格式书写课程设计报告。
2、根据原始资料,用手算或者程序设计实现三相短路电流计算。
3、计算机算时给出算法的运行原理和软件编写流程。
4、手算时给出计算步骤。
三、答辩:1、以ppt形式提供该组所做的主要工作。
2、回答老师提出的问题。
题目:不对称短路故障分析与计算(手算或计算机算)一、原始资料T1 T2 T3 T41、发电机参数已经给定。
南昌工程学院课程设计 (论文)机械与电气工程学院电气工程及其自动化专业课程设计(论文)题目电力系统短路电流计算学生姓名班级学号指导教师完成日期2013 年11 月30 日成绩:评语:指导教师:年月日南昌工程学院课程设计(论文)任务书机械与电气工程学院 10电气工程及其自动化专业班学生:日期:自 2013 年 11 月 18 日至 2013 年 11 月 30 日指导教师:助理指导教师(并指出所负责的部分):教研室:电气工程教研室主任:附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。
一、取基准容量:S B=100MVA 基准电压:U B=U av二、计算各元件电抗标幺值:=0.0581,(1)X L=0.401Ω/km ,L1=16.582km L2=14.520km ,X d1=X d2=X''d 系统电抗标幺值X''=0.0581,两条110kV进线为LGJ-150型d线路长度一条为16.582km,另一条为14.520km.。
(2)主变铭牌参数如下:1﹟主变:型号 SFSZ8-31500/110接线 Y N/Y N/d11变比 110±4×2.5%∕38.5±2×2.5%∕10.5短路电压(%) U K(1-2)=10.47 U K(3-1)=18 U K(2-3)=6.33短路损耗(kw) P K(1-2)=169.7 P K(3-1)=181 P K(2-3)=136.4空载电流(%) I0(%)=0.46空载损耗(kW) P0=40.62﹟主变:型号 SFSZ10-40000/110接线 Y N/Y N/d11变比 110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=11.79 U K(3-1)=21.3 U K(2-3)=7.08短路损耗(kW) P K(1-2)=74.31 P K(3-1)=74.79 P K(2-3)=68.30空载电流(%) I0(%)=0.11空载损耗(kW) P0=26.71(3)转移电势E∑=1目录第一章电力系统故障分析的基本知识 (1)1.1短路概述 (1)1.2标幺值 (3)第二章电力系统三相短路电流的计算 (5)2.1计算的条件和近似 (5)2.2简单系统''I计算 (5)2.3计算短路电流时的简化条件 (6)第三章简单不对称短路的分析与计算 (7)3.1对称分量法 (7)3.2电力系统各序网络的制定 (8)3.3对称分量法在不对称短路计算中的运用 (8)3.4简单不对称短路的分析与计算 (9)3.5正序等效定则 (12)第四章算例 (14)4.1 各元件电抗标幺值计算 (15)4.2 K1点短路电流计算 (16)4.3 K2点短路电流计算 (19)4.4 K3点短路电流计算 (22)4.5短路计算结果统计表 (25)4.6计算结果总结 (25)参考文献 (27)第一章 电力系统故障分析的基本知识1.1 短路概述1.1.1短路的定义及类别在电力系统的运行过程中,时常会发生故障,其中大多数是短路故障。
电力系统不对称故障分析与计算及其程序设计电力系统不对称故障是指系统中至少有一个相数不相等的故障,其中至少一个相与其他相之间的短路发生。
此类故障会产生较大的电流和较高的瞬态电压,对电力设备带来严重的损坏,并可能引发系统崩溃。
因此,对电力系统不对称故障进行准确的分析与计算,并进行相应的程序设计具有重要意义。
首先,对于电力系统的不对称故障分析,需要进行故障类型及位置的识别。
常见的不对称故障类型包括对地短路故障、对线短路故障和对相短路故障。
针对不同类型的故障,需要使用不同的分析方法和计算模型来进行准确的故障分析和计算。
对于不对称故障的计算,主要包括短路电流计算和瞬态电压计算两个方面。
短路电流计算是为了确定故障点附近电力设备的额定电流和相对短路电流,以便评估系统的稳定性,并为保护装置的选择提供参考。
瞬态电压计算是为了确定故障点附近的电力设备所受到的瞬态电压,以评估设备的耐受能力和选择适当的绝缘等级。
针对电力系统不对称故障的分析与计算,可以采用数值计算方法和仿真软件进行。
数值计算方法包括传统的对称分量法、复数隔离法和序列分解法等。
这些方法可以通过求解线性方程组和迭代计算等手段,得到故障前后系统的电压、电流等参数。
而仿真软件,如PSCAD、EMTP-RV等,能够通过建立系统拓扑模型和设备参数,模拟不对称故障并进行动态仿真分析,实现系统参数的精确计算和分析。
为了更好地进行电力系统不对称故障的分析与计算,需要进行相应的程序设计。
程序设计的关键是实现数值计算方法和仿真软件的算法流程,并配以友好的用户界面和可视化展示。
常用的程序设计语言包括C++、MATLAB等,通过编写相关的算法和模块,实现故障分析与计算的自动化和高效化。
程序设计的目标是提高计算速度和精度,减少人工操作的难度和错误。
总之,电力系统不对称故障的分析与计算是保障电力系统安全稳定运行的关键环节。
通过准确的分析与计算,可以评估系统的稳定性和设备的耐受能力,为保护装置的选择和系统运行的优化提供参考。