高中物理力学三大规律的综合运用专题
- 格式:doc
- 大小:262.50 KB
- 文档页数:5
应用“三大观点”解决力学综合问题(可自主编辑word)五、应用“三大观点”解决力学综合问题知识点1 应用动量与动力学观点解决力学综合问题基础回扣力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为多个物体组成的系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换。
这种问题由于作用时间都极短,因此用动量守恒定律去解决。
易错辨析我们在应用动量与动力学知识观点解答问题时要注意将运动过程与受力情况分析清楚,恰当地选择研究对象、研究过程解题,避免出错。
知识点2 应用动量与能量观点解决力学综合问题基础回扣1.知识分析动量的观点:动量定理和动量守恒定律。
能量的观点:动能定理和能量守恒定律。
2.方法技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。
(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。
(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。
特别对于变力做功问题,就更显示出它们的优越性。
易错辨析1.通常能应用牛顿运动定律与运动学知识解决的力学问题,涉及到位移问题,我们可以应用动能定理解决问题。
2.通常能应用牛顿运动定律与运动学知识解决的力学问题,涉及到时间问题,我们可以应用动量定理解决问题。
高考物理复习:力学三大观点的综合应用考点一 动力学和能量观点的应用[知能必备]1.过程分析:将复杂的物理过程分解为几个简单的物理过程,挖掘出题中的隐含条件,找出联系不同阶段的“桥梁”.2.受力及功能分析:分析物体所经历的各个运动过程的受力情况以及做功情况的变化,选择适合的规律求解.3.规律应用:选用相应规律解决不同阶段的问题,列出规律性方程.[典例剖析](2020·全国卷Ⅱ)如图,一竖直圆管质量为M ,下端距水平地面的高度为H ,顶端塞有一质量为m 的小球.圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直.已知M =4m ,球和管之间的滑动摩擦力大小为4mg ,g 为重力加速度的大小,不计空气阻力.(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度; (3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件. 解析:(1)管第一次落地弹起的瞬间,小球仍然向下运动.设此时管的加速度大小为a 1,方向向下;球的加速度大小为a 2,方向向上;球与管之间的摩擦力大小为f ,由牛顿运动定律有Ma 1=Mg +f ① ma 2=f -mg ②联立①②式并代入题给数据,得a 1=2g ,a 2=3g ③(2)管第一次碰地前与球的速度大小相同.由运动学公式,碰地前瞬间它们的速度大小均为v 0=2gH ④方向均向下.管弹起的瞬间,管的速度反向,球的速度方向依然向下.设自弹起时经过时间t 1,管与小球的速度刚好相同.取向上为正方向,由运动学公式v 0-a 1t 1=-v 0+a 2t 1⑤ 联立③④⑤式得t 1=252H g⑥ 设此时管下端的高度为h 1,速度为v .由运动学公式可得 h 1=v 0t 1-12a 1t 21⑦v =v 0-a 1t 1⑧由③④⑥⑧式可判断此时v >0.此后,管与小球将以加速度g 减速上升h 2,到达最高点.由运动学公式有h 2=v 22g⑨设管第一次落地弹起后上升的最大高度为H 1, 则H 1=h 1+h 2⑩联立③④⑥⑦⑧⑨⑩式可得H 1=1325H ⑪(3)设第一次弹起过程中球相对管的位移为x 1.在管开始下落到上升H 1这一过程中,由动能定理有Mg (H -H 1)+mg (H -H 1+x 1)-4mgx 1=0⑫ 联立⑪⑫式并代入题给数据得x 1=45H ⑬同理可推得,管与球从再次下落到第二次弹起至最高点的过程中,球与管的相对位移x 2为x 2=45H 1⑭设圆管长度为L .管第二次落地弹起后的上升过程中,球不会滑出管外的条件是x 1+x 2≤L ⑮联立⑪⑬⑭⑮式,L 应满足的条件为L ≥152125H ⑯答案:(1)2g 3g (2)1325H (3)L ≥152125H[题组精练]1.(多选)如图所示,长直杆固定放置与水平面夹角θ=30°,杆上O 点以上部分粗糙,O 点以下部分(含O 点)光滑.轻弹簧穿过长杆,下端与挡板相连,弹簧原长时上端恰好在O 点,质量为m 的带孔小球穿过长杆,与弹簧上端连接.小球与杆粗糙部分的动摩擦因数μ=33,最大静摩擦力等于滑动摩擦力,现将小球拉到图示a 位置由静止释放,一段时间后观察到小球振动时弹簧上端的最低位置始终在b 点,O 点与a 、b 间距均为l .则下列说法正确的是( )A .小球在a 点弹簧弹性势能最大B .小球在a 点加速度大小是在b 点加速度大小的2倍C .整个运动过程小球克服摩擦力做功mglD .若增加小球质量,仍从a 位置静止释放,则小球最终运动的最低点仍在b 点 解析:BC 由于O 点与a 、b 间距均为l ,所以小球在a 、b 两点的弹性势能相等,则A 错误;小球从a 运动到b 过程,由动能定理可得mg sin θ2l -W f =0,解得W f =mgl ,所以C 正确;小球在a 点有mg sin 30°+kl -μmg cos 30°=ma 1,小球在b 点有kl -mg sin 30°=ma 2,由于小球最后是在O 与b 两点间做简谐振动,则在b 点与O 点的加速度大小相等,小球在O 点有mg sin 30°=ma 3,a 2=a 3,联立解得a 2=a 3=g 2,a 1=g ,所以小球在a 点加速度大小是在b 点加速度大小的2倍,则B 正确;若增加小球质量,仍从a 位置静止释放,设小球最终运动的最低点为c ,由于小球最后是在O 与最低点c 两点间做简谐振动,则在c 点与O 点的加速度大小相等,小球在c 点有kl ′-mg sin 30°=ma 2,解得l ′=mgk,所以增大小球的质量,弹簧在最低点的形变量也会增大,则最低点位置发生了改变,所以D 错误.2.如图所示,在光滑水平地面上放置质量M =2 kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1 kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6 m .滑块在木板上滑行t =1 s 后,和木板一起以速度v =1 m /s 做匀速运动,取g =10 m /s 2.求:(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功; (3)滑块相对木板滑行的距离. 解析:(1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2 N .(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3 m /s滑块沿弧面下滑的过程,由动能定理得 mgh -W f =12m v 20W f =mgh -12m v 20=1.5 J .(3)t =1 s 内木板的位移x 1=12a 1t 2此过程中滑块的位移x 2=v 0t +12a 2t 2故滑块相对木板滑行距离L =x 2-x 1=1.5 m . 答案:(1)2 N (2)1.5 J (3)1.5 m3.(2020·江苏卷)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h . 解析:(1)线速度v =ωr 得v =2ωR .(2)向心力F 向=2m ω2R设F 与水平方向的夹角为α,则 F cos α=F 向;F sin α=mg解得F = (2m ω2R )2+(mg )2. (3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.答案:(1)2ωR (2) (2m ω2R )2+(mg )2 (3)M +16m2Mg(ωR )2考点二 动量和能量观点的应用[知能必备]1.动量观点(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,应用动量定理求解,即Ft =m v -m v 0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解.2.能量观点(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果只有重力和弹簧弹力做功而又不涉及运动过程中的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.[典例剖析](2020·天津卷)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小; (2)碰撞前瞬间B 的动能E k 至少多大?解析:(1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v 2A =12m 1v 2+2m 1gl ② 由动量定理,有I =m 1v A ③ 联立①②③式,得I =m 15gl ④(2)设两球粘在一起时的速度大小为v ′,A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′⑥ 又E k =12m 2v 2B⑦ 联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧答案:(1)m 15gl (2)5gl (2m 1+m 2)22m 2动量和能量观点应用的四点注意(1)弄清有几个物体参与运动,并划分清楚物体的运动过程. (2)进行正确的受力分析,明确各过程的运动特点.(3)光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.(4)如含摩擦生热问题,则考虑用能量守恒定律分析.[题组精练]1.(2021·上海浦东区二模)质量M =0.6 kg 的平板小车静止在光滑水平面上,如图所示,当t =0时,两个质量都为m =0.2 kg 的小物体A 和B ,分别从小车的左端和右端以水平速度v 1=5.0 m /s 和v 2=2.0 m /s 同时冲上小车,当它们相对于小车停止滑动时,没有相碰.已知A 、B 两物体与车面的动摩擦因数都是0.20,g 取10 m /s 2,求:(1)A 、B 两物体在车上都停止滑动时的速度. (2)车的长度至少是多少?解析:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律: m (v 1-v 2)=(M +2m )v v =0.6 m /s 方向向右(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系 μmg (L 1+L 2)=12m v 21+12m v 22-12(M +2m )v 2解得:L 1+L 2=6.8 m L ≥L 1+L 2=6.8 m 可知L 至少为6.8 m答案:(1)0.6 m /s 方向向右 (2)6.8 m2.(2021·铜陵一模)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.取g =10 m /s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析:(1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0从B 到C ,根据动能定理有 mgR (1+sin θ)=12m v 2C -12m v 2B解得v C =6 m /s .(2)根据动量守恒定律得:(m +M )v =m v C 根据能量守恒定律有 12(m +M )v 2+Q =12m v 2C 联立解得Q =9 J . 答案:(1)6 m /s (2)9 J考点三 动力学、动量和能量观点的应用[知能必备]1.力学解题的三大观点分类规律 数学表达式 动力学 观点力的瞬 时作用牛顿第二定律 F 合=ma牛顿第 三定律F =-F ′ 能量 观点力的空间 积累作用动能定理 W 合=E k2-E k1 机械能守 恒定律 E k1+E p1=E k2+E p2 动量 观点力的时间积累作用动量定理 F 合t =m v ′-m v 动量守 恒定律m 1 v 1+m 2 v 2=m 1 v 1′+m 2 v 2′2.选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决.3.系统化思维方法(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).[典例剖析](2021·湖南卷)如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ.质量为m的小物块A与水平轨道间的动摩擦因数为μ.以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上.重力加速度为g.(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围.解析:(1)若A从倾斜轨道上距x轴高度为2μL处由静止开始下滑,对A从静止释放到运动到O点的过程,由动能定理得mg×2μL-μmgL=12m v2,解得v0=2μgL.(2)在PQ曲线上任意取一点,设坐标为(x、y),设A从O点抛出的初速度为v,由平抛运动规律有x=v t,y =12gt 2, 联立解得y =12g x 2v2,设A 落在P 点时从O 点抛出的初速度为v P , 将P 点坐标代入上式,有μL =12g (2μL )2v 2P , 解得v P =2μgL ,小物块A 从倾斜轨道上不同位置由静止释放,落在曲线PQ 上的动能均相同,有12m v 2P+mg ·μL =12m v 2+mgy ,解得x 2+4y 2-8μLy =0(0≤x ≤2μL ).(3)设A 与B 碰前瞬间的速度为v 0′,A 、B 碰后瞬间的速度分别为v 1、v 2,对A 、B 组成的系统,根据动量守恒定律与机械能守恒定律有m v 0′=m v 1+λm v 2, 12m v 0′2=12m v 21+12λm v 22, 解得v 1=1-λ1+λv 0′,v 2=21+λv 0′,又因为mgh -μmgL =12m v 0′2,要使A 、B 均能落在PQ 上且A 落在B 落点的右侧,则有12m v 2P ≥12m v 21-2μmgL >12m v 22,联立解得3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL . 答案:(1)2μgL (2)x 2+4y 2-8μLy =0(0≤x ≤2μL ) (3)3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL [题组精练]1.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2 kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1 m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在黏性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为0≤E p ≤4 J ,距离抛出点正下方O ′点右方0.4 m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节),弹簧的弹性势能范围为0≤E p ≤4 J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大?解析:(1)根据机械能守恒定律得 E p =12m v 21+mg ·2R 0A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有 m v 1=2m v 2 2R 0=12gt 20x =v 2t 0 解得E p =2 J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得F N +mg =m v 21R解得F N =30 N 由牛顿第三定律知 F 压=F N =30 N(3)根据E p =12m v 21+mg ·2Rm v 1=2m v 2 2R =12gt 2x =v 2t 联立解得 x =⎝⎛⎭⎫E p mg -2R ·2R 其中E p 最大为4 J ,得R =0.5 m 时落点离O ′点最远,为 x m =1 m答案:(1)2 J (2)30 N (3)0.5 m 1 m2.(2021·潍坊二模)如图所示,一质量M =4 kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住.小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C ,BC 所对圆心角θ=37°,CD 长L =3 m .质量m =1 kg 的小物块从某一高度处的A 点以v 0=4 m /s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,滑到D 点时刚好与小车达到共同速度v =1.2 m /s .取g =10 m /s 2,sin 37°=0.6,忽略空气阻力.(1)求A 、B 间的水平距离x ;(2)求小物块从C 滑到D 所用时间t 0;(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移时滑块离小车左端的水平距离.解析:(1)由平抛运动的规律得tan θ=gt v 0x =v 0t解得x =1.2 m .(2)物块在小车上CD 段滑动过程中,由动量守恒定律得m v 1=(M +m )v由功能关系得fL =12m v 21-12(M +m )v 2 对物块,由动量定理得-ft 0=m v -m v 1得t 0=1 s .(3)有销钉时mgH +12m v 20=12m v 21 由几何关系得H -12gt 2=R (1-cos θ) B 、C 间水平距离x BC =R sin θμmgL =12m v 21-12(M +m )v 2(或f =μmg ) 若拔掉销钉,小车向左运动达最大位移时,速度为0,由系统水平方向动量守恒可知,此时物块速度为4 m /s由能量守恒定律得mgH =μmg (Δx -x BC )解得Δx =3.73 m .答案:(1)1.2 m (2)1 s (3)3.73 m3.(2020·全国卷Ⅲ)如图,相距L =11.5 m 的两平台位于同一水平面内,二者之间用传送带相接.传送带向右匀速运动,其速度的大小v 可以由驱动系统根据需要设定.质量m =10 kg 的载物箱(可视为质点),以初速度v 0=5.0 m /s 自左侧平台滑上传送带.载物箱与传送带间的动摩擦因数μ=0.10,重力加速度取g =10 m /s 2.(1)若v =4.0 m /s ,求载物箱通过传送带所需的时间;(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度;(3)若v =6.0 m /s ,载物箱滑上传送带Δt =1312s 后,传送带速度突然变为零.求载物箱从左侧平台向右侧平台运动的过程中,传送带对它的冲量.解析:(1)传送带的速度为v =4.0 m /s 时,载物箱在传送带上先做匀减速运动,设其加速度大小为a ,由牛顿第二定律有μmg =ma ①设载物箱滑上传送带后匀减速运动的距离为s 1,由运动学公式有v 2-v 20=-2as 1②联立①②式,代入题给数据得s 1=4.5 m ③因此,载物箱在到达右侧平台前,速度先减小至v ,然后开始做匀速运动.设载物箱从滑上传送带到离开传送带所用的时间为t 1,做匀减速运动所用的时间为t 1′,由运动学公式有v =v 0-at 1′④t 1=t 1′+L -s 1v ⑤联立①③④⑤式并代入题给数据得t 1=2.75 s ⑥(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v 1;当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v 2.由动能定理有-μmgL =12m v 21-12m v 20⑦ μmgL =12m v 22-12m v 20⑧ 由⑦⑧式并代入题给条件得v 1=2 m /s ,v 2=43 m /s ⑨(3)传送带的速度为v =6.0 m /s 时,由于v 0<v <v 2,载物箱先做匀加速运动,加速度大小仍为a .设载物箱做匀加速运动通过的距离为s 2,所用时间为t 2,由运动学公式有v =v 0+at 2⑩v 2-v 20=2as 2⑪联立①⑩⑪式并代入题给数据得t 2=1.0 s ⑫s 2=5.5 m ⑬因此载物箱加速运动1.0 s 、向右运动5.5 m 时,达到与传送带相同的速度.此后载物箱与传送带共同匀速运动(Δt -t 2)的时间后,传送带突然停止.设载物箱匀速运动通过的距离为s 3,有s 3=(Δt -t 2)v ⑭由①⑫⑬⑭式可知,12m v 2>μmg (L -s 2-s 3),即载物箱运动到右侧平台时速度大于零,设为v 3.由运动学公式有v 23-v 2=-2a (L -s 2-s 3)⑮v 3=v -at 3⑯设载物箱通过传送带的过程中,传送带对它摩擦力的冲量为I 1,由动量定理有I 1=m (v 3-v 0)⑰联立①⑫⑬⑭⑮⑰式并代入题给数据得I 1=0⑱传送带对它支持力(大小等于重力)的冲量为I 2=mg (Δt +t 3)⑲联立⑮⑯⑲式并代入题给数据得I 2=6253N ·s ⑳ 由于I 1=0,所以传送带对它的冲量为I =I 2=6253N ·s ,方向竖直向上. 答案:(1)2.75 s (2)43 m /s 2 m /s (3)6253N ·s ,方向竖直向上 限时规范训练(九) 力学三大观点的综合应用建议用时60分钟,实际用时________一、单项选择题1.如图所示,小球a 、b (均可视为质点)用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为θ=60°.忽略空气阻力.则两球a 、b 的质量之比m a m b为( )A .22B .2-1C .1-22 D .2+1 解析:B b 球下摆过程中,由动能定理得m b gL =12m b v 20-0,碰撞过程动量守恒,设向左为正方向,由动量守恒定律可得m b v 0=(m a +m b )v ,两球向左摆动过程中,由机械能守恒定律得12(m a +m b )v 2=(m a +m b )gL (1-cos θ),解得m a m b=2-1,故ACD 错误,B 正确. 2.如图所示,质量为3m 的物块A 与质量为m 的物块B 用轻弹簧和不可伸长的细线连接,静止在光滑的水平面上,此时细线刚好伸直且无弹力.现使物块A 瞬间获得向右的速度v 0,在以后的运动过程中,细线没有绷断,以下判断正确的是( )A .细线再次伸直前,物块A 的速度先减小后增大B .细线再次伸直前,物块B 的加速度先减小后增大C .弹簧的最大弹性势能等于38m v 20D .物块A 、B 与弹簧组成的系统,损失的机械能最多为32m v 20解析:C 细线再次伸直时,也就是弹簧再次恢复原长时,细线恢复原长的过程中,A 始终受到向左的弹力,即一直做减速运动,B 始终受到向右的弹力,即一直做加速运动,弹簧的弹力先变大后变小,故B 的加速度先增大后减小,故A 、B 错误;弹簧弹性势能最大时,弹簧压缩到最短,此时A 、B 速度相等,根据动量守恒定律可得3m v 0=(3m +m )v ,解得v =34v 0,根据能量守恒定律可得,弹性势能E pmax =12×3m v 20-12·(3m +m )v 2=38m v 20,故C 正确;整个过程中,物块A 、B 与弹簧组成的系统只有弹簧的弹力做功,系统的机械能守恒,故D 错误.3.如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球,t =0时,甲静止,乙以6 m /s 的初速度向甲运动.它们仅在静电力的作用下沿同一直线运动(整个运动过程中两球没有接触),它们运动的v t 图像分别如图(b)中甲、乙两曲线所示.则由图线可知( )A .两带电小球的电性一定相反B .甲、乙两球的质量之比为2∶1C .t 2时刻,乙球的电势能最大D .在0~t 3时间内,甲的动能一直增大,乙的动能一直减小解析:B 由题图(b)可知,乙球减速的同时,甲球正向加速,说明两球相互排斥,带有同种电荷,故A 错误;两球作用过程动量守恒m 乙Δv 乙=m 甲Δv 甲,解得m 甲m 乙=21,故B 正确;t 1时刻,两球共速,距离最近,则乙球的电势能最大,故C 错误;在0~t 3时间内,甲的动能一直增大,乙的动能先减小,t 2时刻后逐渐增大,故D 错误.4.如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R ,将物体A 从圆槽的右侧最顶端由静止释放,重力加速度为g ,一切摩擦均不计.则( )A .A 、B 物体组成的系统动量守恒B .A 不能到达圆槽的左侧最高点C .A 运动到圆槽的最低点时A 的速率为23gR D .A 运动到圆槽的最低点时B 的速率为 gR 3解析:D A 、B 物体组成的系统只有水平方向动量守恒,故A 错误;运动过程不计一切摩擦,系统机械能守恒,故A 可以到达圆槽的左侧最高点,且A 在圆槽的左侧最高点时,A 、B 的速度都为零,故B 错误;对A 运动到圆槽的最低点的运动过程由水平方向动量守恒得m v A =2m v B ,对A 、B 整体由机械能守恒可得mgR =12m v 2A +12×2m v 2B ,所以A 运动到圆槽的最低点时B 的速率为v B = gR 3,v A = 4gR 3,故C 错误,D 正确. 5.(2021·山东济南市高三模拟)碰碰车是大人和小孩都喜欢的娱乐活动.游乐场上,大人和小孩各驾着一辆碰碰车迎面相撞,碰撞前后两人的位移-时间图像(x t 图像)如图所示.已知小孩的质量为20 kg ,大人的质量为60 kg ,碰碰车质量相同,碰撞时间极短.下列说法正确的是( )A .碰撞前后小孩的运动方向没有改变B .碰碰车的质量为50 kgC .碰撞过程中小孩和其驾驶的碰碰车受到的总冲量大小为80 N ·sD .碰撞过程中损失的机械能为600 J解析:D 规定小孩初始运动方向为正方向,由图可知,碰后两车一起向反方向运动,故碰撞前后小孩的运动方向发生了改变,故A 错误;由图可知,碰前瞬间小孩的速度为2 m /s ,大人的速度为-3 m /s ,碰后两人的共同速度为-1 m /s ,设碰碰车的质量为M ,由动量守恒定律有(20+M )×2 kg ·m /s -(60+M )×3 kg ·m /s =(2M +20+60)×(-1) kg ·m /s ,解得M =60 kg ,故B 错误;碰前小孩与其驾驶的碰碰车的总动量为p 1=160 kg ·m /s ,碰后总动量为p 1′=-80 kg ·m /s ,由动量定理可知碰撞过程中小孩和其驾驶的碰碰车受到的总冲量为I =Δp =-240 N ·s ,故其大小为240 N ·s ,故C 错误;由能量守恒定律可得碰撞过程中损失的机械能为ΔE =12×80×22 J +12×120×(-3)2 J -12×200×(-1)2 J =600 J ,故D 正确.6.如图甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )A .1v 0(s +L ) B .1v 0(s +2L ) C .12v 0(s +L ) D .1v 0(L +2s ) 解析:D 设子弹穿过木块的速度为v 1,木块最终速度为v 2,子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v 0的方向为正方向,有m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理-F f (s +L )=12m v 21-12m v 20,由动量定理-F f t =m v 1-m v 0,对木块由动能定理F f s =12m v 22,由动量定理F f t =m v 2,联立解得t =1v 0(L +2s ),故选D .7.质量为1 kg 的物体从足够高处由静止开始下落,其加速度a 随时间t 变化的关系图像如图所示,重力加速度g 取10 m /s 2,下列说法正确的是( )A .2 s 末物体所受阻力的大小为20 NB .在0~2 s 内,物体所受阻力随时间均匀减小C .在0~2 s 内,物体的动能增大了100 JD .在0~1 s 内,物体所受阻力的冲量大小为2.5 N ·s解析:D 2 s 末物体的加速度为零,则此时阻力等于重力,即所受阻力的大小为10 N ,选项A 错误;根据牛顿第二定律有mg -f =ma ,可得f =mg -ma ,在0~2 s 内,物体加速度随时间均匀减小,则所受阻力随时间均匀增大,选项B 错误;根据物体加速度a 随时间t 变化的关系图像与坐标轴所围图形的面积表示速度变化量可知,在0~2 s 内,物体的速度增加了Δv =12×2×10 m /s =10 m /s ,即t =2 s 时速度为v =10 m /s ,则在0~2 s 内,物体的动能增大了12m v 2=12×1×102 J =50 J ,选项C 错误;在0~1 s 内,物体速度的增量Δv 1=12×(5+10)×1 m /s =7.5 m /s ,根据动量定理有mgt -I f =m Δv 1,解得I f =2.5 N ·s ,选项D 正确.8.如图甲所示,光滑水平面上有一上表面粗糙的长木板,t =0时刻,质量m =1 kg 的滑块以速度v 0=7 m /s 滑上长木板左端,此后滑块与长木板运动的v t 图像如图乙所示.下列分析正确的是( )A .长木板的质量为0.5 kgB .长木板的长度为0.5 mC .0~2 s 内滑块与长木板间因摩擦产生的热量为16 JD .0~2 s 内长木板对滑块的冲量大小为4 kg ·m /s解析:C 滑块滑上长木板后,滑块受摩擦力作用做匀减速运动,长木板做匀加速运动,由图乙可知滑块的加速度大小为a 1=Δv Δt =2 m /s 2,长木板的加速度大小为a 2=Δv Δt=1 m /s 2,。
50 力学三大规律的综合应用[方法点拨] 做好以下几步:①确定研究对象,进行运动分析和受力分析;②分析物理过程,按特点划分阶段;③选用相应规律解决不同阶段的问题,列出规律性方程.1.(2020·广东东莞模拟)如图1所示,某超市两辆相同的手推购物车质量均为m 、相距l 沿直线排列,静置于水平地面上.为节省收纳空间,工人给第一辆车一个瞬间的水平推力使其运动,并与第二辆车相碰,且在极短时间内相互嵌套结为一体,以共同的速度运动了距离l 2,恰好停靠在墙边.若车运动时受到的摩擦力恒为车重的k 倍,忽略空气阻力,重力加速度为g.求:图1(1)购物车碰撞过程中系统损失的机械能;(2)工人给第一辆购物车的水平冲量大小.2.(2020·河北石家庄第二次质检)如图2所示,质量分布均匀、半径为R 的光滑半圆形金属槽,静止在光滑的水平面上,左边紧靠竖直墙壁.一质量为m 的小球从距金属槽上端R 处由静止下落,恰好与金属槽左端相切进入槽内,到达最低点后向右运动从金属槽的右端冲出,小球到达最高点时与金属槽圆弧最低点的距离为74R ,重力加速度为g ,不计空气阻力.求:图2(1)小球第一次到达最低点时对金属槽的压力大小;(2)金属槽的质量.3.(2020·江西上饶一模)如图3所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生碰撞,碰撞后B、C的速度相同,B、C的上表面相平且B、C不粘连,A滑上C后恰好能到达C板的右端.已知A、B质量相等,C的质量为A的质量的2倍,木板C长为L,重力加速度为g.求:图3(1)A物体与木板C上表面间的动摩擦因数;(2)当A刚到C的右端时,B、C相距多远?4.(2020·河南六市第一次联考)足够长的倾角为θ的光滑斜面的底端固定一轻弹簧,弹簧的上端连接质量为m、厚度不计的钢板,钢板静止时弹簧的压缩量为x0,如图4所示.一物块从钢板上方距离为3x0的A处沿斜面滑下,与钢板碰撞后立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点,O为弹簧自然伸长时钢板的位置.若物块质量为2m,仍从A处沿斜面滑下,则物块与钢板回到O点时,还具有向上的速度,已知重力加速度为g,计算结果可以用根式表示,求:图4(1)质量为m的物块与钢板碰撞后瞬间的速度大小v1;(2)碰撞前弹簧的弹性势能;(3)质量为2m的物块沿斜面向上运动到达的最高点离O点的距离.5.(2020·山东泰安一模)如图5所示,质量为m1=0.5 kg的小物块P置于台面上的A点并与水平弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M=1 kg的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m2=1 kg的小滑块Q.现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内),撤去推力,此后P沿台面滑到边缘C时速度v0=10 m/s,与长木板左端的滑块Q相碰,最后物块P停在AC的正中点,Q停在木板上.已知台面AB部分光滑,P与台面AC 间的动摩擦因数μ1=0.1,AC间距离L=4 m.Q与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g取10 m/s2),求:图5(1)撤去推力时弹簧的弹性势能;(2)长木板运动中的最大速度;(3)长木板的最小长度.6.(2020·河北邢台质检)如图6所示,某时刻质量为m1=50 kg的人站在m2=10 kg的小车上,推着m3=40 kg的铁箱一起以速度v0=2 m/s在水平地面沿直线运动到A点时,该人迅速将铁箱推出,推出后人和车刚好停在A点,铁箱则向右运动到距A点s=0.25 m的竖直墙壁时与之发生碰撞而被弹回,弹回时的速度大小是碰撞前的二分之一,当铁箱回到A点时被人接住,人、小车和铁箱一起向左运动,已知小车、铁箱受到的摩擦力均为地面压力的0.2倍,重力加速度g=10 m/s2,求:图6(1)人推出铁箱时对铁箱所做的功;(2)人、小车和铁箱停止运动时距A点的距离.答案精析1.(1)mkgl (2)m 6gkl解析 (1)设第一辆车碰前瞬间的速度为v 1,与第二辆车碰后的共同速度为v 2.由动量守恒定律有mv 1=2mv 2由动能定理有-2kmg·l 2=0-12(2m)v 22 则碰撞中系统损失的机械能ΔE=12mv 12-12(2m)v 22 联立以上各式解得ΔE=mkgl(2)设第一辆车推出时的速度为v 0由动能定理有-kmgl =12mv 12-12mv 02 I =mv 0联立解得I =m 6gkl2.(1)5mg (2)(33+833)m 31解析 (1)小球从静止到第一次到达最低点的过程,根据机械能守恒定律有:mg·2R=12mv 02 小球刚到最低点时,根据圆周运动规律和牛顿第二定律有:F N -mg =m v 02R据牛顿第三定律可知小球对金属槽的压力为:F N ′=F N联立解得:F N ′=5mg(2)小球第一次到达最低点至小球到达最高点过程,小球和金属槽水平方向动量守恒,选取向右为正方向,则:mv 0=(m +M)v设小球到达最高点时与金属槽圆弧最低点的高度为h.则有R 2+h 2=(74R)2 根据能量守恒定律有:mgh =12mv 02-12(m +M)v 2 联立解得M =(33+833)m 31. 3.(1)4v 0227gL (2)L 3解析 (1)设A 、B 的质量为m ,则C 的质量为2m.B 、C 碰撞过程中动量守恒,令B 、C 碰后的共同速度为v 1,以B 的初速度方向为正方向,由动量守恒定律得:mv 0=3mv 1解得:v 1=v 03B 、C 共速后A 以v 0的速度滑上C ,A 滑上C 后,B 、C 脱离,A 、C 相互作用过程中动量守恒,设最终A 、C 的共同速度v 2,以向右为正方向,由动量守恒定律得:mv 0+2mv 1=3mv 2解得:v 2=5v 09在A 、C 相互作用过程中,根据能量守恒定律得:F f L =12mv 02+12×2mv 12-12×3mv 22 又F f =μmg解得:μ=4v 0227gL(2)A 在C 上滑动时,C 的加速度a =μmg 2m =2v 0227LA 从滑上C 到与C 共速经历的时间:t =v 2-v 1a =3L v 0 B 运动的位移:x B =v 1t =LC 运动的位移x C =(v 1+v 2)t 2=4L 3B 、C 相距:x =x C -x B =L 34.(1)6gx 0sin θ2 (2)12mgx 0sin θ (3)x 02解析 (1)设物块与钢板碰撞前速度为v 0, 3mgx 0sin θ=12mv 02 解得v 0=6gx 0sin θ设物块与钢板碰撞后一起运动的速度为v 1,以沿斜面向下为正方向,由动量守恒定律得mv 0=2mv 1解得v 1=6gx 0sin θ2(2)设碰撞前弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为零,根据机械能守恒定律得E p +12(2m)v 12=2mgx 0sin θ 解得E p =12mgx 0sin θ(3)设v 2表示质量为2m 的物块与钢板碰后开始一起向下运动的速度,以沿斜面向下为正方向,由动量守恒定律得2mv 0=3mv 2它们回到O 点时,弹性势能为零,但它们仍继续向上运动,设此时速度为v ,由机械能守恒定律得E p +12(3m)v 22=3mgx 0sin θ+12(3m)v 2 在O 点物块与钢板分离,分离后,物块以速度v 继续沿斜面上升,设运动到达的最高点离O 点的距离为l ,有v 2=2al2mgsin θ=2ma解得l =x 025.(1)27 J (2)2 m/s (3)3 m解析 (1)小物块P 由B 到C 的过程:W 弹-μ1m 1gL =12m 1v 02-0解得W 弹=27 JE p =W 弹=27 J即撤去推力时弹簧的弹性势能为27 J.(2)小物块P 和滑块Q 碰撞过程动量守恒,以v 0的方向为正方向m 1v 0=-m 1v P +m 2v Q小物块P 从碰撞后到静止-12μ1m 1gL =0-12m 1v P 2解得v Q =6 m/sQ 在长木板上滑动过程中:对Q :-μ2m 2g =m 2a 1对木板:μ2m 2g -μ3(M +m 2)g =Ma 2解得a 1=-4 m/s 2,a 2=2 m/s 2当滑块Q 和木板速度相等时,木板速度最大,设速度为v ,滑行时间为t.对Q :v =v Q +a 1t对木板:v =a 2t解得t =1 sv =2 m/s长木板运动中的最大速度为2 m/s(3)在Q 和木板相对滑动过程中Q 的位移:x Q =12(v Q +v)·t木板的位移:x 板=12(0+v)·t 木板的最小长度:L =x Q -x 板解得L =3 m6.(1)420 J (2)0.2 m解析 (1)人推铁箱过程,以v 0的方向为正方向,由动量守恒定律得:(m 1+m 2+m 3)v 0=m 3v 1解得v 1=5 m/s人推出铁箱时对铁箱所做的功为:W =12m 3v 12-12m 3v 02=420 J (2)设铁箱与墙壁相碰前的速度为v 2,箱子再次滑到A 点时速度为v 3,根据动能定理得:从A 到墙:-0.2m 3gs =12m 3v 22-12m 3v 12 解得v 2=2 6 m/s从墙到A :-0.2m 3gs =12m 3v 32-12m 3(12v 2)2 解得v 3= 5 m/s设人、小车与铁箱一起向左运动的速度为v 4,以向左方向为正方向,根据动量守恒定律得:m 3v 3=(m 1+m 2+m 3)v 4解得v 4=255m/s 根据动能定理得:-0.2(m 1+m 2+m 3)gx =0-12(m 1+m 2+m 3)v 42 解得x =0.2 m高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
专题二能量与动量单元教学设计一、单元分析(一)单元教材分析本专题内容在大二轮复习教材22页,分别3讲,3个微专题和1个动向。
按教材思路讲完基本知识点:功和功率、功能关系后再讲能量的相关定理、定律。
该专题分两大片,能量和动量,从这两方面展开旨在梳理学生的知识体系。
(二)单元知识结构(三)学情分析本章节的教学对为高三的学生,该阶段的学生已经具备了较高的物理学科素养,有较高的空间想象能力和逻辑推理能力,对各种研究物理问题的方法已经熟练掌握,但是在有限的时间内拿不准用力学观点或是用能量观点,还是用动量观点去解决问题,尤其是在理综考试的过程中,结果花费了时间又拿不到应得的分。
原因在于学生对力和运动的规律,动能定理、动量定理等没有深刻地理解。
二、本单元学习目标(一) 课程标准要求1.巩固动量和能量的三大规律,并会用他们去解决物理问题;2.熟悉物理情景分析的一般步骤,培养学生物理答题规范;3.深刻体会类比,迁移等物理思想,并能活学活用。
(二) 学习目标1.通过能量、动量观点学习将两种抽象的概念具体化;2.加深能量、动量观点中的守恒思维;3.会从力的瞬间作用找受力分析,力在空间上的积累,力在时间上的积累找对应的定理。
三、发展核心素养的编排途径引导学生对实验现象进行分类和归纳,提升学生对实验结果定性分析的能力,通过分析讨论找到动力学、动量、能量观点,发展了学生寻找物理量之间关联的能力。
四、单元课时规划单元名称:能量与动量五、单元评价(一)评价目标1.能通过审题写出能量和动量相关公式2.会分析传送带中的动力学和能量问题,会分析板块模型。
能利用力学三大观点处理多过程问题。
(二)评价形式卷子(小姐测评以及章节测评)以选择题、大题为主。
微专题3 力学三大观点的综合应用教学设计课题名称力学三大观点的综合应用授课教师一、学习目标: 知识目标:①能利用力学三大观点处理多过程问题;②能从实际问题中梳理力学三大观点的相关公式。
素养目标:①通过运动与力,做功与能量培养学生科学思维能力②通过做功和能量习题练习,培养学生能量守恒的守恒思维能力二、重点、难点:①教学重点:应用力学三大观点解决多过程问题②教学难点:应用力学三大观点解决多过程问题以及选用原则的梳理三、教学方法:讲授法、对比分析法四、学习方法:提前预习、总结归纳五、教学流程:复习回顾力学三大观点→例题训练→总结归纳六、学习过程:课前预习→课上细听、做好笔记→课堂练习→归纳总结→完成作业教学环节教师活动学生活动设计意图创设情境引发问题教师提问:1、力学三大观点是哪三大观点?试着举出对应的规律?2、我们遇到问题的时候该怎么选用这些规律呢?学生回答:有动力学、能量和动量这三大观点。
“三大运动”和“三大规律”一、三大运动(一)匀变速直线运动1.运动特点:2.计算公式:3.注意事项:(二)(类)平抛运动1.运动特点:匀变速曲线运动2.解题思路:运动合成与分解(注意要分解的是位移或速度)(三)(匀速)圆周运动1.运动特点:各个量变不变?2.计算公式二、三大规律①选择要研究的过程........,明确初、末状态的动能,写出动能变化量。
(注意圆周运动最高点) ②分析该过程中合外力所做的功。
(注意:不要漏力;........正负功小心.....) ③列出动能定理计算。
(三)应用机械能守恒定律解题步骤(1)确定研究对象 (2)对研究对象进行正确的受力分析(3)判定各个力是否做功,并分析是否符合机械能守恒的条件(4)视解题方便选取零势能参考平面,并确定研究对象在始、末状态时的机械能。
(或分析机械能转化的脉络,计算各种能的变化量。
)(5)根据机械能守恒定律列出方程,或再辅之以其他方程,进行求解。
针对练习1.如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A 位置)上,随跳板一同向下运动到最低点(B 位置),对于运动员从开始与跳板接触到运动至最低点的过程中,下列说法正确的是( )A .运动员到达最低点时,其所受外力的合力为零B .在这个过程中,运动员的动能一直在减小C .在这个过程中,跳板的弹性势能一直在增加D .在这个过程中,运动员所受重力对他做的功小于跳板的作用力对他做的功2.一辆汽车在平直公路上以速度v 0开始加速行驶,经过一段时间t ,前进距离L ,此时恰好达到其最大速度v m ,设此过程中汽车发动机始终以额定功率P 工作,汽车所受阻力恒为f ,则在这段时间里,发动机所做的功为( )A .fv m tB .P ·t C.12mv 2m +f ·l -12mv 20 D .F ·t v 0+v m 23.如图甲所示为学校操场上一质量不计的竖直滑杆,滑杆上端固定,下端悬空.为了研究学生沿杆的下滑情况,在杆顶部装有一拉力传感器,可显示杆顶端所受拉力的大小.现有一学生(可视为质点)从上端由静止开始滑下,5s 末滑到杆底时速度恰好为零.以学生开始下滑时刻为计时起点,传感器显示的拉力随时间变化情况如图乙所示,g 取10m/s 2。
拾躲市安息阳光实验学校动力学三大规律的应用综合习题两天一题(12-17)1.如图所示,质量是M 的木板静止在光滑水平面上,木板长为l 0,一个质量为m 的小滑块以初速度v 0从左端滑上木板,由于滑块与木板间摩擦作用,木板也开始向右滑动,滑块滑到木板右端时二者恰好相对静止,求: ⑴二者相对静止时共同速度为多少? ⑵此过程中有多少热量生成? ⑶滑块与木板间摩擦因数多大?解:(1)设二者相对静止时共同速度为共υ,则有:共υυ)(0M m m += …………①(3分)0υυmM m+=∴共…………②(3分)对系统(M ,m )应用功能关系分析有: Q l mg =⋅0μ…………(4分)200)(21gl m M M mgl Q +==∴υμ…………(2分)(12-19)2.如图所示,在足够长的光滑水平轨道上静止三个小木块A ,B ,C ,质量分别为m A =1kg ,m B =1kg ,m C =2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。
现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在BC 之间的弹簧第一次恢复到原长时追上B ,并且在碰撞后和B 粘到一起。
求:⑴在A 追上B 之前弹簧弹性势能的最大值;⑵A 与B 相碰以后弹簧弹性势能的最大值。
解:⑴爆炸后A 向左,B 向右,由动量守恒:B B A A m m υυ=,能量守恒:p B B AAE m m =+222121υυ当弹簧第一次压缩最短时,弹簧势能最大,设B 、C 的共同速度为共υ,由动量守恒:共(υυ)C B B B m m m +=,∴1=共υm/s由能量守恒:3)(2121221=+-=共υυc B B B p m m m EJ⑵当B 、C 恢复原长时,速度为υ'B 、υ'C ,由动量守恒://c c B B BBm m m υυυ+=能量守恒:2/2/2212121c c B B BBm m m υυυ+=解得:11-=B υm/s 21=c υm/sA 追上B 时动量守恒:AB B A B B A A m m m m υυυ)(1+=+ 1=∴AB υm/s三者有共同速度:5.1=∴ABC υm/s由能量守恒:(12-21)3.如图所示,质量为M =20kg 的平板车静止在光滑的水平面上,车上最左端停放着质量为m =5kg 的电动车,电动车与平板车上的档板相距L=5m 。
专题一:力学三大规律综合应用【考点透视】解决动力学问题有三个基本观点,即是力的观点、动量的观点、能量的观点。
一、知识回顾 1.力的观点⑴.匀变速直线运动中常见的公式(或规律): 牛顿第二定律:ma F =运动学公式:at v v t +=0,2021at t v s +=,as v v t 2202=-,t v s =,2aT s =∆⑵.圆周运动的主要公式:22ωmr rv m ma F ===向向 2.动量观点⑴.恒力的冲量:Ft I =⑵.动量:mv p =,动量的变化12mv mv p -=∆ ⑶.动量大小与动能的关系k mE P 2=⑷.动量定理:p I ∆=,对于恒力12mv mv t F -=合,通常研究的对象是一个物体。
⑸.动量守恒定律:条件:系统不受外力或系统所受外力的合力为零;或系统所受外力的合力虽不为零,但比系统内力小得多,(如碰撞问题中的摩擦力、爆炸问题中的重力等外力比起相互作用的内力来小得多,可以忽略不计);或系统所受外力的合力虽不为零,但在某个方向上的分量为零(在该方向上系统的总动量的分量保持不变)。
表达式:对于两个物体有22112211v m v m v m v m '+'=+,研究的对象是一个系统(含两个或两个以上相互作用的物体)。
3.用能量观点解题的基本概念及主要关系 ⑴.恒力做功:θcos Fs W =,Pt W =,⑵.重力势能mgh E P =,动能221mv E k =,动能变化21222121mv mv E k -=∆ ⑶.动能定理:力对物体所做的总功等于物体动能变化,表达式21222121W mv mv -=总⑷.常见的功能关系重力做功等于重力势能增量的负值P G E W ∆-= 弹簧弹力做功等于弹性势能增量的负值E W P ∆-=弹 有相对时,系统克服滑动摩擦力做功等于系统产生222120212121mv mv mv fl Q --== ⑸.机械能守恒:只有重力或系统内的弹力做功系统的总的机械能保持不变。
暑期生活第七篇:力学三大规律的综合运用专题
复习目标:
1、 掌握解决动力学问题的三个基本观点:力的观点、动量的观点、能量的观点
2、 能够熟练、准确合理的选用规律解决问题
3、 正确把握物理问题的情境,提高综合分析问题的能力 一、选择题
1、如图所示,自由下落的小球,从它接触竖直放置的弹簧开始到弹簧压缩到最短的过程中,下列说法中正确的是( )
A 、小球在最低点的加速度一定大于重力加速度
B 、小球和弹簧组成的系统的机械能守恒
C 、小球受到的合力先变小后变大,小球的速度先变大后变小
D 、小球和弹簧组成的系统的动量守恒
2、如图所示,质量为m 的木块放在倾角为θ的光滑斜面上,已知斜面体与地面之间也是光滑的。
在木块下滑的过程中,则:( )
A 、木块所受的弹力对木块做负功
B 、木块的机械能守恒
C 、木块和斜面体组成的系统动量守恒
D 、斜面体对地面的压力一定小于两个物体的重力之和
3、有两个物体a 和b ,其质量分别为ma 和mb ,且ma >mb ,它们的初动能相同,若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同时间停下来,它们的位移分别是S a 和S b ,则:( ) A .F a >F b ,S a <S b ; B .F a >F b ,S a >S b ; C .F a <F b ,S a <S b ; D .F a <F b ,S a >S b
4、如图所示的装置中,木块M 与地面间无摩擦,子弹以一定的速度沿水平方向射向木块并留在其中,然后将弹簧压缩至最短.现将木块、子弹、弹簧作为研究对象,从子弹开始射入木块到弹簧压缩至最短的过程中系统的 ( ) A .机械能守恒 B .机械能不守恒 C .产生的热能等于子弹动能的减少量
D .弹簧压缩至最短时,动能全部转化成势能
5、物体静止在光滑水平面上,先对物体施一水平向右的恒力F 1,经t 秒后撤去F 1,立即再对它施一水平向左的恒力F 2,又经t 秒后物体回到出发点,在这一过程中,F 1、F 2分别对物体做的功W 1、W 2间的关系是( )
A W 1=W 2
B W 2=2W 1
C W 2=3 W 1
D W 2=5W 1
6、某人身系弹性绳自高空P 点自由下落,图5-37中a 点是弹性绳的原长位置,c 是人所到达的最低点,b 是人静止地悬吊着时的平衡位置.不计空气阻力,则下列说法中正确的是 ( )
A 从P 至c 过程中重力的冲量大于弹性绳弹力的冲量
B 从P 至c 过程中重力所做的功等于人克服弹力所做的功
C 从P 至b 过程中人的速度不断增大
D 从a 至c 过程中的加速度方向保持不变
7、在光滑水平面上有质量均为2 kg 的a 、b 两质点,a 质点在水平恒力F a =4 N 作用下由静止出发移动4 s,b 质点在水平恒力F b =4N 作用下由静止出发移动4 m .比较两质点所经历的过程,可以得到的正确结论是 ( )
A a 质点的位移比b 质点的位移大
B a 质点的末速度比b 质点的末速度小
C 力F a 做的功比力F b 做的功多
D 力F a 的冲量比力F b 的冲量小
a
m
8、质量相等的A 、B 两球在光滑水平面上沿同一直线,同一方向运动,A 球动量为7kg·m/s,B 球的动量为5kg·m/s,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量P A 、P B 可能值是:( )
A.P A =6kg·m/s P B =6kg·m/s
B.P A =3kg·m/s P B =9kg·m/s
C.P A =-2kg·m/s P B =14kg·m/s
D.P A =-4kg·m/s P B =17kg·m/s
9、一小球用轻绳悬挂在某固定点.现将轻绳水平拉直.然后由静止开始释放小球.考虑小球由静止开始运动到最低位置的过程( )
A 小球在水平方向的速度逐渐增大
B 小球在竖直方向的速度逐渐增大
C 到达最低位置时小球线速度最大
D 到达最低位置时绳中的拉力等于小球重力
10、如图,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球, B 处固定质量为m 的小球.支架悬挂在O 点,可绕过O 点并与支架所在平面相垂直的固定轴转动.开始时OB 与地面相垂直.放手后开始运动,在不计任何阻力的情况下,下列说法正确的是( )
A A 球到达最低点时速度为零
B A 球机械能减少量等于B 球机械能增加量
C B 球向左摆动所能达到的最高位置应高于A 球开始运动时的高度
D 当支架从左向右回摆时,A 球一定能回到起始高度 二、非选择题
11、质量为m 的木块下面用细线系一质量为M 的铁块,一起浸没在水中从静止开始以加速度a 匀加速下沉,如图所示,经时间t 1s 后细线断裂,又经t 2s 后,木块停止下沉.铁块在木块停止下沉瞬间的速度为 。
12、质量为M ,边长为h 的正方体静止在水平桌面上,木块上表面光滑,在木块上左端放一质量为m 1的小铁块,其大小可忽略,质量为m 2的子弹以水平初速度v 0击中木块并没有穿出,则①当桌面光滑时,铁块从木块上落到桌面时,木块的水平位移为_________,②若桌面与木块间的动摩擦因数为μ,则木块的水平位移的最大值为_______________。
13、卡车的质量为4×103
kg ,在水平直公路上以V =10m /S 的速度匀速行驶,如果阻力为车重的00.5倍,途中拖车突然脱勾,从脱勾到驾驶员发现时,卡车已前进了L =40m ,这时驾驶员立即关掉发动机,卡车在公路上滑行,求:当卡车和拖车都停止时,它们之间的距离多大?__________
14、如图所示,一质量为500㎏的木箱放在质量为2000㎏平板车的后部,木箱到驾驶室的距离L=1.6m ,已
知木箱与车板间的摩擦因数ц=0.484。
平板车以恒定的速度VO=22m/S
匀速行驶,突然驾驶员刹车,使车作匀减速运动,设木箱与车之间的最大静摩擦力等于滑动摩擦力,为使木箱不撞击驾驶室,求:
(1)从刹车开始到平板车完全停止至少要经过的时间。
(g 取10m /s 2
.) (2)驾驶员刹车时的制动力不能超过多少牛?
15、在光滑的小平轨道上有两个半径都慢r 的小球A 和B ,质量分别为m 和2m ,当两球心间的距离大于L (L 比r 大得多)时,两球之间无相互作用力;当两球心间的距离等于或小于L L
图6—17
时,两球间存在的相互作用的恒定斥力为F .设A 球从运离B 球处以速度v o 沿两球连心线向原来静止的B 球运动,如图所示,欲使两球不发生接触,v o 必须满足什么条件?
16、如图所示,质量为M 、长为L 的木板(端点为A 、B ,中点为O )置于光滑水平面上,现使木板M 以v o 的水平初速度向右运动,同时把质量为M 、长度可忽略的小木块置于B 端(它对地的初速度为零,它与木板间的动摩擦因数为ц)。
求:v o 取值在什么范围内才能使木块m 滑动到OA 之间停下来?
17、如图所示,水平传送带水平段长L=6m ,两皮带轮半径均为r = 0.1m ,距地面高H = 5m 。
与传送带等高的光滑水平台上有一小物块以s m /50=υ的初速度滑上传送带.设皮带轮匀速运动时皮带的速度为V,物体平抛运动鞋的水平位移为s ,以不同的υ值重复上述过程,得到一组对应的υ、s 值,对于皮带轮的转动方向,皮带上部向右时用0>υ,向左时用0<υ表示,在下图给定的坐标上正确画出υ-s 关系图线
s
v/m .s -1
18、一质量为M 的长木板,静止在光滑水平桌面上.一质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时的速度为1/3 v 0,如图所示.若把此木板固定在水平桌面上,其他条件相同,求滑块离开木板时的速度v .
L
19、如图所示,在一个固定盒子里有一个质量为m 的滑块,它与盒子底面动摩擦因数为μ,开始滑块在盒子中央以足够大的初速度v 0向右运动,与盒子两壁碰撞若干次后速度减为零,若盒子长为L ,滑块与盒壁碰撞没有能量损失,求整个过程中物体与两壁碰撞的次数.
20、如图所示,在光滑水平轨道上有一小车质量为M 2,它下面用长为L 的绳系一质量为M 1的砂袋,今有一水平射来的质量为m 的子弹,它射入砂袋后并不穿出,而与砂袋一起摆过一角度θ。
不计悬线质量,试求
子弹射入砂袋时的速度V 0多大?
七、力学三大规律的综合运用参考答案
1、ABC
2、A
3、A
4、B
5、C
6、BC
7、AC
8、A
9、AC 10、BCD 11、
M t t
a M m
)()(21+⨯⨯+12、 13、相距60m 14、)(4.4)(522
00s s a t ===υ
N F Ma mg F 1242010500048.520000=⨯⨯+⨯==-μ15、m
r L F )
2(30-<υ 16、
M
M m gL )
(+μ≤0υ≤
M
M m gL )
(2+μ
17、s m gr mg m /1,4
min 2min
===υυ
2/2s m g a ==μ
s m aL /722
02=+=υυ
m t s m t s 7,12211====υυ
18、 19、 20、
s/m
v/m .s -1
01
12233445566778
8-1-2-3。