中考数学复习专题4:数据的分析(含中考真题解析)
- 格式:doc
- 大小:1.36 MB
- 文档页数:30
中考数学复习《数据的分析》专项练习题-附带有答案一、单选题1.为了解当地气温变化情况,某研究小组记录了冬天连续4天的最高气温,结果如下(单位: °C ):-1,-3,-1,5.下列结论错误的是( ) A .平均数是0B .中位数是-1C .众数是-1D .方差是62.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为 S 甲2=0.56, S 乙2 =0.60, S 丙2 =0.50, S 丁2 =0.44,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.在一次古诗词诵读比赛中,五位评委给某选手打分,得到互不相等的五个分数,若去掉一个最高分,平均分为a ;若去掉一个最低分,平均分为c ;同时去掉一个最高分和一个最低分,平均分为m .则a ,c ,m 的大小关系正确的是( ) A .c >m >aB .a >m >cC .c >a >mD .m >c >a4.在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次) 12 11 10 9 人数(名)1342关于这组数据的结论错误的是( ) A .中位数是10.5 B .平均数是10.3 C .众数是10D .方差是0.815.九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )成绩 6 7 8 910 人数正 一正 正 一正 正正A .8,8B .8,8.5C .9,8D .9,8.56.为了推进“科学防疫,佩戴口罩”,某中学向学生发放口罩,如图为七年级五个班级上报的学生人数,统计条不小心被撕掉了一块,已知这组数据的平均数为30,则这组数据的中位数为( )A.28 B.29 C.30 D.317.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游8.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分96 95 97方差0.4 2 2丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁二、填空题9.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.10.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个²。
一、选择题6.(2020·温州)山茶花是温州市的市花,品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表.株数(株) 7 9 12 2 花径(cm )6.56.66.76.8这批“金心大红”花径的众数为A .6.5cmB .6.6cmC .6.7cmD .6.8cm{答案}C{解析}本题考查了众数的概念,众数就是一组数据中出现次数最多的数,6.7出现的次数最多,为12次,故这组数据的 众数为6.7,因此本题选C .3.(2020·宿迁)一组数据:3,4,5,4,6,这组数据的众数是( ) A .4 B .5 C .6 D .3{答案}A{解析}因为一组数据:3,4,5,4,6中数据4出现2次,最多,从而这组数据的众数是4,故选A . 3.(2020·嘉兴)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4. B .众数是3. C .中位数是5. D .方差是3.2.{答案}C{解析}本题考查了求一组数据的集中趋势与波动程度的量.平均数是指在一组数据中所有数据之和再除以数据的个数;众数是指一组数据中出现次数最多的数据;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.方差是用来计算每一个数值与总体平均数之间的差异,计算公式为:222221231[()()()()]n s x x x x x x x x n=-+-+-+-.故2,3,5,3,7这组数据的平均数2353745x ++++==;众数是3;将2,3,5,3,7按由小到大的顺序排列为: 2,3,3,5,7,处在最中间的数是3,所以中位数是3;方差2222221[(24)(34)(54)(34)(74)]325s -----.=++++=.因此本题选C .5.(2020湖州)数据﹣1,0,3,4,4的平均数是( ) A .4B .3C .2.5D .2【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决. 【解答】解:x =−1+0+3+4+45=2,故选:D .5.(2020台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( )A .中位数B .众数C .平均数D .方差【分析】根据中位数的意义求解可得.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A .4.(2020铜仁)一组数据4,10,12,14,则这组数据的平均数是( ) A .9B .10C .11D .12{答案}B {解析} ()10141210441=+++=x ,因此本题选B . 5.(2020·遵义)某校7名学生在某次测量体温(单位:℃)时得到如下数据: 36.3, 36.4, 36.5, 36.7, 36.6, 36.5, 36.5,对这组数据描述正确的是( )A .众数是36.5B .中位数是36.7C .平均数是36.6D .方差是0.4 {答案}A{解析}本题考查众数、中位数、平均数、方差.这组数据中36.5出现的次数最多,故选项A 正确;将这组数据按序排列:36.3, 36.4, 36.5, 36.5, 36.5,36.6, 36.7, 最中间的是36.5,故选项B 错误;这组数据的平均数为36.5+17(-0.2-0.1+0+0+0+0.1+0.2)=36.5,故选项C 错误;这组数据的方差为17[(-0.2)2+(-0.1) 2+02+02+02+0.12+0.22]=.017≠0.4, 故选项D 错误. 4.(2019·上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大 {答案}A {解析}观察折线统计图,甲的成绩波动比乙的波动小,所以甲的成绩波动比较小,即甲的成绩比乙的稳定.所以选项A 正确.6.(2020·安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误..的是( ) A .众数是11 B .平均数是12C .方差是187D .中位数是13{答案}D{解析}【解析】逐项分析如下: 选项逐项分析正误A该组数据中11出现的次数最多,故众数为11.√B平均数x =17(11×3+10+13×2+15)=12.√C方差s2=17[(12-11)2×3+(12-10)2+(12-13)2×2+(12-15)2]=187.×D将该组数据按大小顺序排列,中间的数是11,故中位数是11.√6.(2020·安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误..的是( ) A .众数是11 B .平均数是12C .方差是187D .中位数是13{答案}D{解析}【解析】逐项分析如下: 选项 逐项分析正误 A该组数据中11出现的次数最多,故众数为11.√B平均数x =17(11×3+10+13×2+15)=12.√C方差s2=17[(12-11)2×3+(12-10)2+(12-13)2×2+(12-15)2]=187.×D将该组数据按大小顺序排列,中间的数是11,故中位数是11.√5.(2020·江苏徐州)小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是( )A.中位数是36.5 ℃B.众数是36.2 ℃ C . 平均数是36.2℃ D.极差是0.3 ℃{答案} B{解析}根据中位数、众数的概念以及平均数和极差的公式进行判别和计算.把数据按由小到大进行排列:36.2、36.2、36.3、36.5、36.6,它的中位数是36.3,它的众数是36.2,平均数=36.2+0.10.30.45++=36.36,极差为36.6-36.2=0.4,故本题选B.6.(2020·苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s ): 日走时误差 0 1 2 3 只数3421则这10只手表的平均日走时误差(单位:s )是 A.0B.0.6C.0.8D.1.1{答案}D{解析}本题考查了加权平均数计算,110(0×3+1×4+2×2+3×1)=1.1,因此本题选D .5.(2020·聊城)为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是( )A .92分,96分B .94分,96分C .96分,96分D .96分,100分 {答案}B{解析} 30个数据按大小顺序以表格形式呈现,处于中间位置的第15与16个数据分别是92与96,故这些成绩的 中位数为29692 =94分;96出现的次数最多为10次,故这些成绩的众数是96分. 7.(2020自贡)对于一组数据3,7,5,3,2,下列说法正确的是( ) A .中位数是5B .众数是7C .平均数是4D .方差是3{答案} C .{解析}本题考查了中位数、众数、平均数、方差等知识,A 、把这组数据从小到大排列为:2,3,3,5,7,最中间的数是3,则中位数是3,故本选项错误;B 、3出现了2次,出现的次数最多,则众数是3,故本选项错误;C 、平均数是:(3+7+5+3+2)÷5=4,故本选项正确;D 、方差是:15[2×(3﹣4)2+(7﹣4)2+(5﹣4)2+(2﹣4)2]=3.2,故本选项错误;因此本题选C .4.(2020·黑龙江龙东)一组从小到大排列的数据:x ,3,4,4,5(x 为正整数),唯一的众数是4,则数据x 是( ) A .1B .2C .0或1D .1或2{答案} D{解析}本题考查了数据的分析,对众数的理解,解:℃一组从小到大排列的数据:x ,3,4,4,5(x 为正整数),唯一的众数是4,℃数据x 是1或2.故选:D .5.(2020·泰安)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:成绩/分 84 88 92 96 100 人数/人 2 4 9 10 5册数/册 1 2 3 4 5人数/人 2 5 7 4 2根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3 B.3,7 C.2,7 D.7,3{答案} A{解析}本题考查了众数和中位数,把这组数据从小到大排列为2个1,5个2,7个3,4个4,2个5,∴这组数据的中位数是应该是第10个数3与第11个数3的平均数为3,其中3出现的次数最多,∴这组数据的众数是3;故选A.3.(2020·无锡)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A.24,25B.24,24C.25,24D.25,25{答案} A{解析}本题考查了平均数和中位数,中位数把这组数据从小到大排列为21,23,25,25,26,平均数是把所有数的求和除以数的个数,∴这组数据的中位数是25,∵平均数是24;故选A6. (2020·淮安)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8{答案}A{解析}本题考查了众数的定义,根据在一组数据中出现次数最多的数叫做这组数据的众数解答即可.一组数据9、10、10、11、8的众数是10,故选:A.4. (2020·连云港) “红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是A.中位数B.众数C.平均数D.方差{答案}A{解析}本题考查了数据的分析,去掉两个极端值后中位数所在的顺序不变,而众数、平均数和方差均可能改变.故选A(2020·济宁)6.下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()A.甲B.乙C.丙D. 丁{答案}C{解析}要从中选择一名成绩较高且发挥稳定的运动员参加决赛,所以从甲、乙、丙、丁四名运动员中选择方差最小的,故应选择丙.(2020·德州)5.为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:一周内做饭次数 4 5 6 7 8人数7 6 12 10 5那么一周内该班学生的平均做饭次数为A. 4B. 5C. 6D. 8{答案}C{解析}加权平均数4756612710856.7612105x⨯+⨯+⨯+⨯+⨯==++++(2020·南充) 5.八年级某学生在一次户外活动中进行射击比赛,七次射击成绩依次为(单位:环):4,5,6,6,6,7,8.则下列说法错误的是()A.该组成绩的众数是6环B.该组成绩的中位数数是6环C.该组成绩的平均数是6环D.该组成绩数据的方差是10{答案}D{解析}数据按从小到大顺序排列为4,5,6,6,6,7,8,所以中位数是6;数据6出现了山次,出现次数最多,所以众数是6;平均数(456+6+678)76=++++÷=. ∴此题中6既是平均数和中位数,又是众数.()()()()()()()222222221s =4-6+5-6+6-6+6-6+6-6+7-6+8-6=7⎡⎤⨯⎣⎦107,故选D . 6. (2020·岳阳)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )A .36.3,36.5B .36.5,36.5C ..36.5,36.3D .36.3,36.7 {答案}B{解析}这组数据出现次数最多的是36.5,所以众数是36.5,将这7个数据从小到大排列为:36.3,36.3,36.5,36.5,36.5,36.7,36.8,第4个即为中位数,为36.5.故选B .6.(2020·齐齐哈尔)数学老师在课堂上给同学们布置了10个填空题作为课堂练习,并将全班同学的答题情况绘制成条形统计图.由图可知,全班同学答对题数的众数为( )A .7B .8C .9D .10{答案} C{解析}根据统计图中的数据,可知做对9道的学生最多,从而可以得到全班同学答对题数的众数,本题得以解决.由条形统计图可得,全班同学答对题数的众数为9,故选:C .5. (2020·湖北孝感)某公司有10名员工,没人年收入数据如下表:年收入/万元 4 6 8 10人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A.4,6B.6,6C.4,5D.6,5{答案}B{解析}中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,一组数据中出现次数最多的数据叫做众数.所以对这组数据重新排列顺序得,4,4,4,6,6,6,6,8,8,10,这一组是10个数,取中间两个数得平均数12×(6+6)=6,∴这组数据的中位数是6,在这组数据中,6出现的次数最多,∴这组数据的众数是6,故选B.4.(2020·达州)下列说法正确的是()A.为了解全国中小学生的心理健康状况,应采用普查B.确定事件一定会发生C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98.D.数据6、5、8、7、2的中位数是6.{答案}D{解析}全国中学生的人数众多,不易普查.关系国计民生的事情、影响国家重大战略决策的事情、要求精度高的事情或不是很费人力、物力、财力的考虑普查,故A选项不不正确;确定事件分必然事件和不可能事件,必然事件一定发生,不可能事件一定不发生,故B选项不正确;6位同学成绩的众数有两个99和98,故C选项不正确;将数据6、5、8、7、2按大小顺序排列后为2、5、6、7、8,处于中间的只有一个数6,故D选项正确.8.(2020·荆门)为了了解学生线上学习情况,老师抽查某组10名学生的单元测试成绩如下:78,86,60,108,112,116,90,120,54,116.这组数据的平均数和中位数分别为( )A.95,99 B.94,99 C.94,90 D.95,108 {答案}B{解析}平均数x=110×(78+86+…+116)=94.将这组数据由小到大排序:54,60,78,86,90,108,112,116,116,120,因此中位数=12×(90+108)=99.故选B.3.(2020·随州)随州7月份连续5天的最高气温分别为:29,30,32,30,34(单位:℃),则这组数据的众数和中位数分别为()A.30,32B.31,30C.30,31D.30,30{答案}D{解析}本题考查了众数和中位数的求法,解答过程如下:原数据重新排列为:29,30,30,32,34,∴众数为30,中位数为30.因此本题选D.6.(2020·南通)一组数字2,4,6,x,3,9,它的众数为3,求这组数字的中位数A.3 B.3.5 C.4 D.4.5{答案}C{解析}根据一组数字2,4,6,x,3,9的众数为3,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的中位数.∵一组数字2,4,6,x,3,9的众数为3,∴x=3.∴这组数据按照从小到大排列是:2,3,3,4,6,9,∴这组数据的中位数是343.52+=.故选C.4.(2020·天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,41{答案}C{解析}这组数据中,出现的次数最多的是42,出现了3次,故这组数据的众数是42;将这8个数据按大小顺序排列为:44,43,42,42,42,40,40,39,处于中间位置的第4与5个数据都是42,故这组数据的中位数为42+422=42,因此本题选C .5.(2020·深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263,这五次成绩的平均数...和中位数...分别是( ) A .253,253B .255,253C .253,247D .255,247{答案}A{解析}根据中位数、众数的计算方法,分别求出结果即可.-x =15(247+253+247+255+263)=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;因此本题选A .6.(2020·鄂州)一组数据4,5,x ,7,9的平均数为6,则这组数据的众数为( ) A .4 B .5C .7D .9{答案}B{解析}本题考查平均数及众数,熟练掌握平均数、众数的意义是解题的关键.先根据平均数的公式计算出x 的值,再求这组数据的众数即可. ∵4,5,x ,7,9的平均数为6, ∴457965x ++++=,解得:x =5,∴这组数据为:4,5,5,7,9, ∴这组数据的众数为5. 故选:B .6.(2020·怀化)小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的( ) A .众数 B .中位数C .方差D .平均数{答案}B{解析}根据题意,结合该公司所有员工工资的情况,从统计量的角度分析可得答案.解:根据题意,小明到某公司应聘,了解这家公司的员工的工资情况,就要全面的了解中间员工的工资水平,故最应该关注的数据是中位数,故选:B.5.(2020·株洲)数据12、15、18、17、10、19的中位数为()A. 14B. 15C. 16D. 17{答案}C{解析}首先将这组数据按大小顺序排列,再利用中位数定义,即可求出这组数据的中位数.把这组数据从小到大排列为:10,12,15,17,18,19,则这组数据的中位数是15172=16.故选:C.(2020·本溪)5.(3分)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁{答案}A{解析}方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∵s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,∴s甲2<s乙2<s丙2<s丁2,且甲、乙、丙、丁的平均数相等,∴这4名同学3次数学成绩最稳定的是甲.(2020·本溪)7.(3分)一组数据1,8,8,4,6,4的中位数是()A.4B.5C.6D.8{答案}B{解析}将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.这组数据按照从小到大的顺序重新排列:1,4,4,6,8,8.所以这组数据的中位数是4+62=5.(2020·包头)7、两组数据:3,a ,b ,5与a ,4,2b 的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为( ) A .2 B .3C .4D .5{答案}B {解析}∵3534a b +++=,4233a b++=,解得a=3,b=1. ∴新的一组数据为 3、3、1、5、3、4、2.众数为3.故选B.2.(2020·广东)一组数据2,4,3,5,2的中位数是( ) A .5B .3.5C .3D .2.5 {答案}C{解析}本题考查了中位数,将一组数据按照从小到大或(从大到小)的顺序排列,处于中间位置的数为这组数据的中位数,由排序后得2,2,3,4,5,则处于中间位置的数是3,因此本题选C .6.(2020·成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( ) A .5人,7人B .5人,11人C .5人,12人D .7人,11人{答案}A{解析}根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),即可得出答案. 解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人.故选:A .5.(2020·牡丹江)一组数据4,4,x ,8,8有唯一的众数,则这组数据的平均数是 ( ) A .528 B .532或5 C .528或532 D .5{答案}C{解析}题目要求有唯一的众数,结合众数的意义可知,x 的值为4或8.当x =4时,计算这组数据的平均数为528;当x =8时,计算这组数据的平均数为532. 5.(2020·抚顺本溪辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是=3.6,=4.6,=6.3,=7.3,则这4名同学3次数学成绩最稳定的是( )A .甲B .乙C .丙D .丁{答案}A{解析} 根据方差的意义,方差越小数据越稳定.因为甲同学的方差最小,所以甲同学的数学成绩最稳定.故选项A 正确.2S 甲2S 乙2S 丙2S 丁5.(2020·潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表: 一分钟跳绳个数(个) 141 144 145 146 学生人数(名)5212则关于这组数据的结论正确的是( ) A. 平均数是144 B. 众数是141 C. 中位数是144.5 D. 方差是5.4{答案}B{解析}本题考查了平均数、众数、中位数、方差.1(1445144214511462)14310x =⨯+⨯+⨯+⨯=;众数是141;中位数是141.5;方差是222221[5(141143)2(144143)(145143)2(146143)]10s =-+-+-+-=4.故选B.4.(2020·凉山州)已知一组数据1,0,3,-1,x ,2,3的平均数是1,则这组数据的众数是( ) A .-1 B .3 C .-1和3 D .1和3{答案}C{解析}由题意得1+0+3-1+x +2+3=7×1,解得x =-1,从而这组数据中有两个数字-1和3都出现的次数最多,为该组数据的众数,故选C .7.(2020·抚顺本溪辽阳)一组数据1,8,8,4,6,4的中位数是( ) A .4 B .5 C .6 D .8{答案}B{解析}把这组数据按从小到大的顺序排列,最中间的两个数为4,6.∴这组数据的中位数为462+=5.故选项B 正确. 8.(2020·滨州)已知一组数据5,4,3,4,9,关于这组数据的下列描述:℃平均数是5,℃中位数是4,℃众数是4,℃方差是4.4,其中正确的个数为( ) A .1 B .2C .3D .4{答案}D{解析}本题考查了平均数、中位数、众数、方差,数据由小到大排列为3,4,4,5,9,它的平均数为(3+4+4+5+9)÷5=5,数据的中位数为4,众数为4,数据的方差=15 [(3-5)2+(4-5)2+(4-5)2+(5-5)2+(9-5)2]=4.4,,①②③④都是正确的,因此本题选D .5.(2020·内江)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是( ) A. 80,90B. 90,90C. 90,85D. 90,95{答案} B{解析}本题考查了中位数、众数,解题的关键是熟知中位数、众数的定义.根据中位数、众数的定义即可求把分数从小到大排列为:80,85,90,90,95 故中位数为90,众数为90,因此本题选B .11.(2020·临沂)下图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是( )A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定 {答案}B{解析}根据平均分定义,认真观察图表可以发现,五次测试成绩,甲乙有三次一样,另外两次,甲的都比乙高,所以甲的平均分比较高;同理,根据方差的概念,观察图表可以发现甲的波动比乙大,所以甲的成绩不稳定. 6.(2020·宜宾)7名学生的鞋号(单位:厘米)由小到大是:20,21,22,22,22,23,23,则这组数据的众数和中位数分别是( ) A .20,21 B .21,22C .22,22D .22,23{答案}C{解析}数据按从小到大的顺序排列为20,21,22,22,22,23,23,所以中位数是22; 数据22出现了3次,出现次数最多,所以众数是22.4.(2020·娄底)一组数据7,8,10,12,13的平均数和中位数分别是( )A .7,10B . 9,9C .10,10D .12,11 {答案}C{解析}本题考查了平均数与中位数,这组数据的平均数是:()17810121310,5++++= 把这些数从小到大排列为:7,8,10,12,13,最中间的数是10,则中位数是10,因此本题选C .7.(2020·玉林)在对一组样本数据进行分析时,小华列出方差的计算公式:()()()()222222334x x x xs n-+-+-+-=,由公式提供的信息,则下列说法错误的是( )A .样本容量是4B .样本的中位数是3C .样本的众数是3D .样本的平均数是3.5 {答案}D{解析}根据方差公式可知,该组数据有4个数,分别为2,3,3,4,所以样本容量是4,故A 正确,不符合题意;中位数为3332+=,故B 正确,不符合题意;众数为3,故C 正确,不符合题意;样本的平均数为233434+++=,故D 错误,故选择D .8.(2020·毕节)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表: 投中次数 3 5 6 7 8 9 人数132211则这10名队员投中次数组成的组数据中,众数和中位数分别为( ) A .5,6 B .2,6 C .5,5 D .6,5 {答案}A ,{解析}本题考查众数和中位数的应用.解:这组数据中,出现次数最多的是5,故众数为5;将他们投中的次数按序排列为3,5,5,5,6,6,7,7,8,9,位于中间两数的平均数为6,故中位数为6.故选A .5.(2020·海南)在学校开展的环保主题实践活动中,某小组的5位同学捡拾废弃塑料袋的个数分别为:5,3,6,8,6.这组数据的众数、中位数分别为( ) A .8,8 B .6,8C .8,6D .6,6{答案}D{解析}该组数据中6出现的次数最多,故众数是6;将该组数据按大小顺序排列,中间的数是6,故中位数是6. 6.(2020·郴州)某鞋店试销一种新款男鞋,试销期间销售情况如下表:鞋的尺码(cm ) 24 5.24 25 5.25 26 5.26 销售数量(双) 2 7 18 10 8 3则该组数据的下列统计量中,对鞋店下次进货最具有参考意义的是( ) A .中位数 B .平均数 C .众数 D .方差{答案}C{解析}对鞋店下次进货来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:C.5.(2020·烟台)如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变【解析】如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.3.(2020·淄博)李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A.4,5B.5,4C.5,5D.5,6【解析】这组数据4,3,4,6,5,5,6,5,4,5中,出现次数最多的是5,因此众数是5,将这组数据从小到大排列后,处在第5、6位的两个数都是5,因此中位数是5.故选:C.5.(2020·永州)已知一组数据1,2,8,6,8对这组数据描述正确的是()A. 众数是8B. 平均数是6C. 中位数是8D. 方差是9【答案】A【详解】将数据由小到大重新排列为:1,2,6,8,8,∴中位数为6,众数为8,平均数为1268855++++=,方差为:22221(15)(25)(65)2(85)5⎡⎤-+-+-+⨯-⎣⎦=8.8, 正确的描述为:A , 故选:A .2.(2020•宁夏)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是( )A .中位数是3,众数是2B .众数是1,平均数是2C .中位数是2,众数是2D .中位数是3,平均数是2.5【解析】15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4, 处在中间位置的一个数为2,因此中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2; 众数为2;故选:C .二、填空题12.(2020•丽水)数据1,2,4,5,3的中位数是 . {答案}3{解析}把数据1,2,4,5,3按照从小到大的顺序排列是1,2,3,4,5,则这组数据的中位数是3, 因此本题答案为3.13.(2020·衢州)某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是 .{答案}5{解析}∵4,4,5,x ,6的平均数是5,∴4+4+5+x+6=5×5,解得x=6.把这组数据按大小顺序排列为:4,4,5,6,6,所以这组数的中位数是5.13.(2020·宁波)今年某果园随机从甲、乙、丙三个品种的枇把树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如下表所示:甲 乙 丙 x45 45 42 S 21.82.31.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是 .{答案}甲{解析}本题考查了方差,平均数的意义,在平均产量相同的条件下,方差越小说明品种越整齐,在方差相同的条件下,平均产量越高品种越好,所以既高又稳定的枇杷树为品种甲.12.(2020·绥化)甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为2S 甲=0.70,2S 乙=0.73,甲、乙两位同学成绩较稳定的是______同学.{答案}甲{解析}方差越小数据越稳定.∵2S 甲<2S 乙,∴甲同学的成绩较稳定.(2020·四川甘孜州)13.某班为了解同学们一周在校参加体育锻炼的时间,随机调查了10名同学,得到如下数据:锻炼时间(小时) 5 6 7 8 人数1432则这10名同学-周在校参加体育锻炼时间的平均数是________小时 . {答案}6.6{解析}本题考查了加权平均数.根据表格提供的数据,得这10名同学-周在校参加体育锻炼时间的平均数:⨯+⨯+⨯+⨯+++516473821432=6.6(小时).故答案为6.6.12.(2020·乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40,则这组数据的中位数是________. {答案}39{解析}根据中位数的概念,将数据从小到大进行排列为:37,37,38,39,40,40,40,最中间的数是39,∴中位数为39.11. (2020·淮安)已知一组数据1、3、a 、10的平均数为5,则a =_______________. {答案}6{解析}平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标. 依题意有(1+3+a +10)÷4=5,解得a =6.故答案为:6.10.(2020·盐城)一组数据1,4,7,4,2-的平均数为_ .10.60°,解析:本题主要考查了平均数概念,正确把握平均数的定义是解题关键.11(14742)10255⨯++-+=⨯= ,因此本题答案为2.(2020·江西)10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:数字 0 1 2 3 4 5 6 7 8 9频数 8 8 12 11 10 8 9 8 12 14那么,圆周率的小数点后100位数字的众数为 .【解析】由于9出现的次数为14次,频数最多,∴众数为9,故答案为910.(2020·青岛)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,。
数据分析一、选择题1.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).那么被遮盖的两个数据依次是()A.80,2 B.80,C.78,2 D.78,2.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是s2=0.82,s2乙=1.11,s2丙=0.53,s2丁=1.58,在本次测试中,成绩最稳定的是()甲A.甲B.乙C.丙D.丁3.已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较4.某社团有60人,附表为此社团成员年龄的次数分配表.求此社团成员年龄的四分位距为何?()A.1 B.4 C.19 D.215.某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克, =608千克,亩产量的方差分别是S2甲=29.6,S2乙=2.7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙二、填空题6.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是S甲2=0.4,S乙2=1.2,则成绩比较稳定的是(填“甲”或“乙”)7.为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选参加全运会.8.已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是.9.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)经计算, =10, =10,试根据这组数据估计中水稻品种的产量比较稳定.10.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差(填“变大”、“不变”或“变小”).11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为,,,则三人中射击成绩最稳定的是.12.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是.(填“小明”或“小华”)13.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,,则甲、乙两名同学成绩更稳定的是.14.甲、乙、丙、丁四位同学在5次数学测验中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是.15.下列说法:①对顶角相等;②打开电视机,“正在播放《新闻联播》”是必然事件;③若某次摸奖活动中奖的概率是,则摸5次一定会中奖;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则乙组数据比甲组数据更稳定.其中正确的说法是.(写出所有正确说法的序号)16.统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.三、解答题17.某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛成绩.经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:(1)甲乙两班的优秀率分别为、;(2)甲乙两班比赛数据的中位数分别为、;(3)计算两班比赛数据的方差;(4)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.18.某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.数据分析参考答案与试题解析一、选择题1.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).那么被遮盖的两个数据依次是()A.80,2 B.80,C.78,2 D.78,【考点】方差;算术平均数.【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故选C.【点评】本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是s2=0.82,s2乙=1.11,s2丙=0.53,s2丁=1.58,在本次测试中,成绩最稳定的是()甲A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差越大,波动性越大,越不稳定进行判断.【解答】解:∵s2丙<s2甲<s2乙<s2丁=1.58,∴在本次测试中,成绩最稳定的是丙.故选C.【点评】本题考查方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是( ) A .甲组数据比乙组数据的波动大 B .乙组数据的比甲组数据的波动大 C .甲组数据与乙组数据的波动一样大 D .甲组数据与乙组数据的波动不能比较 【考点】方差.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可.【解答】解:由题意得,方差<,A 、甲组数据没有乙组数据的波动大,故本选项错误;B 、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;C 、甲组数据没有乙组数据的波动大,故本选项错误;D 、甲组数据没有乙组数据的波动大,故本选项错误; 故选B .【点评】本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波动性的大小,方差越大,波动性越大.4.某社团有60人,附表为此社团成员年龄的次数分配表.求此社团成员年龄的四分位距为何?( )A .1B .4C .19D .21【考点】方差.【分析】先根据中位数的定义算出Q 2的值,再根据四分位距找出Q 1与Q 3的值,最后进行相减即可. 【解答】解:共有60个数,则中位数是第30和31个数的平均数是(55+55)÷2=55, 则Q 2=55,∵Q1=39,Q3=58,∴此社团成员年龄的四分位距S:58﹣39=19;故选C.【点评】此题考查了四分位距,掌握四分位距公式,找出Q1与Q3的值是解题的关键.5.某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克, =608千克,亩产量的方差分别是S2甲=29.6,S2乙=2.7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙【考点】方差;算术平均数.【分析】本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.【解答】解:∵ =610千克, =608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.7.∴乙的亩产量比较稳定.故选D.【点评】本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本题的关键.二、填空题6.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是S甲2=0.4,S乙2=1.2,则成绩比较稳定的是甲(填“甲”或“乙”)【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵,,∴<,∴成绩比较稳定的是甲;故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选丙参加全运会.【考点】方差;算术平均数.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S2甲=1.22,S2乙=1.68,S2丙=0.44,∴S2丙最小,∴则应该选丙参加全运会.故答案为:丙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是 2.8 .【考点】方差;众数.【分析】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:∵一组数据5,8,10,x,9的众数是8,∴x是8,∴这组数据的平均数是(5+8+10+8+9)÷5=8,∴这组数据的方差是:[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.故答案为:2.8.【点评】此题考查了众数、平均数和方差,掌握众数、平均数和方差的定义及计算公式是此题的关键,众数是一组数据中出现次数最多的数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].9.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)经计算, =10, =10,试根据这组数据估计甲中水稻品种的产量比较稳定.【考点】方差.【分析】根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.【解答】解:甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲,故答案为:甲【点评】此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…x n 的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差变小(填“变大”、“不变”或“变小”).【考点】方差.【分析】根据平均数的定义先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.【解答】解:∵李刚再跳两次,成绩分别为7.7,7.9,∴这组数据的平均数是=7.8,∴这8次跳远成绩的方差是:S2= [(7.6﹣7.8)2+(7.8﹣7.8)2+2×(7.7﹣7.8)2+(7.8﹣7.8)2+(8.0﹣7.8)2+2×(7.9﹣7.8)2]=,<,∴方差变小;故答案为:变小.【点评】本题考查方差的定义,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为,,,则三人中射击成绩最稳定的是乙.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,找出方差最小的数即可.【解答】解:∵,,,∴最小,∴三人中射击成绩最稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是小明.(填“小明”或“小华”)【考点】方差;折线统计图.【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定.【解答】解:从图看出:小明的成绩波动较小,说明他的成绩较稳定.故答案为小明.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是,,则甲、乙两名同学成绩更稳定的是乙.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵,,∴S甲2>S乙2,则成绩较稳定的同学是乙.故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.甲、乙、丙、丁四位同学在5次数学测验中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是丁.【考点】方差.【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【解答】解:∵,,,,∴最小,∴成绩最稳定的同学是丁;故答案为:丁.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.下列说法:①对顶角相等;②打开电视机,“正在播放《新闻联播》”是必然事件;③若某次摸奖活动中奖的概率是,则摸5次一定会中奖;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则乙组数据比甲组数据更稳定.其中正确的说法是①④.(写出所有正确说法的序号)【考点】方差;对顶角、邻补角;全面调查与抽样调查;随机事件;概率的意义.【专题】压轴题.【分析】根据方差、随机事件、对顶角、概率的意义对每个命题进行判断即可.【解答】解:①对顶角相等,正确;②打开电视机,“正在播放《新闻联播》”是随机事件,错误;③若某次摸奖活动中奖的概率是,则摸5次不一定会中奖,错误;④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查,正确;⑤若甲组数据的方差s2=0.01,乙组数据的方差s2=0.05,则甲组数据比乙组数据更稳定,错误.正确的有:①④;故答案为:①④.【点评】此题考查了方差、随机事件、对顶角、概率的意义,关键是根据有关定义和性质对每个命题是否正确作出判断.16.统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为10.1 .【考点】方差.【专题】压轴题;新定义.【分析】根据题意可知“最佳近似值”x是与其他近似值比较,根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,求出x是所有数字的平均数即可.【解答】解:根据题意得:x=(9.8+10.1+10.5+10.3+9.8)÷5=10.1;故答案为:10.1.【点评】此题考查了一组数据的方差、平均数,掌握新定义的概念和平均数的平方和最小时要满足的条件是解题的关键.三、解答题17.某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛成绩.经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:(1)甲乙两班的优秀率分别为60% 、40% ;(2)甲乙两班比赛数据的中位数分别为100 、99 ;(3)计算两班比赛数据的方差;(4)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.【考点】方差;统计表;中位数.【分析】(1)根据甲班和乙班每人踢100个以上(含100)的人数,除以总人数,即可求出甲乙两班的优秀率;(2)根据中位数的定义先把数据从小到大排列,找出最中间的数即可;(3)根据平均数的计算公式先求出甲和乙的平均数,再根据方差公式进行计算即可;(4)分别从甲和乙的优秀率、中位数、方差方面进行比较,即可得出答案.【解答】解:(1)甲班的优秀率为:×100%=60%,乙班的优秀率为:×100%=40%;(2)甲班比赛数据的中位数是100;乙班比赛数据的中位数是99;(3)甲的平均数为:(100+98+102+97+103)÷5=100(个),S甲2=[(100﹣100)2+(98﹣100)2+(102﹣100)2+(97﹣100)2+(103﹣100)2]÷5=;乙的平均数为:(99+100+95+109+97)÷5=100(个),S乙2=[(99﹣100)2+(100﹣100)2+(95﹣100)2+(109﹣100)2+(97﹣100)2]÷5=;(4)应该把团体第一名的奖状给甲班,理由如下:因为甲班的优秀率比乙班高;甲班的中位数比乙班高;甲班的方差比乙班低,比较稳定,综合评定甲班比较好.【点评】本题考查了中位数、平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.【考点】方差;加权平均数;中位数;极差;统计量的选择.【专题】压轴题.【分析】(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;(2)应选择方差为标准,哪班方差小,选择哪班.【解答】解:(1)一班的方差=×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;二班的极差为171﹣165=6;二班的中位数为168;补全表格如下:(2)选择方差做标准,∵一班方差<二班方差,∴一班可能被选取.【点评】本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.。
中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019・广州)| - 6|=( )A. - 6B. 6C.-丄D.丄6 62. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) 3. (3分)(2019•广州)如图,有一斜坡AB,坡顶B 离地面的高度BC 为30,”,斜坡的倾 斜角是"AC,若taS 送,则此斜坡的水平距离AC 为(的切线条数为( )6. (3分)(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120 个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的 是(A. 120 = 150B. 120 ==150Xx-8 x+8XC. 120= 150D. 120 ==150 x-8XXx+87. (3分)(2019・广州)如图,口ABCD 中,对角线AC, BD 相交于点O, 且E, F, G, H 分别是AO, BO, CO, DO 的中点,则下列说法正确的是()A. 5B. 5.2C. 6D. 6.4B. 50mC. 30mD. 12m4. (3分)(2019•广州)下列运算正确的是( A. - 3 - 2= - 1C. x 3*x 5=x 15B. 3X (-丄)2=-丄335. (3分)(2019・广州) 平面内,OO 的半径为1,点P 到O 的距离为2,过点P 可作OOA. 0条B. 1条C. 2条D.无数条A. 75mA.EH=HGB.四边形EFGH是平行四边形C.AC±BDD.AABO的面积是△EFO的面积的2倍& (3分)(2019•广州)若点A ( - 1, yi), B(2,加,C(3,加在反比例函数■的x 图象上,则yi, y2,丁3的大小关系是()A. y3<j2<yiB. yi<yi<y3C. yi<y3<j2D. yi<j2<j39.(3分)(2019•广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()10.(3分)(2019・广州)关于x的一元二次方程(^ - 1)x-k+2=0有两个实数根xi,XI,若(M1 - X2+2)(XI - X2 - 2)+2X1X2= - 3,则斤的值()A. 0 或2B. - 2 或2C. - 2D. 2二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C 在直线/上,PBM, PA^6cm, PB=5cm, PC=7cm,则点P到直线/的距离是_________ cm.12.(3分)(2019・广州)代数式丿=有意义时,x应满足的条件是________ .13.(3 分)(2019・广州)分解因式:x2y+2xy+y= ____ .14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°B 重合),ZDAM=45°,点F 在射线AM 上,且CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @/\AEG 的周长为(1+V2) a ;③BEZ+DG^EG 2;(4)A£AF 的面2 「 积的最大值丄#.8其中正确的结论是 _______ •(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17. (9分)(2019・广州)解方程组:JxVFl .Ix+3y=918. (9 分)(2019・广州)如图,D 是 AB 上一点,DF 交 AC 于点 E, DE=FE, FC//AB, 求证:/\ADE 竺 CFE.点E 在边AB ±运动(不与点A,角形,则该圆锥侧面展开扇形的弧长为 _______ .(结果保留“)正方形ABCD 的边长为a,A(1)化简P;(2)若点(a, b)在一次函数的图象上,求P的值.20.(10分)(2019・广州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组OWrvi2B组1£V2mC组2Wt<310D组3WfV412E组4WrV57F组总54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图AS21.(12分)(2019・广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座. (1) 计划到2020年底,全省5G 基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率.22. (12分)(2019・广州)如图,在平面直角坐标系xOy 中,菱形ABCD 的对角线AC 与 BD 交于点P ( - 1, 2), AB Lx 轴于点E,正比例函数的图象与反比例函数丁=卫二1x的图象相交于A, P 两点. (1) 求m, n 的值与点A 的坐标; (2) 求证:△CPDsMEO ; (3)求 sinZCDB 的值.23. (12分)(2019・广州)如图,G )O 的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC (点D 不与B 重合),连接AD ;(保留作图痕迹, 不写作法)24. (14分)(2019・广州)如图,等边△ABC 中,AB=6,点D 在BC 上,BD=4,点、E 为 边AC 上一动点(不与点C 重合),关于DE 的轴对称图形为 (1) 当点F 在AC 上时,求证:DF//AB ;(2)设的面积为Si, AABF 的面积为S2,记S=Si-S2, S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;求四边形ABCD 的周长.(3)当B, F, E三点共线时.求AE的长.25.(14分)(2019*广州)已知抛物线G:y-rm? -2mx-3有最低点.(1)求二次函数y—mx2 - 2mx - 3的最小值(用含,"的式子表示);(2)将抛物线G向右平移加个单位得到抛物线G1.经过探究发现,随着加的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019•广州)|-6|=( 【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:-6的绝对值是| - 6|=6. 故选:B.2. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) A. 5B. 5.2C. 6D. 6.4【考点】众数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A. 3. (3分)(2019•广州)如图,有一斜坡坡顶B 离地面的高度为30加,斜坡的倾 斜角是ZBAC,若tanZB4C=Z,则此斜坡的水平距离AC 为()【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解 决.A. - 6B. 50mC. 30mD. 12mA. 75m【解答】解:•.•ZBC4=90° , tanZBAC=兰,BC=30m,55 "AC "AC解得,AC=75,故选:A.4.(3分)(2019-r州)下列运算正确的是()A.- 3 - 2= - 1B. 3X(-丄)2=-丄3 3C. ^•^—x15D. Va*Vab=a,Vb【考点】实数的运算;同底数幕的乘法.【分析】直接利用有理数混合运算法则、同底数幕的乘除运算法则分别化简得出答案.【解答】解:A、-3-2= -5,故此选项错误;B、3X (-丄)2=_,故此选项错误;3 3C、x i,x5—x s,故此选项错误;D、\/~a* V ab=fl Vb> 正确.故选:D.5.(3分)(2019・广州)平面内,OO的半径为1,点P到O的距离为2,过点P可作OO 的切线条数为()A. 0条B. 1条C. 2条D.无数条【考点】切线的性质.【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:•••O0的半径为1,点P到圆心0的距离为2,d>Y,.•.点P与OO的位置关系是:P在OO外,•.•过圆外一点可以作圆的2条切线,故选:C.6.(3分)(2019・广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 120 = 150B. 120 = 150C. 120 = 150D. 120=150x~8 x x x+8【考点】由实际问题抽象出分式方程.【分析】设甲每小时做乂个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:120丿50,x x+8故选:D.7.(3分)(2019・广州)如图,口ABCD中,AB=2, AD=4,对角线AC, BD相交于点O,且E, F, G, H分别是AO, BO, CO, DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC1BDD.△ABO的面积是△EFO的面积的2倍【考点】三角形的面积;平行四边形的判定与性质.【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:•:E, F, G, H分别是AO, BO, CO, DO的中点,在°ABCD中,AB=2,AD=4,:.EH=1-AD^2,:.EH^HG,故选项A错误;•:E, F, G, H分别是AO, BO, CO, DO 的中点,•'•EH专AD 今BC=FG,•••四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;•••点E、F分别为OA和OB的中点,:.EF=L^, EF//AB,:,Z\OEF<^/\OAB,...S AAEF _ .-EF)2 4,^AOAB 壮4即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.& (3分)(2019・广州)若点A ( - 1, yi), B(2,以),C (3, %)在反比例函数的X 图象上,则yi, y2, y3的大小关系是()A. y3<y2<yiB. y2<yi<y3C. yi<y3<y2D. yi<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征求出八%、为的值,比较后即可得出结论.【解答】解:•••点A ( - 1, yi), B(2, 丁2), C(3, y3)在反比例函数y=^-的图象上,X .-.ji=-^-= - 6, y2=—=3, j3=—=2,-1 2 3又T - 6<2<3,.'.yi<y3<y2.故选:C.9.(3分)(2019・广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()A. 4^5B. 4A/3C. 10D. 8【考点】全等三角形的判定与性质;线段垂直平分线的性质;矩形的性质.【分析】连接AE,由线段垂直平分线的性质得出OA^OC, AE=CE,证明COE得出AF=CE=5,得出AE=CE=5, BC=BE+CE=8,由勾股定理求出AB =V A E2-BE2=4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:TEF是AC的垂直平分线,・・・OA=OC, AE=CE,・・•四边形ABCD是矩形,:.ZB=90° , AD//BC,:.ZOAF=ZOCE f'ZAOF=ZCOE在ZvlOF和ACOE 中,OA=OCZOAF^ZOCE•••△AOF竺△COE (ASA),:.AF=CE=5f:.AE=CE=5f BC=BE+CE=3+5 = 8,/MB=V A E2-BE2=V52-32=4,A c=V A B2+BC2= V42 + 82=4^:10.(3分)(2019・广州)关于x的一元二次方程(^ - 1) x-k+2^0有两个实数根xi,Xi,若(xi - X2+2) (xi -池-2) +2x1x2= - 3,贝!]丘的值( )A. 0或2B. -2 或2C. - 2D. 2【考点】根的判别式;根与系数的关系.【分析】由根与系数的关系可得出X\+X2 — k - 1, X\X2— - k+2,结合(X1-X2+2)(XI - X2 -2) +2X1X2= - 3可求出k的值,根据方程的系数结合根的判别式△三0可得出关于k 的一元二次不等式,解之即可得出)1的取值范围,进而可确定丘的值,此题得解.【解答】解:•••关于x的一元二次方程(^- 1) x-k+2=0的两个实数根为血,池,・*.X1+X2 —- 1, X1X2= ~ k+2....(XI - X2+2) (XI - X2 - 2) +2X1X2= - 3,即(X1+X2)2 - 2X1X2 - 4= - 3,(k- 1) 2+2斤-4-4= - 3,解得:k=±2.•••关于x的一元二次方程Ck- 1) x _ k+2=0有实数根,- (E-1) F-4X1X (-好2)三0,解得:k^2y/2 - 1 或kW - 2A/2 - 1 >.'.k=2.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C在直线/上,PBM, PA^Gcm, PB=5cm, PC【考点】点到直线的距离.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:TPB丄/, PB=5cm,■-.P到I的距离是垂线段PB的长度5cm,故答案为:5.12.(3分)(2019・广州)代数式卓=有意义时,x应满足的条件是x>8x-8【考点】62:分式有意义的条件;72:二次根式有意义的条件.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x-8x - 8>0,解得:x>8.故答案为:x>&13.(3 分)(2019・广州)分解因式:A+2xy+y= y (x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y C+2x+l)=y(x+1)故答案为:y(x+1)2.14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°<a<90°),使得三角板ADE的一边所在的直线与BC垂直,则a的度数为15°或【考点】角的计算.【分析】分情况讨论:®DE±BC ; @ADLBC. 【解答】解:分情况讨论:① 当 DELBC 时,ZBAD= 180° - 60° - 45° =75° , .*.a=90° - ZBAD= 15° ; ② 当 AD1BC 时,a=90° - ZC=90° - 30° =60° . 故答案为:15°或60°15. (3分)(2019-r 州)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三 角形,则该圆锥侧面展开扇形的弧长为—2近 兀(结果保留“)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题. 【解答】解:•••某圆锥的主视图是一个腰长为2的等腰直角三角形, •••斜边长为2迈, 则底面圆的周长为2屈T,•••该圆锥侧面展开扇形的弧长为2妨, 故答案为2屈T.16. (3分)(2019・广州)如图,正方形ABCD 的边长为a,点E 在边AB 上运动(不与点A, B 重合),ZDAM=45°,点F 在射线AM 上,且AF=^E, CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @AAEG 的周长为(1+返)a ;(3)BE 2+DG 2^EG 2;④△E4F 的面 积的最大值L A8其中正确的结论是①④.(填写所有正确结论的序号)弧长的计算;圆锥的计算;简单几何体的三视图;由三视图判断几何体.【考点】二次根式的应用;勾股定理;相似三角形的判定与性质.【分析】①正确•如图1中,在BC上截取BH=BE,连接EH.证明△ FAE竺厶EHC(SAS), 即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则厶CBE丝HCDH (SAS),再证明厶GCE竺厶GCH (SAS),即可解决问题.④正确.设BE=x,则AE=a-x, AF=^,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.•:BE=BH, ZEBH=90° ,:.EH=y[2PE, ':AF=^2^E,:.AF=EH,':ZDAM=ZEHB=45° , ZBAD=90° ,:.ZFAE=ZEHC= 135° ,\'BA=BC, BE=BH,:.AE^HC,.•.△FAE竺AEHC (SAS),:.EF=EC, ZAEF^ZECH,V ZECH+ZCEB=9Q° ,A ZAEF+ZCEB^90° ,A ZF£C=90° ,:.ZECF=ZEFC=45° ,故①正确,如图2中,延长AD到H,使得DH=BE,则厶CBE竺“CDH (SAS),・•・ ZECB = ZDCH,:.ZECH=ZBCD=90° ,:.ZECG=ZGCH=45° ,•・・CG=CG, CE=CH,:.AGCE^AGCH (SAS),・・・EG=GH,•:GH=DG+DH, DH=BE,・・・EG=BE+DG,故③错误,AAEG 的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD = 2a,故②错误,设BE=x,贝lj AE=a - x, AF=\[^c,・*.S/\AEF=—(a - x) Xx= -- —(x2 - ax+^-a1 - Az?)=-丄(兀-^)2+^2,2 2 2 2 4 4 2 2 8护时,△仙的面积的最大值为护故④正确,故答案为①④.\G三、解答题(共9小题,满分102分)17.(9分)(2019・广州)解方程组:(xVFl .Ix+3y=9【考点】解二元一次方程组.【分析】运用加减消元解答即可.【解答】解:$于I:,]x+3y=9②②-①得,4y=2,解得y=2,把y=2代入①得,x - 2=1,解得兀=3, 故原方程组的解为]x=3.1尸218.(9 分)(2019・广州)如图,D 是 AB 1.一点,DF 交AC 于点E, DE=FE, FC//AB,【考点】全等三角形的判定.【分析】利用AAS证明:△ ADE竺CFE.【解答】证明:TFC/AB,:.ZA=ZFCE, ZADE= ZF,在△ADE与△ CFE中:'ZA=ZFCF•二ZADE=ZF>卫E=EF.•.△ADE竺ACFE (AAS).19.(10 分)(2019・广州)已知―至一--1(a^±b)a2-b2 a+b(1)化简P;(2)若点(a, b)在一次函数y=x-迈的图象上,求P的值.【考点】一次函数图象上点的坐标特征.【分析】(1)P=- 2a -丄= ____________ 2a ________ = 2a-a+b_=丄;2_^2 a+b (a+b)(a~b) a+b (a+b)(a~b) a~ba(2)将点(a, b)代入y=x-迈得到Q-Z?=伍,再将伍代入化简后的F,即可求解;【解答】解:(1) P= 2a -丄= _______________ 2a_ _=丄;a'-b? a+b (a+b) (a-b) a+b (a+b) (a-b) a~b(2) .点(a, b)在一次函数y—x - \[2的图象上,•• b=ci - ^2?.'.a - b—^f2,•p=.V20.(10分)(2019-r州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:(1)求频数分布表中Ml的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图【考点】频数(率)分布表;扇形统计图;列表法与树状图法.【分析】(1)用抽取的40人减去其他5个组的人数即可得出加的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)加=40-2-10- 12-7-4=5;(2)B组的圆心角=360° X旦=45° ,40C组的圆心角= 360°或丄。
2024成都中考数学一轮复习专题数据的收集整理、描述与分析一、单选题1.(2023·四川南充·统考中考真题)某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是()A.22cm B.22.5cm C.23cm D.23.5cm2.(2023·湖南岳阳·统考中考真题)在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A.180,182B.178,182C.180,180D.178,1803.(2023·湖北随州·统考中考真题)某班在开展劳动教育课程调查中发现,第一小组6名同学每周做家务的天数依次为3,7,5,6,5,4(单位:天),则这组数据的众数和中位数分别为()A.5和5B.5和4C.5和6D.6和54.(2023·四川达州·统考中考真题)一组数据2,3,5,2,4,则这组数据的众数和中位数分别为()A.3和5B.2和5C.2和3D.3和25.(2023·江苏扬州·统考中考真题)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图6.(2023·云南·统考中考真题)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65B.60C.75D.807.(2023·浙江金华·统考中考真题)上周双休日,某班8名同学课外阅读的时间如下(单位:时):1,4,2,4,3,3,4,5.这组数据的众数是()A.1时B.2时C.3时D.4时B.统计表中m的值为5-岁的人数最多C.长寿数学家年龄在9293D.《数学家传略辞典》中收录的数学家年龄在15.(2023·浙江温州·统考中考真题)某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.为了解学生想法,校方进行问卷调查(每人选一个地点)知选择雁荡山的有270人,那么选择楠溪江的有(A.90人B.180A.100B.150C18.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是(A.小车的车流量与公车的车流量稳定;C.小车与公车车流量在同一时间段达到最小值;19.(2023·浙江宁波·统考中考真题)甲、乙、丙、丁四名射击运动员进行射击测试,每人平均数x(单位:环)及方差A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差二、填空题23.(2023·湖南郴州·统考中考真题)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是______分.24.(2023·湖南永州·统考中考真题)甲、乙两队学生参加学校仪仗队选拔,两队队员的平均身高均为1.72m,26.(2023·四川乐山·统考中考真题)小张在“阳光大课间别为:160,163,160,157,160.这组数据的众数为27.(2023·湖北黄冈·统考中考真题)眼睛是心灵的窗户为保护学生视力,启航中学每学期给学生检查视力,下表是该校某班39名学生右眼视力的检查结果,这组视力数据中,中位数是视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.730.(2023·浙江·统考中考真题)青田县田的田鱼平均产量是__________kg.31.(2023·四川宜宾·统考中考真题)在“庆五四·展风采”的演讲比赛中,7位同学参加决赛,演讲成绩依次为:77,80,79,77,80,79,80.这组数据的中位数是___________.三、解答题32.(2023·四川泸州·统考中考真题)某校组织全校800名学生开展安全教育,为了解该校学生对安全知识的掌握程度,现随机抽取40名学生进行安全知识测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060x≤<,90100≤<,并制作了如图所示的≤<,8090xx≤<,6070x≤<,7080x不完整的频数分布直方图;②在8090≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,88,89.x根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?33.(2023·江苏苏州·统考中考真题)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为________________;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?34.(2023·山东滨州·统考中考真题)中共中央办公厅、国务院办公厅印发的《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》中,对学生每天的作业时间提出明确要求:“初中书面作业平均完成时间不超过90分钟”.为了更好地落实文件精神,某县对辖区内部分初中学生就“每天完成书面作业的时间”进行了随机调查,为便于统计学生每天完成书面作业的时间(用t 表示,单位h )状况设置了如下四个选项,分别为A :1t ≤,B :1 1.5t <≤,C :1.52t <≤,D :2t >,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上提供的信息解答下列问题:(1)此次调查,选项A 中的学生人数是多少?x≤<这一组的成绩是:b.八年级学生上学期期末地理成绩在C.152015,15,15,15,15,16,16,16,18,18c.八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期平均数众数中位数八年级上学期17.715m八年级下学期18.21918.5(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.38.(2023·江苏扬州·统考中考真题)某校为了普及环保知识,从七、八两个年级中各选出保知识竞赛(满分100分),并对成绩进行整理分析,得到如下信息:平均数众数中位数七年级参赛学生成绩85.5m87请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.(1)数据分析:八年级10名学生活动成绩统计表成绩/分678910人数12a b2(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.43.(2023·四川成都·统考中考真题)文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.请根据图表信息解答下列问题:(1)填空:α=__________︒,m=_________;(2)补齐乙队成绩条形统计图;(3)①甲队成绩的中位数为_________,乙队成绩的中位数为②分别计算甲、乙两队成绩的平均数,并从中位数和平均数的角度分析哪个运动队的成绩较好.小悦、小涵的三项测试成绩和总评成绩如下表,这最大值)如下图测试成绩/分选手(1)在摄影测试中,七位评委给小涵打出的分数如下:__________分,众数是__________分,平均数是__________(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.请根据以上信息解答下列问题.(1)A组数据的众数是(2)本次调查的样本容量是(3)若该校有1200名学生,估计该校学生劳动时间超过47.(2023·湖南郴州·统考中考真题)某校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A.B.C.D.E五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图.(1)请把图1中缺失的数据,图形补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.48.(2023·河北·统考中考真题)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图.(3)已知该校共有1000名学生,估计B类的学生人数.50.(2023·湖南·统考中考真题)2023年3月27日是第28个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某学校举行了校园安全知识竞赛活动.现从八、九年级中各随机抽取竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,80分及以上为优秀,x≤≤),并给出下面部分信息:B:7080x≤<;C:8090x≤<;D:90100八、九年级抽取的学生竞赛成绩统计表年级平均数中位数众数八87a请根据相关信息,解答下列问题:(1)填空:a的值为________,图①中m的值为________;(2)求统计的这组学生年龄数据的平均数、众数和中位数.(1)m=_______,n=_______;(2)被调查的高中学生视力情况的样本容量为(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.个能反映总体的统计量...说明理由:②约定:视力未达到1.0为视力不良.若该区有视力保护提出一条合理化建议.根据以上信息,解答下列问题:(1)上述图表中=a___________(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可)(3)若某玩具仓库有A款智能玩具飞机中等及以上的共有多少架?(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?估计该校900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.57.(2023·浙江宁波·统考中考真题)宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x 均为不小于60的整数),并将测试成绩分为四个等第;合格(6070x ≤<),一般(7080x ≤<),良好(8090x ≤<),优秀(90100x ≤≤),制作了如下统计图(部分信息未给出)由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全须数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?58.(2023·四川自贡·统考中考真题)某校为了解“世界读书日”主题活动开展情况,对本学期开学以来学生课外读书情况进行了随机抽样调查,所抽取的12名学生课外读书数量(单位:本)数据如下:2,4,5,4,3,5,3,4,1,3,2,4.(1)补全学生课外读书数量条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到(4)根据上述调查情况,写一条你的看法.60.(2023·浙江金华·统考中考真题)为激发学生参与劳动的兴趣,某校开设了以“端午”为主题的活动课程,要求每位学生在“折纸龙”“采艾叶”“做香囊”与“包粽子”四门课程中选且只选其中一门,随机调查了本校部分学生的选课情况,绘制了两幅不完整的统计图.请根据图表信息回答下列问题:(1)求本次被调查的学生人数,并补全条形统计图.(2)本校共有1000名学生,若每间教室最多可安排30名学生,试估计开设“折纸龙”课程的教室至少需要几间.参考答案一、单选题小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【答案】C【分析】在扇形统计图中将总体看做一个圆,用各个扇形表示各部分,能清楚的表示出各部分所占总体的百分比.【详解】根据题意,将空气(除去水汽、杂质等)看做总体,用各个扇形表示空气的成分(除去水汽、杂质等)中每一种成分所占空气的百分比,由此可以选择扇形统计图.故选:C.【点拨】本题考查了统计图的选取,扇形统计图的特点及优点,熟练掌握各种统计图的特点及优点是解题的关键.6.【答案】B【分析】根据众数的定义求解即可.【详解】解:在65,60,75,60,80中,出现次数最多的是60,∴这组数据的众数是60,故选;B.【点拨】本题考查了众数,众数是指一组数据中出现次数最多的数据,掌握众数的定义是解题的关键.7.【答案】D【分析】根据众数的含义可得答案.【详解】解:这组数据中出来次数最多的是:4时,所以众数是4时;故选:D.【点拨】本题考查的是众数的含义,熟记一组数据中出现次数最多的数据就是这组数据的众数是解本题的关键.8.【答案】B【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】A.了解一批节能灯管的使用寿命,具有破坏性,适合采用抽样调查,不符合题意;B.了解某校803班学生的视力情况,适合采用普查,符合题意;C.了解某省初中生每周上网时长情况,适合采用抽样调查,不合题意;D.了解京杭大运河中鱼的种类,适合采用抽样调查,不合题意.故选:B.二、填空题23.【答案】93【分析】利用加权平均数的计算方法进行求解即可.【详解】解:由题意,得:9030%9450%9520%93⨯+⨯+⨯=(分);∴该参赛队的最终成绩是93分,故答案为:93【点拨】本题考查加权平均数,熟练掌握加权平均数的计算方法,是解题的关键.24.【答案】甲【分析】根据方差的意义判断即可.【详解】∵221.2 5.6S S ==甲乙,,∴22S S <甲乙,∴估计这两支仪仗队身高比较整齐的是甲,故答案为:甲.【点拨】本题主要考查样本估计总体、方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.25.【答案】140【分析】根据频数直方图,直接可得结论.【详解】解:依题意,其中成绩在80分及以上的学生有8060140+=人,故答案为:140.【点拨】本题考查了频数直方图,从统计图获取信息是解题的关键.26.【答案】160【分析】根据众数是一组数据中出现次数最多的数值求解即可.【详解】解:这组数据中出现次数最多的是160,出现了三次,∴这组数据的众数为160,故答案为:160.【点拨】题目注意考查求一组数据的众数,理解众数的定义是解题关键.27.【答案】4.6【分析】数据按从小到大排列,若数据是偶数个,中位数是最中间两数的平均数,若数据是奇数个,中位数是正中间的数.【详解】解:该样本中共有39个数据,按照右眼视力从小到大的顺序排列,第20个数据是4.6,所以学生右眼视力的中位数为4.6.【点拨】本题主要考查了学生对中位数的理解,解题关键是如何找中位数,注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.28.【答案】甲【分析】根据方差越小,波动越小,越稳定判断即可.【详解】∵2 1.2s =甲,2 2.0s =乙,且22s s 甲乙<∴甲队稳定,故答案为:甲.【点拨】本题考查了方差的决策性,熟练掌握方差的意义是解题的关键.29.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解.【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷---=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨);故答案为1500吨.【点拨】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.30.【答案】15【分析】根据平均数的定义,即可求解.(2)解:∵46818++=,∴第20、21个数为81.83;∴抽取的40名学生成绩的中位数是(1812故答案为:82;故答案为:300.(2)在扇形统计图中,求“敬老服务”对应的圆心角度数为(3)估计参加“文明宣传”项目的师生人数为【点拨】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.44.【答案】(1)126,12m α=︒=(3)①∵甲队的第10个,11∴中位数是9+9=92(分);∵乙队的第10个,11个数据都是∴中位数是8+8=82(分);故答案为:9分,8分.(2)解:40 360144100︒⨯=︒,∴研学活动地点C所在扇形的圆心角的度数(3)251200300100⨯=(人)答:最喜欢去D地研学的学生人数共有。
2020年重庆中考数学最值专题训练四(含答案)1、如图,在矩形ABCD 中,AB =4,BC =5,点E 是边AD 上一动点,将△ABE 沿直线BE 翻折,得到△FBE ,连接CF 并延长交线段AD 于点G ,则AG 的最大值为( )A .4B .3C .2D .12、(2019春•鄞州区期末)如图,矩形ABCD 中,AB =2,BC =4,点E 是矩形ABCD 的边AD 上的一动点,以CE 为边,在CE 的右侧构造正方形CEFG ,连结AF ,则AF的最小值为.3、如图,在矩形ABCD 中,点E 是AD 边上一点,以CE 为边作正方形ECGF ,连结AF ,若AE =4cm ,AD =6cm ,AB =3cm .则AF 的长度是 cm .4、(2019春•梁溪区期末)如图,正方形ABCD 中,AB =4,点E 为边AD 上一动点,连接CE ,以CE 为边,作正方形CEFG (点D 、F 在CE 所在直线的同侧),H 为CD 中点,连接FH .点E 在运动过程中,HF 的最小值为 .C DGE H5、如图,矩形ABCD中,已知AB=6,BC=8,点E是边AD上一点,以CE为直角边在与点D的同侧作等腰直角△CEG,连结BG,当点E在边AD上运动时,线段BG长度的最小值是()A.2B.10C.10D.146、(2017•龙华区二模)如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE.当点D在边BC上运动时,OE的长度的最小值是.7、如图,矩形ABCD中,AB=3,AD=4,点E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值是.2020年重庆中考数学最值专题训练四(含答案)1、如图,在矩形ABCD中,AB=4,BC=5,点E是边AD上一动点,将△ABE沿直线BE翻折,得到△FBE,连接CF并延长交线段AD于点G,则AG的最大值为()A.4B.3C.2D.1解:如图:∵CF是⊙B切线,∴BF⊥CG,∵折叠,∴∠BAD=∠EFB=90°即BF⊥EF;根据过一点有且只有一条直线与已知直线垂直,∴CG与CE重合即E,G重合;∵四边形ABCD是矩形,∴AB=CD=4,BC=AD=5,AD∥BC;∵折叠,∴∠AEB=∠BEF;∵AD∥BC,∴∠AEB=∠CBE,∴∠CBE=∠BEF,∴BC=GC=5;在Rt△GCD中,DG==3,∴AG的最大值为AD﹣DG=2.故选:C.2、(2019春•鄞州区期末)如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为3.解:过F作FH⊥ED,∵正方形CEFG,∴EF=EC,∠FEC=∠FED+∠DEC=90°,∵FH⊥ED,∴∠FED+∠EFH=90°,∴∠DEC=∠EFH,且EF=EC,∠FHE=∠EDC=90°,∴△EFH≌△EDC(AAS),∴EH=DC=2,FH=ED,∴AF===∴当AE=1时,AF的最小值为33、如图,在矩形ABCD 中,点E 是AD 边上一点,以CE 为边作正方形ECGF ,连结AF ,若AE =4cm ,AD =6cm ,AB =3cm .则AF的长度是 cm .解:如图,作FM ⊥AD 于M ,∵四边形EFGC 是正方形,∴EF =EC ,∠FEC =∠M =90°,∴∠FEM +∠EFM =90°,∠FEM +∠CED =90°,∴∠EFM =∠CED ,在△ECD 和△FEM 中,,∴△ECD ≌△FEM ,∴FM =ED ,CD =EM ,∵AB =CD =EM =3,AE =4.AD =6,∴ED =FM =2,在Rt △AFM 中,AF ===.4、(2019春•梁溪区期末)如图,正方形ABCD 中,AB =4,点E 为边AD 上一动点,连接CE ,以CE 为边,作正方形CEFG (点D 、F 在CE 所在直线的同侧),H 为CD 中点,连接FH .点E 在运动过程中,HF 的最小值为 .A B CDGE H图1 解:如图,连接DF ,过点F 作FM ⊥AD ,交AD 延长线于点M ,过点F 作FN ⊥CD 的延长线于点N , ∵△EFM ≌△CED ,∴CD =EM ,DE =FM ,∴CD =AD =EM ,∴AE =DM ,设AE =x =DM ,则DE =4﹣x =FM ,∵FN ⊥CD ,FM ⊥AD ,ND ⊥AD ,∴四边形FNDM 是矩形,∴FN =DM =x ,FM =DN =4﹣x∴NH =4﹣x +2=6﹣x ,在Rt △NFH 中,HF === ∴当x =3时,HF 有最小值==35、(2017秋•上虞区期末)如图,矩形ABCD中,已知AB=6,BC=8,点E是边AD上一点,以CE为直角边在与点D的同侧作等腰直角△CEG,连结BG,当点E在边AD上运动时,线段BG长度的最小值是()A.2B.10C.10D.14解:如图作GH⊥BA交BA的延长线于H,EM⊥HG于M,交BC于N.则MN⊥BC.设AE=m.∵∠EMG=∠ENC=∠CEG=90°,∴∠MEG+∠CEN=90°,∠CEN+∠ECN=90°,∴∠MEG=∠ECN,∵EG=EC,∴△MEG≌△NCE(AAS),∴EM=CN=AH=8﹣m,MG=EN=6,在Rt△BHG中,BG===,∴m=4时,BG有最大值,最大值为10,故选:B.6、(2017•龙华区二模)如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE.当点D在边BC上运动时,OE的长度的最小值是5.解:如图所示:过点D作DG⊥OA,过点E作HE⊥DG.∵DG⊥OA,HE⊥DG,∴∠EHD=∠DGA=90°.∴∠GDA+∠DAG=90°.∵四边形ADEF为正方形,∴DE=AD,∠HDE+∠GDA=90°.∴∠HDE=∠GAD.在△HED和△GDA中,∴△HED≌△GDA.∴HE=DG=3,HD=AG.设D(a,3),则DC=a,DH=AG=4﹣a.∴E(a+3,7﹣a).∴OE==.当a=2时,OE有最小值,最小值为5.7、如图,矩形ABCD中,AB=3,AD=4,点E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值是.解:如图,作点D关于BC的对称点G,连接BG,在BG上截取BH,使得BH=AD,连接AH.作HM ⊥AB交AB的延长线于M.∵四边形ABCD是矩形,∴AB=CD=3,BC=AD=4,AD∥BC,∴∠ADF=∠DBC,∵DC=CG,BC⊥DG,∴BD=BG,∴∠DBC=∠CBG,∴∠ADF=∠HBE,∵DA=BH,DF=BE,∴△ADF≌△HBE(SAS),∴AF=EH,∴AE+AF=AE+EH≥AH,在Rt△BCD中,BD==5,由△BHM∽△DBC,可得==,∴==,∴BM=,MH=,∴AM=3+=,在Rt△AMH中,AH==,∴AE+AF≥,∴AE+AF的最小值为.。
2017-2018年中考数学专题复习题:数据的收集与整理一、选择题1.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是A. 调查方式是全面调查B. 样本容量是360C. 该校只有360个家长持反对态度D.该校约有的家长持反对态度2.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A. 70B. 720C. 1680D. 23703.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中捕获n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘再从鱼塘中捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数大约为A. bnB. anC.D.4.某校为调查1000名学生对新闻、娱乐、动画、体育四类电视节目的喜爱情况,随机抽取了部分学生进行调查,并利用调查数据作出如图所示的扇形统计图根据图某某息,可以估算出该校喜爱体育节目的学生共有A. 300名B. 250名C. 200名D. 150名5.从总体中抽取一部分数据作为样本去估计总体的某种属性下面叙述正确的是A. 样本容量越大,样本平均数就越大B. 样本容量越大,样本的方差就越大C. 样本容量越大,样本的极差就越大D. 样本容量越大,对总体的估计就越准确6.为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是A. 随机抽取100位女性老人B. 随机抽取100位男性老人C. 随机抽取公园内100位老人D. 在城市和乡镇各选10个点,每个点任选5位老人7.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷不完整:8.准备在“国产片,科幻片,动作片,喜剧片,亿元大片”中选取三个作为该问题的备选答案,选取合理的是A. B. C. D.9.设计问卷调查时,下列说法不合理的是A. 提问不能涉及提问者的个人观点B. 问卷应简短C. 问卷越多越好D. 提问的答案要尽可能全面10.下列说法中,正确的是A. 为检测市场上正在销售的酸奶质量,应该采用全面调查的方式B. 在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C. 小强班上有3个同学都是16岁,因此小强认为他们班学生年龄的众数是16岁D. 给定一组数据,则这组数据的中位数一定只有一个11.下列说法中,正确的是A. 一组数据,,0,1,1,2的中位数是0B. 质检部门要了解一批灯泡的使用寿命,应当采用普查的调查方式C. 购买一X福利彩票中奖是一个确定事件D. 分别写有三个数字,,4的三X卡片卡片的大小形状都相同,从中任意抽取两X,则卡片上的两数之积为正数的概率为二、填空题12.学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了8名进行分析,在这个问题中总体是______ ,样本容量是______ .13.一个口袋里有10个白球和一些黑球,为了估计口袋里有多少黑球,小明随机从口袋里摸出一球,记下颜色,在放回,不断重复上述过程,小明共摸了50次,有10次摸到白球,因此可以估计口袋里有______个黑球.14.为估计鱼塘里有多少条鱼,从鱼塘捕100条做上记号,然后放回鱼塘,当有记号的鱼完全混合于鱼群后,再捕200条,其中带有记号的鱼有20条,估计这个鱼塘里有______条鱼.15.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量根据得到的调查数据,绘制成如图所示的扇形统计图若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有______名.16.近几年,人们的环保意识逐渐增加,“白色污染”现象越来越受到人们的重视小颖同学想了解班上同学家里在一年内丢弃废塑料袋的个数,你认为采用______ 方式合适一些.17.某市有100万人口,在一次对城市标志性建筑方案的民意调查中,随机调查了1万人,其中有6400人同意甲方案则由此可估计该城市中,同意甲方案的大约有______ 万人.18.某商店对一种名牌衬衫抽测结果如下表:抽检件数10 20 100 150 200 300不合格件数0 1 3 4 6 9如果销售1000件该名牌衬衫,至少要准备______ 件合格品,供顾客更换.19.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图该年级共有700人,估计该年级足球测试成绩为D等的人数为______人20.图1为城市女生从出生到15岁的平均身高统计图,图2是城市某女生从出生到12岁的身高统计图.21.请你根据以上信息预测该女生15岁时的身高约为______ ,你的预测理由是______ .22.进行数据的收集调查时,在明确调查问题、确定调查对象后,还要完成以下4个步骤:展开调查得出结论记录结果选择调查方法,但它们的顺序弄乱了,正确的顺序应该是______ 填写序号即可.三、计算题23.在“创优”活动中,我市某校开展收集废电池的活动,该校初二班为了估计四月份收集电池的个数,随机抽取了该月某7天收集废旧电池的个数,数据如下:单位:个:48,51,53,47,49,50,求这七天该班收集废旧电池个数的平均数,并估计四月份天计该班收集废旧电池的个数.24.某水果店有200个菠萝,原计划以元千克的价格出售,现在为了满足市场需要,水果店决定将所有的菠萝去皮后出售以下是随机抽取的5个菠萝去皮前后相应的质量统计表单位:千克:去皮前各菠萝的质量去皮后各菠萝的质量计算所抽取的5个菠萝去皮前的平均质量和去皮后的平均质量,并估计这200个菠萝去皮前的总质量和去皮后的总质量.根据的结果,要使去皮后这200个菠萝的销售总额与原计划的销售总额相同,那么去皮后的菠萝的售价应是每千克多少元?25.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.26.教育支出频数分布表分组频数频率26189a b2合计40注:每组数据含最小值,不含最大值根据以上提供的信息,解答下列问题:频数分布表中的______,______;补全频数分布直方图;请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?27.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图校服型号以身高作为标准,共分为6个型号根据以上信息,解答下列问题:28.该班共有______ 名学生;29.在扇形统计图中,185型校服所对应的扇形圆心角的大小为______ ;30.该班学生所穿校服型号的众数为______ ,中位数为______ ;31.如果该校预计招收新生600名,根据样本数据,估计新生穿170型校服的学生大约有多少名?【答案】1. D2. C3. D4. C5. D6. D7. C8. C9. D10. D11. 七年级540名学生的视力情况;8012. 4013. 100014. 240015. 抽样调查16. 6417. 3018. 5619. 170厘米;12岁时该女生比平均身高高8厘米,预测她15岁时也比平均身高高8厘米20.21. 解:这7天收集电池的平均数为:个估计四月份天计该班收集废旧电池的个数个答:这七天收集的废旧电池平均数为50个,四月份该班收集的废电池约1500个.22. 解:抽取的5个菠萝去皮前的平均质量为千克,去皮后的平均质量为千克,这200个菠萝去皮前的总质量为千克,去皮后的总质量为千克.原计划的销售额为元根据题意,得去皮后的菠萝的售价为元千克.23. 3;24. 50;;165和170;170。
2022年中考数学专题复习教学案-数据的分析◆课前热身1.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为()A.1万件B.19万件C.15万件D.20万件2.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行检查3.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.株数201510501012第3题1415黄瓜根数/株4.某校为了举办“庆祝建国60周年”的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有人.人数CB35%160A:文化演出B:运动会C:演讲比赛【参考答案】1.B2.D.3.60;134.100nodeire,nodepair.A40%ABC活动形式◆考点聚焦知识点总体、个体、样本、样本容量、频率分布、频率分布直方图大纲要求1.了解总体、个体、样本、样本容量等概念;2.会列出样本频率分布表,画出频率分布直方图和频数折线图,解决简单的实际问题;3.会根据统计结果作出合理的判断和预测;1.通过具体问题考查总体、个体、样本、样本容量的概念,有关试题常出现在选择题中;2.根据统计图解决实际问题,有关试题常出现在解答题中◆备考兵法在解决数据分析的问题时首先注意样本的选择要合理、具有代表性;观察、分析、绘制统计图时要注意纵轴上的数据是否从0开始,以避免造成比例上的错觉;对两个不同的样本作比较时,要注意两张统计图上的纵轴刻度是否相同,这时可以将两张图合成一张图效果要好得多;使用立体统计图时要注意除长方体的高不同之外,注意长方体的宽度和深度是否一致,以免因体积问题造成误解。
专题31 数据的分析☞2年中考【题组】1.(泰州)描述一组数据离散程度的统计量是()A.平均数 B.众数 C.中位数 D.方差【答案】D.考点:统计量的选择.2.(宜宾)今年4月,全国山地越野车大赛在我市某区举行,其中8名选手某项得分如表:则这8名选手得分的众数、中位数分别是()A.85、85 B.87、85 C.85、86 D.85、87【答案】C.【解析】试题分析:众数是一组数据中出现次数最多的数据,∴众数是85;把数据按从小到大顺序排列,可得中位数=(85+87)÷2=86;故选C.考点:1.众数;2.中位数.3.(凉山州)某班45名同学某天每人的生活费用统计如表:对于这45名同学这天每人的生活费用,下列说法错误的是()A.平均数是20 B.众数是20 C.中位数是20 D.极差是20【答案】A.【解析】试题分析:这组数据中位数是20,则众数为:20,平均数为:20.4,极差为:30﹣10=20.故选A.考点:1.众数;2.加权平均数;3.中位数;4.极差.4.(随州)下列说法正确的是()A.“购买1张彩票就中奖”是不可能事件B.“掷一次骰子,向上一面的点数是6”是随机事件C.了解我国青年人喜欢的电视节目应作全面调查D.甲、乙两组数据,若22S S甲乙,则乙组数据波动大【答案】B.考点:1.随机事件;2.全面调查与抽样调查;3.方差.5.(广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数 B.中位数 C.方差 D.以上都不对【答案】C.【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选C.考点:统计量的选择.6.(南宁)某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是()A.12 B.13 C.14 D.15【答案】C.考点:1.众数;2.条形统计图.7.(崇左)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是x甲=85,x乙=85,x丙=85,x丁=85,方差是2S甲=3.8,2S乙=2.3,2S丙=6.2,2S丁=5.2,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁【答案】B.【解析】试题分析:∵2S甲=3.8,2S乙=2.3,2S丙=6.2,2S丁=5.2,∴2S乙<2S甲<2S丁<2S丙,∴成绩最稳定的是乙.故选B.考点:方差.8.(来宾)已知数据:2,4,2,5,7.则这组数据的众数和中位数分别是()A.2,2 B.2,4 C.2,5 D.4,4【答案】B.【解析】试题分析:2出现了2次,故众数为2;把这组数据按照从小到大的顺序排列为:2,2,4,5,7,故中位数为4,故选B.考点:1.众数;2.中位数.9.(来宾)在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③ B.①④ C.②③ D.②④【答案】C.考点:1.方差;2.折线统计图.10.(玉林防城港)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2 B.2.8 C.3 D.3.3【答案】C.【解析】试题分析:(3×1+5×2+11×3+11×4)÷30=(3+10+33+44)÷30=90÷30=3.故30名学生参加活动的平均次数是3.故选C.考点:1.加权平均数;2.条形统计图.11.(福州)若一组数据1,2,3,4,x 的平均数与中位数相同,则实数x 的值不可能是( ) A .0 B .2.5 C .3 D .5 【答案】C .考点:1.中位数;2.算术平均数.12.(莆田)在一次定点投篮训练中,五位同学投中的个数分别为3,4,4,6,8,则关于这组数据的说法不正确的是( )A .平均数是5B .中位数是6C .众数是4D .方差是3.2 【答案】B . 【解析】试题分析:A .平均数=(3+4+4+6+8)÷5=5,此选项正确; B .3,4,4,6,8中位数是4,此选项错误; C .3,4,4,6,8众数是4,此选项正确; D .方差S2=3.2,此选项正确; 故选B .考点:1.方差;2.加权平均数;3.中位数;4.众数. 13.(遵义)如果一组数据1x ,2x ,…,nx 的方差是4,则另一组数据31+x ,32+x ,…,3+nx 的方差是( )A .4B .7C .8D .19考点:方差.14.(包头)一组数据5,2,x,6,4的平均数是4,这组数据的方差是()A.2 BC.10 D【答案】A.【解析】试题分析:由题意得,15(5+2+x+6+4)=4,解得,x=3,S2=15 [(5﹣4)2+(2﹣4)2+(3﹣4)2+(6﹣4)2+(4﹣4)2]=2,故选A.考点:1.方差;2.算术平均数.15.(聊城)为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7:0至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中位数分别是()A.众数是80千米/时,中位数是60千米/时B.众数是70千米/时,中位数是70千米/时C.众数是60千米/时,中位数是60千米/时D.众数是70千米/时,中位数是60千米/时考点:1.众数;2.条形统计图;3.中位数.16.(北海)在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中10位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是.【答案】9.5.【解析】试题分析:这组数据中出现次数最多的数为9.5,即众数为9.5.故答案为:9.5.考点:众数.17.(百色)甲、乙两人各射击5次,成绩统计表如下:那么射击成绩比较稳定的是(填“甲”或“乙”).【答案】乙.【解析】试题分析:甲的平均数为:(6+7+8+9+10)÷5=8,甲的方差为:[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]÷5=2,乙的平均数为:(7×2+8×2+10)÷5=8,乙的方差为:[(7﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(10﹣8)2] ÷5=1.2,∵甲的方差>乙的方差,∴射击成绩比较稳定的是乙.故答案为:乙.考点:方差.18.(钦州)一组数据3,5,5,4,5,6的众数是.【答案】5.【解析】试题分析:这组数据中出现次数最多的数据为:5.故众数为5.故答案为:5.考点:众数.19.(南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差 (填“变小”、“不变”或“变大”).【答案】变大.考点:方差.20.(乐山)九年级1班9名学生参加学校的植树活动,活动结束后,统计每人植树的情况,植了2棵树的有5人,植了4棵树的有3人,植了5棵树的有1人,那么平均每人植树 棵.【答案】3. 【解析】试题分析:平均每人植树254351531⨯+⨯+⨯++=3棵,故答案为:3.考点:加权平均数.21.(2015襄阳)若一组数据1,2,x ,4的众数是1,则这组数据的方差为 .【答案】32.考点:1.方差;2.众数.22.(随州)某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第 组.【答案】2. 【解析】试题分析:共12+24+18+10+6=70个数据,12+24=36,所以第35和第36个都在第2组,所以这个样本的中位数在第2组.故答案为:2.考点:1.中位数;2.频数(率)分布表.23.(厦门)已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = (用只含有k 的代数式表示).【答案】22k k -.【解析】试题分析:∵一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ),∴这组数据的中位数与平均数相等,∴(1)122n n n k n ++==,∴21n k =-,∵这组数据的各数之和是s ,中位数是k ,∴(21)s nk k k ==-=22k k -.故答案为:22k k -. 考点:1.中位数;2.综合题.24.(江西省)两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .【答案】6.考点:1.中位数;2.算术平均数;3.综合题.25.(南宁)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.【答案】(1)50,18;(2)落在51﹣56分数段;(3)2 3.【解析】试题分析:(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;P (一男一女)=46=23.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图;4.中位数.26.(梧州)某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明:笔试总成绩=(笔试总成绩+加分)÷2 考和总成绩=笔试总成绩+面试总成绩现有甲、乙两名应聘者,他们的成绩情况如下:(1)甲、乙两人面试的平均成绩为 ; (2)甲应聘者的考核总成绩为 ; (3)根据上表的数据,若只应聘1人,则应录取 . 【答案】(1)85.35;(2)145.6;(3)甲. 【解析】试题分析:(1)先求出甲、乙两人的面试总成绩,再求出其平均成绩即可;(2)根据笔试总成绩=(笔试总成绩+加分)÷2,考和总成绩=笔试总成绩+面试总成绩分别求出甲的考核总成绩即可;考点:1.加权平均数;2.算术平均数.27.(河池)某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【答案】(1)8,7.5;(2)一班的平均成绩高,且方差小,较稳定;(3)1 2.【解析】试题分析:(1)分别用平均数的计算公式和众数的定义解答;(2)方差越小的成绩越稳定;考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.28.(贵港)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.【答案】(1)54°;(2)作图见试题解析;(3)85;(4)甲班20同名同学的成绩比较整齐.试题解析:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,x乙=(70×7+80×4+90+100×8)÷20=85;(4)∵S甲2<S乙2,∴甲班20同名同学的成绩比较整齐.考点:1.条形统计图;2.扇形统计图;3.加权平均数;4.方差.29.(咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.【答案】(1)m=94,n=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)13.(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P (另外两个决赛名额落在同一个班)=412=13.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差. 【题组】1.(福建福州中考)若7名学生的体重(单位:kg )分别是:40,42,43,45,47,47,58,则这组数据的平均数是( )A .44B .45C .46D .47 【答案】C . 【解析】试题分析:平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:40424345474758467++++++=.故选C .考点:平均数.2.(福建南平中考)下列说法正确的是()A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是22S 3.2S 2.9==乙甲,,则甲组数据更稳定【答案】A.考点:1.全面调查与抽样调查;2.众数;3.平均数;4.方差的意义.3.(甘肃兰州中考)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数 C.众数和方差 D.众数和中位数【答案】D.【解析】试题分析:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,因此,两位同学的话能反映出的统计量是众数和中位数.故选D.考点:统计量的判断.4.(广东广州中考)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是7【答案】B.考点:1.中位数;2.众数;3.平均数;.4.极差.5.(广西北海中考)甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1环,各自的方差见如下表格:由上可知射击成绩最稳定的是()A.甲 B.乙 C.丙 D.丁【答案】A.【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵0.293<0.362<0.375<0.398,∴甲的射击成绩最稳定.故选A.考点:方差.6.(福建厦门中考)已知一组数据:6,6,6,6,6,6,则这组数据的方差为.【注:计算方差的公式是()()()222212n1S x x x x x x n⎡⎤=-+-+⋯+-⎢⎥⎣⎦】【答案】0.【解析】试题分析:根据题意得出这组数据的平均数是6,再根据方差公式列式计算即可:∵这组数据的平均数是6,∴这组数据的方差()221S66606⎡⎤=⨯-=⎣⎦.考点:方差的计算.7.(福建龙岩中考)若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是.【答案】4.考点:1.平均数;2.中位数;3.方程思想的应用.8.(福建三明中考)甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S2甲=0.9,S2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是(填“甲”或“乙”).【答案】甲.【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵0.9<1.1,∴甲、乙两支仪仗队的队员身高更整齐的是是甲.考点:方差的意义.9.(天津市中考)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据有关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 【答案】解:(1)40;15;(2)众数为5,中位数为36;(3)60双.考点:1.条形统计图;2.扇形统计图;3.用样本估计总体;4.中位数;5.众数.10.(浙江义乌中考)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整.(2)已求得甲组成绩优秀人数的平均数x =7甲组,方差2S =1.5甲组,请通过计算说明,哪一组成绩优秀的人数较稳定?【答案】(1)65%,作图见试题解析;(2)甲组成绩优秀的人数较稳定.∵乙组第四次成绩优秀的人数为2085%89⨯-=(人),∴将条形统计图补充完整如下:(2)乙组成绩优秀人数的平均数为6859x 74+++==乙组,方差()()()()222221S 67875797 2.54⎡⎤=-+-+-+-=⎣⎦乙组.∵两组成绩优秀人数的平均数相同,甲组成绩优秀人数的方差小于乙组成绩优秀人数的方差,∴甲组成绩优秀的人数较稳定.考点:1.条形统计图;2.折线统计图;3.频数、频率和总量的关系;4.平均数和方差的计算与分析.☞考点归纳 归纳 1:平均数基础知识归纳: 1、平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”.(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里nf f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为n f x f x f x x kk ++=2211,这样求得的平均数x 叫做加权平均数,其中kf f f ,,,21 叫做权.2、平均数的计算方法 (1)定义法当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x n x +++=(2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:n f x f x f x x kk ++=2211,其中nf f f k =++ 21.(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='.其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,ax x n n -='.)'''(1'21n x x x n x +++=是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据).基本方法归纳:所给数据,,,,21n x x x 比较分散,选用定义公式:)(121n x x x n x +++=求解即可.注意问题归纳:计算时注意准确.【例1】数据﹣1,0,1,2,3的平均数是( )A.﹣1 B. 0 C. 1 D. 5【答案】C.考点:平均数.归纳 2:众数、中位数基础知识归纳:1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数.2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.基本方法归纳:求众数只需找到出现次数最多的数;求中位数时分两种情况当数据是偶数个时中位数是中间两个数的平均数,当数据是奇数个时中位数是中间数.注意问题归纳:求中位数时一定弄清楚数据是偶数个还是奇数个.【例2】对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数和中位数分别是()A. 17,15.5 B. 17,16 C. 15,15.5 D. 16,16 【答案】A.【解析】17出现的次数最多,17是众数.第15和第16个数分别是15、16,所以中位数为16.5.故选A.考点:1.众数;2.中位数.归纳 3:数据的波动基础知识归纳:1、极差:最大值与最小值的差2、方差:在一组数据,,,,21nxxx中,各数据与它们的平均数x的差的平方的平均数,叫做这组数据的方差.通常用“2s ”表示,即])()()[(1222212x x x x x x n s n -++-+-=标准差:方差的算数平方根叫做这组数据的标准差,用“s ”表示,即])()()[(1222212x x x x x x n s s n -++-+-==基本方法归纳:计算方差时先求出数据的平均数再代入公式计算即可.注意问题归纳:极差也能表述数据的波动但不准确,所以如果准确判断数据的波动都用方差. 【例3】甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为2222s s 0.60,0.56,s 0.50,s 0.45==== 甲乙丁丙,则成绩最稳定的是( )A .甲B .乙C .丙D .丁 【答案】D .考点:方差. ☞1年模拟1.(北京市平谷区中考二模)某商场一天中售出某种品牌的运动鞋11双,其中各种尺码的鞋的销售量如下表所示:那么这11双鞋的尺码组成的一组数据中,众数与中位数分别为( ) A .23.5,24 B .24,24.5 C .24,24 D .24.5,24.5 【答案】D . 【解析】试题分析:在这组数据中,出现次数最多的是24.5:5双,因此这组数据的众数是24.5;把这组数据从小到大排列,共1+2+2+5+1=11个数,最中间的一个数是24.5,因此在这组数据中的众数和中位数分别是24.5,24.5.故选D.考点:1.众数;2.中位数.2.(北京市门头沟区中考二模)甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下图所示:设甲、乙两人射击成绩的平均数依次为x甲、x乙,射击成绩的方差依次为2S甲、2S乙,那么下列判断中正确的是()A.x x=甲乙,22S S=甲乙 B.x x=甲乙,22>S S甲乙C.x x=甲乙,22<S S甲乙 D.<x x甲乙,22<S S甲乙【答案】B.考点:1.方差;2.算术平均数.3.(安徽省安庆市中考二模)A、B、C、D、E五名同学在一次数学测验中的平均成绩是80分,而A、B、C三人的平均成绩是78分,下列说法一定正确的是()A.D.E的成绩比其他三人都好B.D.E两人的平均成绩是83分C.五人成绩的中位数一定是其中一人的成绩D.五人的成绩的众数一定是80分【答案】B.【解析】试题分析:A.无法判断D、E的成绩比其他三人都好,故错误;B.设D、E两人的平均成绩是x分,由题意得,3×78+2x=5×80,解得x=83,所以,D.E两人的平均成绩是83分正确,故正确;C.五人成绩的中位数一定是其中一人的成绩错误,有可能是按成绩排列后中间三位同学的成绩相同,中位数是他们三个人的成绩,故错误;D.五人的成绩的众数一定是80分,错误,有可能没有人正好是80分,故错误.故选B.考点:1.算术平均数;2.中位数;3.众数.4.(山东省日照市中考一模)某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是6【答案】B.考点:1.方差;2.加权平均数;3.中位数;4.众数.5.(山东省济南市平阴县中考二模)为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是()A.平均数是38.5 B.众数是4 C.中位数是40 D.极差是3【答案】A.【解析】试题分析:A、这组数据的平均数(25+30×4+40×2+50×2+60)÷10=38.5,故本选项正确;B、30出现的次数最多,出现了4次,则众数是30,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(30+40)÷2=35,则中位数是35,故本选项错误;D、这组数据的极差是:60﹣25=35,故本选项错误;故选A.考点:1.极差;2.加权平均数;3.中位数;4.众数.6.(山东省潍坊市昌乐县中考一模)已知甲、乙、丙三个旅行团的游客人数都相等,且毎一个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是2S甲=17,2S乙=14.6,2S丙=19,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择()A.甲团 B.乙团 C.丙团 D.采取抽签方式,随便选一个【答案】B.【解析】试题分析:∵2S甲=17,2S乙=14.6,2S丙=19,∴2S乙最小,游客年龄相近.故选B.考点:方差.7.(山东省青岛市李沧区中考一模)某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩x与方差S2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则应该选()A.甲 B.乙 C.丙 D.丁【答案】C.考点:1.方差;2.算术平均数.8.(山东省潍坊市昌乐县中考一模)已知甲、乙、丙三个旅行团的游客人数都相等,且毎一个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是2S甲=17,2S乙=14.6,2S丙=19,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择()A.甲团 B.乙团 C.丙团 D.采取抽签方式,随便选一个【答案】B.【解析】试题分析:∵2S甲=17,2S乙=14.6,2S丙=19,∴2S乙最小,游客年龄相近.故选B.考点:方差.9.(广东省深圳市龙华新区中考二模)小明在学校九年级中随机选取部分同学对“你最喜欢的球类运动”进行问卷调查,调查结果如图所示.则选择每种球类人数的众数与中位数分别是()A.16,14 B.16,10 C.14,14 D.14,10【答案】D.考点:1.众数;2.中位数.10.(浙江省宁波市江东区4月中考模拟)若4个数6,x,8,10的中位数为7,则x的取值范围是().A.x=6 B.x=7 C.x≤6 D.x≥8【答案】C.【解析】试题分析:根据中位数的定义,分三种情况进行讨论:①如果x≤6,那么(6+8)÷2=7,符合题意;②如果6<x≤8,那么(x+8)÷2>7,不符合题意;③如果x>8,那么(x+8)÷2>8,不符合题意.故选C.考点:中位数.11.(湖北省黄石市6月中考模拟)为了参加市中学生篮球运动后,某校篮球队准备购买10双运动鞋,经统计10双运动鞋的号码(cm)如表所示:尺码 25 25.5 26 26.5 27购买量(双)2 4 2 1 1则这10双运动鞋尺码的众数和中位数分别是()A.25.5cm 26cm B.26cm 25.5cm C.26cm 26cm D.25.5cm 25.5cm【解析】试题分析:根据众数是出现次数最多的数,中位数是中间位置的数或中间两数的平均数,因此由25.5出现了3次,最多,故众数为25.5cm;中位数为(25.5+25.5)÷2=25.5cm;故选D.考点:1.众数;2.中位数.12.(山东省日照市中考模拟)五个正整数,中位数是4,众数是6,这五个正整数的和为.【答案】19或20或21.考点:1.众数;2.中位数.13.(山西省晋中市平遥县九年级下学期4月中考模拟)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为.【答案】144.【解析】试题分析:∵小林五次成绩(143、145、144、146、a)的平均数为144,∴这五次成绩的总数为144×5=720,∵小林自己又记载了两次练习成绩为141、147,∴他七次练习成绩的平均数为(720+141+147)÷7=1008÷7=144.故答案为:144.考点:算术平均数.14.(江苏省南京市建邺区中考一模)一组数据4、5、6、7、8的方差为S12,另一组数据3、5、6、7、9的方差为S22,那么S12 S22(填“>”、“=”或“<”).【答案】<.【解析】试题分析:观察两组数据发现,第一组数据相对第二组数据更加稳定,所以第二组数据的方差就大.故答案为:<.故答案为:<.考点:方差.15.(河北省中考模拟二)已知一组数据1,3,a,6,6的平均数为4,则这组数据的方差为.。