2012辽宁省高考试卷含解析考试技巧重点
- 格式:rtf
- 大小:64.20 KB
- 文档页数:2
2012·辽宁卷(语文)第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)[2012·辽宁卷] 阅读下面的文字,完成1~3题。
自然作为环境与自然作为其自身是完全不一样的。
自然作为其自身以自己为本位,与人无关。
而自然作为环境,它就失去了自己的本体性,成为人的价值物。
一方面,它是人的对象,相对于实在的人,它外在于人。
但另一方面,当它参与人的价值创造时,就不是人的对象,而是人的一部分,或者说是人的另一体。
在这个意义上,环境与人不可分。
自然当其作为人的价值物时,主要有两种情况:一是作为资源,二是作为环境。
资源主要分为生产资源和生活资源。
人要生存和发展,必须要向自然获取生产资源和生活资源。
但是必须有个限度,超出限度就可能造成整个生态平衡的严重破坏或某些资源的枯竭。
一般来说,环境比资源外延要大,但更重要的是,资源是人掠夺的对象,而环境是人的家园。
从自然界掠夺资源,不管手段如何,人与自然的关系是对立的;而将自然界看成环境,不管这里的自然条件如何,人总是力求实现与自然的和谐。
对于当今人类来说,重要的是要将自然看成我们的家。
家,不只是物质性的概念,还是精神性的概念。
环境美的根本性质是家园感,家园感主要表现为环境对人的亲和性、生活性和人对环境的依恋感、归属感。
家的首要功能是居住,居住可以区分为三个层级:宜居、利居、乐居。
当前各地都在创建人类的宜居环境,提出建设花园城市、保护历史文化名城等诸多主张,但“宜居”在城市功能的各层次中,只是基础,重在环境保护。
而“利居”仍然没有摆脱将环境当作资源的观念。
环境一旦成为利用的对象,它与人的关系就存在某种对立。
只有“乐居”,人与环境的关系才不是对立的,而是和谐的,而且这种和谐具有亲缘性、情感性、文化性。
亲缘性,说明环境与人共生的关系。
情感性,说明环境与人的内在心理的关系。
文化性,说明乐居具有丰富而又深刻的文化意味,浓缩提炼了人类文明的精华,真正体现了家园感。
1、阅读下面的作品,完成14—16题。
(8分)镜湖女(南宋)陆游湖中居人事舟楫,家家以舟作生业。
女儿妆面花样红,小伞翻翻乱荷叶。
日暮归来月色新,菱歌缥缈泛烟津。
到家更约西邻女,明日湖桥看赛神。
14、从体裁上看,本作品属于()(1分)A、古体诗B、近体诗C、歌行D、诗余15、对本作品分析不恰当的一项是()(3分)A、“事舟楫”写湖边的人家日常靠船为生。
B、“乱荷叶”写女子摆动的伞把荷叶搅乱。
C、“月色新”写傍晚景色,暗示时间转换。
D、“泛烟津”写若有若无的歌声随波荡漾。
16、结合作品,对作者塑造的“镜湖女”形象加以赏析。
(4分)2、下列各项中,没有语病的一项是A.2015年3月1日正式实施了《湖北省全民阅读促进办法》,是我国首部关于全民阅读的地方政府规章,普通人的阅读权益因此获得了法律保障。
B.近年来,生态保护意识渐入人心,所以当社会经济发展与林地保护管理发生冲突时,一些地方在权衡之后往往会选择前者。
C.2014年底,我国探月工程三期“再入返回飞行”试验获得成功,确保嫦娥五号任务顺利实施和探月工程持续推进奠定坚实基础。
D.对血液和血液制品进行严格的艾滋病病毒抗体检测,确保用血安全,是防止艾滋病通过采血与供血途径传播的关键措施。
3、请用斜线(∕)给下面文言短文中画线的部分断句。
(限断6处)(3分)王慎中为文,初亦高谈秦汉谓东京以下无可取已而悟欧曾作文之法乃尽焚旧作一意师仿尤得力于曾巩唐顺之初不服其说,久乃变而从之。
(选自《四库全书总目》)4、下列各句中,没有语病的一句是(3分)A.“地坛书市”曾经是北京市民非常喜爱的一个文化品牌,去年更名为“北京书市”并落户朝阳公园后,依旧热情不减。
B.“丝绸之路经济带”横跨亚、非、欧三大洲,其形成与繁荣必将深刻影响世界政治、经济格局,促进全球的和平与发展。
C.在那个民族独立和民族解放斗争风起云涌的时代,能激发人们的爱国热情是评判一部文学作品好坏的非常重要的标准。
D.父亲住院期间,梅兰每天晚上都陪伴在他身旁,听他讲述一生中经历的种种苦难和幸福,她就算再忙再累,也不例外。
2012年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•辽宁)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}考点:交、并、补集的混合运算.专题:计算题.分析:由题已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},可先求出两集合A,B的补集,再由交的运算求出(∁U A)∩(∁U B)解答:解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B点评:本题考查交、并、补集的混合计算,解题的关键是熟练掌握交、并、补集的计算规则2.(5分)(2012•辽宁)复数=()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:进行复数的除法运算,分子和分母同乘以分母的共轭复数,再进行复数的乘法运算,化成最简形式,得到结果.解答:解:===,故选A.点评:本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.3.(5分)(2012•辽宁)已知两个非零向量,满足|+|=|﹣|,则下面结论正确的是()A.∥B.⊥C.||=|| D.+=﹣考点:平面向量数量积的运算.专题:平面向量及应用.分析:由于||和||表示以 、 为邻边的平行四边形的两条对角线的长度,再由|+|=|﹣|可得此平行四边形的对角线相等,故此平行四边形为矩形,从而得出结论. 解答:解:由两个两个向量的加减法的法则,以及其几何意义可得, ||和||表示以 、 为邻边的平行四边形的两条对角线的长度.再由|+|=|﹣|可得此平行四边形的对角线相等,故此平行四边形为矩形,故有⊥.故选B . 点评: 本题主要考查两个向量的加减法的法则,以及其几何意义,属于中档题. 4.(5分)(2012•辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≥0,则¬p 是( ) A . ∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≤0 B . ∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≤0 C . ∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0 D . ∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0考点: 命题的否定. 专题: 简易逻辑. 分析:由题意,命题p 是一个全称命题,把条件中的全称量词改为存在量词,结论的否定作结论即可得到它的否定,由此规则写出其否定,对照选项即可得出正确选项 解答: 解:命题p :∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≥0是一个全称命题,其否定是一个特称命题, 故¬p :∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0. 故选:C . 点评:本题考查命题否定,解题的关键是熟练掌握全称命题的否定的书写规则,本题易因为没有将全称量词改为存在量词而导致错误,学习时要注意准确把握规律. 5.(5分)(2012•辽宁)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为( ) A . 3×3! B . 3×(3!)3 C . (3!)4 D . 9!考点: 排列、组合及简单计数问题. 专题: 计算题. 分析:完成任务可分为两步,第一步,三口之家内部排序,第二步,三家排序,由分步计数原理计数公式,将两步结果相乘即可 解答:解:第一步,分别将三口之家“捆绑”起来,共有3!×3!×3!种排法; 第二步,将三个整体排列顺序,共有3!种排法 故不同的作法种数为3!×3!×3!×3!=3!4故选C点评:本题主要考查了分步计数原理及其应用,排列数及排列数公式的应用,捆绑法计数的技巧,属基础题6.(5分)(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.7.(5分)(2012•辽宁)已知,则tanα=()A.﹣1 B.C.D.1考点:同角三角函数间的基本关系.专题:计算题.分析:由条件可得1﹣2sinαcosα=2,即sin2α=﹣1,故2α=,α=,从而求得tanα的值.解答:解:∵已知,∴1﹣2sinαcosα=2,即sin2α=﹣1,故2α=,α=,tanα=﹣1.故选A.点评:本题主要考查同角三角函数的基本关系的应用,求得α=,是解题的关键,属于基础题.8.(5分)(2012•辽宁)设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.55解答:解:设AC=x,则BC=12﹣x,0<x<12若矩形面积S=x(12﹣x)<32,则x>8或x<4即将线段AB三等分,当C位于首段和尾段时,矩形面积小于32,故该矩形面积小于32cm2的概率为P==故选C点评:本题主要考查了几何概型概率的意义及其计算方法,将此概率转化为长度之比是解决本题的关键,属基础题11.(5分)(2012•辽宁)设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)﹣f(x)在上的零点个数为()A.5B.6C.7D.8考点:利用导数研究函数的极值;根的存在性及根的个数判断.专题:计算题;压轴题;数形结合.分析:利用函数的奇偶性与函数的解析式,求出x∈[0,],x∈[]时,g(x)的解析式,推出f(0)=g(0),f(1)=g(1),g()=g()=0,画出函数的草图,判断零点的个数即可.解答:解:因为当x∈[0,1]时,f(x)=x3.所以当x∈[1,2]时2﹣x∈[0,1],f(x)=f(2﹣x)=(2﹣x)3,当x∈[0,]时,g(x)=xcos(πx);当x∈[]时,g(x)=﹣xcosπx,注意到函数f(x)、g(x)都是偶函数,且f(0)=g(0),f(1)=g(1)=1,g()=g()=0,作出函数f(x)、g(x)的草图,函数h(x)除了0、1这两个零点之外,分别在区间[﹣,0],[0,],[,1],[1,]上各有一个零点.共有6个零点,故选B点评:本题主要考查函数的奇偶性、对称性、函数的零点,考查转化能力、运算求解能力、推理论证能力以及分类讨论思想、数形结合思想,难度较大.12.(5分)(2012•辽宁)若x∈[0,+∞),则下列不等式恒成立的是()A.e x≤1+x+x2B.C.D.考点:导数在最大值、最小值问题中的应用.专题:综合题;压轴题.分析:对于A,取x=3,e3>1+3+32,;对于B,令x=1,,计算可得结论;对于C,构造函数,h′(x)=﹣sinx+x,h″(x)=cosx+1≥0,从而可得函数在[0,+∞)上单调增,故成立;对于D,取x=3,.解答:解:对于A,取x=3,e3>1+3+32,所以不等式不恒成立;对于B,x=1时,左边=,右边=0.75,不等式成立;x=时,左边=,右边=,左边大于右边,所以x∈[0,+∞),不等式不恒成立;对于C,构造函数,h′(x)=﹣sinx+x,h″(x)=cosx+1≥0,∴h′(x)在[0,+∞)上单调增∴h′(x)≥h′(0)=0,∴函数在[0,+∞)上单调增,∴h(x)≥0,∴;对于D,取x=3,,所以不等式不恒成立;故选C.点评:本题考查大小比较,考查构造函数,考查导数知识的运用,确定函数的单调性是解题的关键.二、填空题:本大题共4小题,每小题5分.13.(5分)(2012•辽宁)一个几何体的三视图如图所示,则该几何体的表面积为38.考点:由三视图求面积、体积.专题:计算题.分析:通过三视图判断几何体的形状,利用三视图的数据,求出几何体的表面积即可.解答:解:由三视图可知,几何体是底面边长为4和3高为1的长方体,中间挖去半径为1的圆柱,几何体的表面积为:长方体的表面积+圆柱的侧面积﹣圆柱的两个底面面积.即S=2×(3×4+1×3+1×4)+2π×1﹣2×12π=38.故答案为:38.点评:本题考查三视图与直观图的关系,几何体的表面积的求法,判断三视图复原几何体的形状是解题的关键.14.(5分)(2012•辽宁)已知等比数列{a n}为递增数列,且a52=a10,2(a n+a n+2)=5a n+1,则数列{a n}的通项公式a n=2n.考点:数列递推式.专题:计算题.分析:通过,求出等比数列的首项与公比的关系,通过2(an+a n+2)=5a n+1求出公比,推出数列的通项公式即可.解答:解:∵,∴,∴a1=q,∴,∵2(a n+a n+2)=5a n+1,∴,∴2(1+q2)=5q,解得q=2或q=(等比数列{a n}为递增数列,舍去)∴.故答案为:2n.点评:本题主要考查等比数列的通项公式,转化思想和逻辑推理能力,属于中档题.15.(5分)(2012•辽宁)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标为4,﹣2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为﹣4.考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:通过P,Q的横坐标求出纵坐标,通过二次函数的导数,推出切线方程,求出交点的坐标,即可得到点A的纵坐标.解答:解:因为点P,Q的横坐标分别为4,﹣2,代入抛物线方程得P,Q的纵坐标分别为8,2.由x2=2y,则y=,所以y′=x,过点P,Q的抛物线的切线的斜率分别为4,﹣2,所以过点P,Q的抛物线的切线方程分别为y=4x﹣8,y=﹣2x﹣2联立方程组解得x=1,y=﹣4故点A的纵坐标为﹣4.故答案为:﹣4.点评:本题主要考查利用导数求切线方程的方法,直线的方程、两条直线的交点的求法,属于中档题.16.(5分)(2012•辽宁)已知正三棱锥P﹣ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离为.考点:球内接多面体.专题:计算题;压轴题.分析:先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,利用等体积法可实现此计算解答:解:∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接圆O,∵圆O的半径为,∴正方体的边长为2,即PA=PB=PC=2球心到截面ABC的距离即正方体中心到截面ABC的距离设P到截面ABC的距离为h,则正三棱锥P﹣ABC的体积V=S△ABC×h=S△PAB×PC=××2×2×2=2△ABC为边长为2的正三角形,S△ABC=×∴h==∴正方体中心O到截面ABC的距离为﹣=故答案为点评:本题主要考球的内接三棱锥和内接正方体间的关系及其相互转化,棱柱的几何特征,球的几何特征,点到面的距离问题的解决技巧,有一定难度,属中档题三、解答题:解答应写文字说明,证明过程或演算步骤.17.(12分)(2012•辽宁)在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C 成等差数列.(Ⅰ)求cosB的值;(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.考点:数列与三角函数的综合.专题:计算题;综合题.分析:(Ⅰ)在△ABC中,由角A,B,C成等差数列可知B=60°,从而可得cosB的值;(Ⅱ)(解法一),由b2=ac,cosB=,结合正弦定理可求得sinAsinC的值;(解法二),由b2=ac,cosB=,根据余弦定理cosB=可求得a=c,从而可得△ABC为等边三角形,从而可求得sinAsinC的值.解答:解:(Ⅰ)由2B=A+C,A+B+C=180°,解得B=60°,∴cosB=;…6分(Ⅱ)(解法一)由已知b2=ac,根据正弦定理得sin2B=sinAsinC,又cosB=,∴sinAsinC=1﹣cos2B=…12分(解法二)由已知b2=ac及cosB=,根据余弦定理cosB=解得a=c,∴B=A=C=60°,∴sinAsinC=…12分点评:本题考查数列与三角函数的综合,着重考查等比数列的性质,考查正弦定理与余弦定理的应用,考查分析转化与运算能力,属于中档题.18.(12分)(2012•辽宁)如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)若二面角A′﹣MN﹣C为直二面角,求λ的值.考点:用空间向量求平面间的夹角;直线与平面平行的判定;与二面角有关的立体几何综合题.专题:计算题;证明题;转化思想.分析:(I)法一,连接AB′、AC′,说明三棱柱ABC﹣A′B′C′为直三棱柱,推出MN∥AC′,然后证明MN∥平面A′ACC′;法二,取A′B′的中点P,连接MP、NP,推出MP∥平面A′ACC′,PN∥平面A′ACC′,然后通过平面与平面平行证MN∥平面A′ACC′.(II)以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,设AA′=1,推出A,B,C,A′,B′,C′坐标求出M,N,设=(x1,y1,z1)是平面A′MN的法向量,通过,取,设=(x2,y2,z2)是平面MNC的法向量,由,取,利用二面角A'﹣MN﹣C为直二面角,所以,解λ.解答:(I)证明:连接AB′、AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC﹣A′B′C′为直三棱柱,所以M为AB′中点,又因为N为B′C′的中点,所以MN∥AC′,又MN⊄平面A′ACC′,因此MN∥平面A′ACC′;法二:取A′B′的中点P,连接MP、NP,M、N分别为A′B、B′C′的中点,所以MP∥AA′,NP∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′,又MP∩NP=P,因此平面MPN∥平面A′ACC′,而MN⊂平面MPN,因此MN∥平面A′ACC′.(II)以A为坐标原点,分别以直线AB、AC、AA′为x,y,z轴,建立直角坐标系,如图,设AA′=1,则AB=AC=λ,于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1).所以M(),N(),设=(x1,y1,z1)是平面A′MN的法向量,由,得,可取,设=(x2,y2,z2)是平面MNC的法向量,由,得,可取,因为二面角A'﹣MN﹣C为直二面角,所以,即﹣3+(﹣1)×(﹣1)+λ2=0,解得λ=.点评:本题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中.第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明.19.(12分)(2012•辽宁)电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女10 55合计(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)P(K2≥k)0.05 0.01k 3.841 6.635.考点:独立性检验的应用;频率分布直方图.专题:计算题;数形结合.分析:(I)根据所给的频率分布直方图得出数据列出列联表,再代入公式计算得出K2,与3.841比较即可得出结论;(II)由题意,用频率代替概率可得出从观众中抽取到一名“体育迷”的概率是,由于X∽B(3,),从而给出分布列,再由公式计算出期望与方差即可解答:解:(I)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:非体育迷体育迷合计男30 15 45女45 10 55合计75 25 100将2×2列联表中的数据代入公式计算,得:K2==≈3.03,因为3.03<3.841,所以没有理由认为“体育迷”与性别有关.(II)由频率分布直方图知抽到“体育迷”的频率是0.25,将频率视为概率,即从观众中抽取到一名“体育迷”的概率是,由题意X∽B(3,),从而分布列为X 0 1 2 3P所以E(X)=np=3×=.D(X)=npq=3××=.点评:本题考查独立性检验的运用及期望与方差的求法,频率分布直方图的性质,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型20.(12分)(2012•辽宁)如图,已知椭圆C0:,动圆C1:.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;(Ⅱ)设动圆C2:与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:为定值.考点:圆锥曲线的综合.专题:综合题;压轴题.分析:(Ⅰ)设出线A1A的方程、直线A2B的方程,求得交点满足的方程,利用A在椭圆C0上,化简即可得到M轭轨迹方程;(Ⅱ)根据矩形ABCD与矩形A'B'C'D'的面积相等,可得A,A′坐标之间的关系,利用A,A′均在椭圆上,即可证得=a2+b2为定值.解答:(Ⅰ)解:设A(x1,y1),B(x2,y2),∵A1(﹣a,0),A2(a,0),则直线A1A的方程为①直线A2B的方程为y=﹣(x﹣a)②由①×②可得:③∵A(x1,y1)在椭圆C0上,∴∴代入③可得:∴;(Ⅱ)证明:设A′(x3,y3),∵矩形ABCD与矩形A'B'C'D'的面积相等∴4|x1||y1|=4|x3||y3|∴=∵A,A′均在椭圆上,∴=∴=∴∵t1≠t2,∴x1≠x3.∴∵,∴∴=a2+b2为定值.点评:本题考查轨迹方程,考查定值问题的证明,解题的关键是设出直线方程,求出交点的坐标,属于中档题.21.(12分)(2012•辽宁)设f(x)=ln(x+1)++ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=x在(0,0)点相切.(I)求a,b的值;(II)证明:当0<x<2时,f(x)<.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:综合题;压轴题.分析:(I)由y=f(x)过(0,0),可求b的值,根据曲线y=f(x)与直线在(0,0)点相切,利用导函数,可求a的值;(II)由(I)知f(x)=ln(x+1)+,由均值不等式,可得,构造函数k(x)=ln(x+1)﹣x,可得ln(x+1)<x,从而当x>0时,f(x)<,记h(x)=(x+6)f(x)﹣9x,可证h(x)在(0,2)内单调递减,从而h(x)<0,故问题得证.解答:(I)解:由y=f(x)过(0,0),∴f(0)=0,∴b=﹣1∵曲线y=f(x)与直线在(0,0)点相切.∴y′|x=0=∴a=0;(II)证明:由(I)知f(x)=ln(x+1)+由均值不等式,当x>0时,,∴①令k(x)=ln(x+1)﹣x,则k(0)=0,k′(x)=,∴k(x)<0 ∴ln(x+1)<x,②由①②得,当x>0时,f(x)<记h(x)=(x+6)f(x)﹣9x,则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)﹣9<<=∴h(x)在(0,2)内单调递减,又h(0)=0,∴h(x)<0∴当0<x<2时,f(x)<.点评:本题考查导数知识的运用,考查导数的几何意义,考查构造法的运用,考查不等式的证明,正确构造函数是解题的关键.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(10分)(2012•辽宁)选修4﹣1:几何证明选讲如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:(Ⅰ)AC•BD=AD•AB;(Ⅱ)AC=AE.考点:综合法与分析法(选修).专题:证明题.分析:(I)利用圆的切线的性质得∠CAB=∠ADB,∠ACB=∠DAB,从而有△ACB∽△DAB,=,由此得到所证.(II)利用圆的切线的性质得∠AED=∠BAD,又∠ADE=∠BDA,可得△EAD∽△ABD,=,AE•BD=AD•AB,再结合(I)的结论AC•BD=AD•AB 可得,AC=AE.解答:证明:(I)∵AC与⊙O'相切于点A,故∠CAB=∠ADB,同理可得∠ACB=∠DAB,∴△ACB∽△DAB,∴=,∴AC•BD=AD•AB.(II)∵AD与⊙O相切于点A,∴∠AED=∠BAD,又∠ADE=∠BDA,∴△EAD∽△ABD,∴=,∴AE•BD=AD•AB.再由(I)的结论AC•BD=AD•AB 可得,AC=AE.点评:本题主要考查圆的切线的性质,利用两个三角形相似得到成比列线段,是解题的关键,属于中档题.23.(2012•辽宁)选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.考点:简单曲线的极坐标方程;直线的参数方程.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.24.(2012•辽宁)选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.考点:函数恒成立问题;绝对值不等式的解法.专题:综合题;压轴题.分析:(Ⅰ)先解不等式|ax+1|≤3,再根据不等式f(x)≤3的解集为{x|﹣2≤x≤1},分类讨论,即可得到结论.(Ⅱ)记,从而h(x)=,求得|h(x)|≤1,即可求得k的取值范围.解答:解:(Ⅰ)由|ax+1|≤3得﹣4≤ax≤2∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.∴当a≤0时,不合题意;当a>0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.点评:本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.。
2012年普通高等学校招生全国统一考试文科综合能力测试(全国新课标卷)试题分析教学部文科教研主任边策本届文科综合考试辽宁仍然使用新课标全国卷,适用地区为:河北、云南、内蒙古、湖北、河南、山西、新疆、江西、湖南、陕西、宁夏、辽宁、吉林、黑龙江。
地理部分:全国命题,新课程标准内容,知识点的考察全面。
从难度上来看,与2011年一样在地球运动方面没有映射性命题,全卷难度适宜。
命题质量很高。
涉及农业命题较多是今年的明显特色。
客观题着重考查学生对地理知识基本原理的理解和判断能力。
无复杂逻辑计算思维,理科式直线思维痕迹自今年起消失。
图表题考查学生正确获取地理信息和理解运用知识的能力。
选择题中:1、2、3、8、9题为人文地理,其他为自然地理,可以看出全卷自然地理权重明显。
主观题以区域地理为底版和背景材料,主要考查学生阅读理解和综合分析的能力。
重点采分项为分析描述的思维程序和叙述习惯。
基本原理的叙述方法成为重中之重。
此外,选做题难度相对很低,其中自然灾害题目三年来第一次在选修的三道题中呈现最低难度。
但是出现了不同性质灾害混合出题情况。
主要是对获取信息和应用所学知识进行低层次的知识迁移能力的考查。
全卷知识点分布如下:1、2、3题,中国农业以及不同地区的农业发展特点。
4、5题,河流流量特点及其成因。
6、7题,中国区域地理及气温相关。
8、9题,区域产业结构调整的相关因素。
10、11题,等值线的应用(与2011年考试思路相同)。
36题,东南亚(预测命中)、工业的区位条件和工业地域的形成原因。
37题,南美(预测命中)、世界气候的分布和成因、农作物的用水来源。
42题,旅游资源分布和保护措施。
中等题。
但是沈阳选修复习不细致,往往放弃此部分。
43题,自然灾害类型、自然灾害的防治措施。
简单题。
(复习专题命中)沈阳大部分学生选作此题。
44题,水污染影响因素及防治方法。
简单题。
沈阳考生选作的数量不多。
政治部分:全国命题,新课程标准内容。
2012辽宁高考数学引言2012年辽宁高考数学试卷是辽宁省高中毕业生升入大学的重要考试之一。
数学作为一门基础学科,对学生的逻辑思维和问题解决能力有着重要的培养作用。
本文将对2012辽宁高考数学试卷进行分析和讨论,以帮助考生更好地了解该试卷和备考。
第一部分选择题2012辽宁高考数学试卷的选择题部分共有30道题。
从题目的类型来看,包括了代数、几何、数论等多个数学分支的内容。
试卷整体难度较适中,题目涵盖了高中数学各个知识点,考察了学生对基本概念和方法的理解和应用能力。
在代数部分,有一道关于一次函数的直线方程的题目,要求学生根据给定的条件,求解直线方程的系数。
这道题目考察了学生对一次函数的理解和运用能力。
在几何部分,有一道要求学生计算圆的面积的题目。
该题考察了学生对圆的基本性质的理解,以及面积计算公式的应用。
总体来说,选择题部分考察了学生对数学基本概念的掌握程度和运用能力,以及对数学问题解决思路的理解。
通过合理的复习和解题训练,考生可以在选择题部分取得较好的成绩。
第二部分解答题2012辽宁高考数学试卷的解答题部分共有5道题,包括了代数、几何和概率等不同知识领域的题目。
这部分题目的难度相对较高,需要学生具备较扎实的数学基础和较强的问题解决能力。
在代数部分,有一道关于二次函数和二次方程的题目,要求学生同时解二次方程和求解函数的最值。
这道题目考察了学生对二次函数和二次方程的理解和应用能力,并且需要学生灵活运用求解方法。
在几何部分,有一道要求学生证明三角形两条边之和大于第三边的题目。
这道题目考察了学生对三角形性质的理解和证明能力,以及逻辑推理能力。
在概率部分,有一道要求学生计算概率的题目。
该题目考察了学生对概率计算公式的理解和应用能力。
解答题部分考察了学生对数学知识的深入理解和综合运用能力。
通过多维度的知识掌握和问题解决能力的训练,考生可以在解答题部分取得好成绩。
结论2012辽宁高考数学试卷整体难度适中,题目涵盖了数学各个知识点。
2012辽宁高考语文引言语文科目是中国高考中最重要的科目之一,也是考生们最关注的科目之一。
辽宁省作为中国东北地区的一个重要省份,其高考语文考试自然也备受关注。
本文将针对2012年辽宁高考语文试题进行分析和解析,帮助考生们更好地理解该年份的考试内容和出题特点。
一、试题概述2012年辽宁高考语文试卷共分为两卷,总分150分。
其中,第一卷为选择题和古诗文阅读题,第二卷为主观题,包括作文和阅读题。
整个试卷的命题风格明确,题目难度适中,注重考察考生对文学常识、文言文阅读和写作能力的综合运用。
二、选择题分析1. 阅读理解2012年辽宁高考语文试卷中的阅读理解题主要考察考生对文学作品和非文学类资料的理解能力。
试题内容涉及文化、历史、社会等多个领域,题目形式既有选择题,也有配对题和简答题。
2. 语法填空语法填空题主要考察考生对语法知识的理解和运用能力。
2012年的试题中,语法填空题主要涉及词性、词义辨析、动词时态和动词语态等方面的知识。
3. 诗歌鉴赏诗歌鉴赏题是辽宁高考语文试卷的传统题型之一。
2012年的试题中,诗歌鉴赏题主要涉及古代诗歌和现代诗歌,要求考生理解诗歌的意境、修辞手法和语言表达。
三、主观题分析1. 作文题2012年辽宁高考语文试卷的作文题要求考生写一篇记叙文或者是一篇议论文。
作文题的命题风格务实,旨在考察考生的写作思维和表达能力。
2. 阅读题阅读题要求考生阅读一篇文章,并回答相关问题。
2012年的试题中,阅读题涉及社会、文化和人文等多个领域,要求考生理解文章的主旨和细节,并能进行分析和归纳。
四、备考建议1.注重基础知识的复习:语文考试是对考生综合知识和能力的综合考核,因此,考生需要注重对语文基础知识的复习,包括文学常识、语法知识和诗歌鉴赏等。
2.提高阅读能力:语文考试中的阅读理解和阅读题要求考生具备良好的阅读理解能力。
考生可以通过多读一些经典文学作品和实践阅读题的解答,提高自己的阅读理解水平。
3.多写作练习:作文是语文考试中的重要组成部分,考生需要多进行作文练习,提高自己的写作能力。
2012年普通高等学校招生全国统一考试(辽宁卷)答案与解析数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=UUA B 痧 ( )A .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,6 【测量目标】集合的基本运算.【考查方式】通过列举法给出全集与子集,求两集合的交集. 【难易程度】容易 【参考答案】B 【试题解析】()()U UA B痧即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,()()(){}==7,9U UU A B A B 痧?.2.复数2i=2i -+ ( ) A .34i 55- B .34+i 55 C .41i 5- D .31+i 5【测量目标】复数代数形式的四则运算.【考查方式】给出复数的除法形式,考查复数的代数形式的四则运算.【难易程度】容易 【参考答案】A【试题解析】()()()22i 2i 34i 34===i 2+i 2+i 2i 555----- 3. 已知两个非零向量a,b 满足+=-a b a b ,则下面结论正确 ( ) A .a b B .⊥a bC .=a bD .+=-a b a b【测量目标】向量的线性运算.【考查方式】给出两个非零向量满足的关系式,求两向量的线性关系. 【难易程度】容易 【参考答案】B【试题解析】+=-a b a b ,可以从几何角度理解,以非零向量a,b 为邻边做平行四边形,对角线长分别为,+-a b a b ,若=+-a b a b ,则说明四边形为矩形,所以⊥a b ;也可由已知得22+=-a b a b ,即22222+=+2+=0-∴∴⊥a ab b a ab b ab a b 4. 已知命题()()()()122121:,,0p x x f x f x xx ∀∈--R …,则p ⌝是 ( )A .()()()()122121,,0x x f x f x xx ∃∈--R … B .()()()()122121,,0x x f x f x xx ∀∈--R … C .()()()()122121,,<0x x f x f x xx ∃∈--R D .()()()()122121,,<0x x f x f x xx ∀∈--R【测量目标】简单的逻辑联结词,全称量词与存在量词. 【难易程度】容易【考查方式】给出命题形式求其非命题形式. 【参考答案】C【试题解析】全称命题的否定形式为将“∀”改为“∃”,后面的加以否定,即将“()()()()21210f x f x xx --…”改为“()()()()2121<0f x f x x x --”.5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 ( ) A .33!⨯ B .()333!⨯ C .()43! D .9!【测量目标】排列组合及其应用.【考查方式】给出排列组合的条件,求不同的方案数量. 【难易程度】中等【参考答案】C【试题解析】每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!6. 在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S ( ) A .58 B .88 C .143 D .176 【测量目标】等差数列的性质,等差数列前n 项和.【考查方式】给出等差数列中两项的和,利用等差数列的性质求数列的前几项和. 【难易程度】容易 【参考答案】B【试题解析】4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a 7.已知()sin cos 0,πααα-∈,则tan α= ( ) A .1- B.2-C.2D .1【测量目标】同角三角函数的基本关系.【考查方式】给出sin α与cos α满足的关系,求tan α的值. 【难易程度】容易 【参考答案】A【试题解析】方法一:()sin cos 0,πααα-∈,两边平方得1sin 2=2,α-()sin 2=1,20,2π,αα-∈3π3π2=,=,24ααtan =1α∴- 方法二:由于形势比较特殊,可以两边取导数得cos +sin =0,tan =1ααα∴-8. 设变量,x y 满足100+20015x y x y y -⎧⎪⎨⎪⎩…剟剟,则2+3x y 的最大值为 ( )A .20B .35C .45D .55 【测量目标】二元线性规划求目标函数的最大值.【考查方式】给出不等式组,画出不等式表示的范围,求解目标函数的最值. 【难易程度】容易【参考答案】D【试题解析】如图所示过点()5,15A ,2+3x y 的最大值为55第8题图9. 执行如图所示的程序框图,则输出的S 值是 ( ) A .1- B .23 C .32D .4第9题图【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,最后输出. 【难易程度】容易 【参考答案】D【试题解析】当=1i 时,经运算得2==124S --;(步骤1) 当=2i 时,经运算得()22==213S --;(步骤2) 当=3i 时,经运算得23==2223S -;(步骤3) 当=4i 时,经运算得2==4322S -;(步骤4) 当=5i 时,经运算得2==124S --;(步骤5) 从此开始重复,每隔4一循环,所以当=8i 时,经运算得=4S ;接着=9i 满足输出条件,输出=4S10. 在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段,AC CB 的长,则该矩形面积小于322cm 的概率为 ( ) A .16B .13 C .23D .45【测量目标】几何概型.【考查方式】给出围成长方形的方式,求其面积大于一定值时的概率. 【难易程度】中等 【参考答案】C【试题解析】如图所示,令=,=AC x CB y ,则()+=12>0,y>0x y x ,矩形面积设为S ,则()==1232S xy x x -….解得0<48<12x x 或剟,该矩形面积小于322cm 的概率为82=123第10题图11. 设函数)(x f ()x ∈R 满足()()()(),=2f x f x f x f x -=-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos πg x x x ,则函数()()()=h x g x f x -在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为 ( ) A .5 B .6 C .7 D .8【测量目标】偶函数的性质,函数的周期性,函数零点的求解与判断,函数图象的应用. 【考查方式】给出函数式,求复合函数在某区间上的零点数. 【难易程度】较难 【参考答案】B【试题解析】()(),f x f x -=所以函数)(x f 为偶函数,所以()()()=2=2f x f x f x --,所以函数)(x f 为周期为2的周期函数(步骤一) 且()()0=0,1=1f f ,而()()=c o s πg x x x 为偶函数, 且()1130====0222g g g g ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,在同一坐标系下作出两函数(步骤二)在13,22⎡⎤-⎢⎥⎣⎦上的图象,发现在13,22⎡⎤-⎢⎥⎣⎦内图象共有6个公共点,(步骤三) 则函数()()()=h x g x f x -在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为6.(步骤四)第11题图12. 若[)0,+x ∈∞,则下列不等式恒成立的是 ( ) A .2e 1++xx x …B2111+24x x -…C .21cos 12x x -… D .()21ln 1+8x x x -… 【测量目标】不等式比较大小.【考查方式】给出未知数的范围,判断不等式的正确性. 【难易程度】中等 【参考答案】C【试题解析】验证A ,当332=3e >2.7=19.68>1+3+3=13x 时,,故排除A ;(步骤一) 验证B ,当1=2x,而111113391+===<=22441648484848-⨯⨯,故排除B ;(步骤二)验证C ,令()()()21=cos 1+,=sin +,=1cos 2g x x x g x x x g x x '''---,显然()>0g x ''恒成立 所以当[)0,+x ∈∞,()()0=0g x g ''…,所以[)0,+x ∈∞,()21=cos 1+2g x x x -为增函数,所以()()0=0g x g …,恒成立,故选C ;(步骤三)验证D ,令()()()()()2311=ln 1++,=1+=8+144+1x x x h x x x x h x x x -'--, 令()<0h x ',解得0<<3x ,所以当0<<3x 时,()()<0=0h x h ,显然不恒成立(步骤四)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13. 一个几何体的三视图如图所示,则该几何体的表面积为 .第13题图【测量目标】由三视图求几何体的表面积.【考查方式】给出几何体的三视图,求其表面积. 【难易程度】容易 【参考答案】38【试题解析】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体,中心去除一个半径为1的圆柱,所以表面积为()243+41+31+2π2π=38⨯⨯⨯⨯-14.已知等比数列{}n a 为递增数列,且()2510+2+1=,2+=5n n n a a a a a ,则数列{}n a 的通项公式=n a ____________.【测量目标】等比数列的的通项,等比数列的性质.【考查方式】给出等比数列通项之间满足的关系,求等比数列的通项公式 【难易程度】容易 【参考答案】2n【试题解析】令等比数列{}n a 的公比为q ,则由()+2+12+=5n nn a a a 得,222+2=5,25+2=0q q q q -,解得1=22q q =或,(步骤一) 又由2510=a a 知,()24911=a qa q ,所以1=a q ,(步骤二)因为{}n a 为递增数列,所以1==2a q ,=2n n a (步骤三)15. 已知,P Q 为抛物线2=2x y 上两点,点,P Q 的横坐标分别为4,2-,过,P Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 .【测量目标】直线与抛物线的位置关系.【考查方式】给出抛物线方程,求抛物线上两点的切线交点的纵坐标. 【难易程度】容易 【参考答案】4- 【试题解析】21=,=2y x y x ',所以以点P 为切点的切线方程为=48y x -,以点Q 为切点的切线方程为=22y x --,联立两方程的=1y=4x ⎧⎨-⎩16. 已知正三棱锥P ABC -,点,,,PABC若,,PA PB PC 两两相互垂直,则球心到截面ABC 的距离为 . 【测量目标】正三棱锥的性质.【考查方式】通过球内接正三棱锥的性质,求球心到截面的距离.【参考答案】3【试题解析】如图所示,O 为球心,'O 为截面ABC 所在圆的圆心,令===PA PB PC a ,,,PA PB PC 两两相互垂直,==AB BC CA ,(步骤一)所以'=3CO a ,'=3PO a ,22+=333a ⎛⎛⎫ ⎪ ⎪⎝⎝⎭,解得=2a ,(步骤二)所以PO a ,OO (步骤三)第16题图三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,角,,A B C 的对边分别为,,a b c ,角,,A B C 成等差数列. (1)求cos B 的值;(2)边,,a b c 成等比数列,求sin sin A C 的值【测量目标】利用正余弦定理解决有关角度问题.【考查方式】通过角成等差,求角的余弦值;在给出边成等比数列,求两角正弦的乘积. 【难易程度】容易【试题解析】(1)由已知π12=+,++=π,=,cos =32B AC A B C B B ∴(步骤一) (2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A CB (步骤二)解法二:2=b ac ,222221++=cos ==222a c b a c acB ac ac--,由此得22+=,a c ac ac -得=a c (步骤二)所以π===3A B C ,3sin sin =4A C (步骤三) 18. (本小题满分12分)如图,直三棱柱'''ABC A B C -,=90BAC ∠,=='AB AC AA λ,点,M N 分别为'A B 和''B C 的中点(1)证明:''MNAACC 平面 ;(2)若二面角'--A MN C 为直二面角,求λ的值第18题图【测量目标】线面平行的判定,二面角,空间直角坐标系,空间向量及其运算. 【考查方式】给出线段的关系,用线线平行推导线面平行,根据二面角为之二面角求未知数. 【难易程度】中等 【试题解析】(1)连结','AB AC ,由已知=90,=BAC AB AC ∠ 三棱柱-'''ABC A B C 为直三棱柱,所以M 为'AB 中点.又因为N 为''B C 中点(步骤一) 所以'MN AC ,又MN ⊄平面''A ACC'AC ⊂平面''A ACC ,因此''MN AACC 平面 (步骤二)(2)以A 为坐标原点,分别以直线,,'AB AC AA 为x 轴,y 轴,z 轴建立直角坐标系-O xyz ,如图所示,设'=1,AA 则==AB AC λ,于是()()()()()()0,0,0,,0,0,0,,0,'0,0,1,',0,1,'0,,1A B C A B C λλλλ, 所以1,0,,,,12222M N λλλ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,(步骤三) 设()111=,,x y z m 是平面'A MN 的法向量,由'=0,=0A M MN ⎧⎪⎨⎪⎩ m m 得11111=0221+=022x z y z λλ⎧-⎪⎪⎨⎪⎪⎩,可取()=1,1,λ-m (步骤四)设()222=,,x y z n 是平面MNC 的法向量,由=0,=0NC MN ⎧⎪⎨⎪⎩ n n 得22222+=0221+=022x y z y z λλλ⎧--⎪⎪⎨⎪⎪⎩,可取()=3,1,λ--n (步骤五) 因为'--A MN C 为直二面角,所以()()2=0,3+11+=0λ--⨯- 即m n,解得λ(步骤六)第18题图19. (本小题满分12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图: 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷“22⨯抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷“人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X附:()21122122121+2++1+2=n n n n n n n n n χ-,第19题图【测量目标】频率分布直方图,用样本估计总体,离散型随机变量的期望与方差.【考查方式】通过频率分布直方图,完成联表,判断相关性;给出随机抽样的方式求分布列期望与方差.【难易程度】中等 【试题解析】22⨯将列联表中的数据代入公式计算,得()()221122122121+2++1+210030104515100=== 3.0307525455533n n n n n n n n n χ-⨯⨯-⨯≈⨯⨯⨯(步骤一)因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.(步骤二) 由题意13,4X B ⎛⎫ ⎪⎝⎭,从而X 的分布列为()==3=44E X np ⨯,()()=1=3=4416D X np p -⨯⨯.(步骤三)20. (本小题满分12分)如图,椭圆()22022:+=1>b>0,,x y C a a b a b为常数,动圆222111:+=,<<C x y t b t a .点12,A A 分别为0C 的左、右顶点,1C 与0C 相交于,,,A B C D 四点(1)求直线1AA 与直线2A B 交点M 的轨迹方程;(2)设动圆22222:+=C x y t 与0C 相交于',',','A B C D 四点,其中2<<b t a ,12t t ≠.若矩形ABCD 与矩形''''A B C D 的面积相等,证明:2212+t t 为定值第20题图【测量目标】圆锥曲线中的轨迹问题,圆锥曲线中的定值问题.【考查方式】给出椭圆与动圆的函数表达式,求其上两直线交点的轨迹方程;再根据两动圆形成的矩形面积相等,证明两未知数的平方之和为定值. 【难易程度】较难 【试题解析】(1)设()()1111,,,A x y B x y -,又知()()12,0,,0A a A a -,则 直线1A A 的方程为 ()11=++y y x a x a① 直线2A B 的方程为()11=y y x a x a--- ②(步骤一) 由①②得 ()22221221=y y x a x a--- ③(步骤二) 由点()11,A x y 在椭圆0C 上,故可得221122+=1x y a b ,从而有222112=1x y b a ⎛⎫- ⎪⎝⎭,代入③得()2222=1<,<0x y x a y a b--(步骤三)(2)证明:设()22',A x y ,由矩形ABCD 与矩形''''A B C D 的面积相等,得2222112211224=4,=x y x y x y x y ∴,因为点,'A A 均在椭圆上,所以2222221212221=1x x b x b x a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭(步骤四)由12t t ≠,知12x x ≠,所以22212+=x x a .(步骤五)从而22212+=y y b ,因而222212+=+t t a b 为定值(步骤六) 21. (本小题满分12分)设()()()=ln +1+,,,f x x ax b a b a b ∈R 为常数,曲线()=y f x 与直线3=2y x 在()0,0点相切.(1)求,a b 的值;(2)证明:当0<<2x 时,()9<+6xf x x 【测量目标】导数的几何意义,均值不等式,利用导数解决不等式问题.【考查方式】通过曲线与直线相切求函数表达式中未知数;再限定x 的定义域证明不等式. 【难易程度】较难 【试题解析】(1)由()=y f x 的图象过()0,0点,代入得=1b - 由()=y f x 在()0,0处的切线斜率为32,又=0=013'==++12x x y a a x ⎛⎫⎪⎝⎭,得=0a (步骤一)(2)(证法一)由均值不等式,当>0x 时,+1+1=+2xx +12x(步骤二)记()()9=+6xh x f x x -, 则()()()()()22215454+654=<+14+1+6+6+6x h x x x x x x '-- ()()()()32+6216+1=4+1+6x x x x -,(步骤三) 令()()()3=+6216+1g x x x -,则当0<<2x 时,()()2=3+6216<0g x x '-因此()g x 在()0,2内是减函数,又由()0=0g ,得()<0g x ,所以()<0h x '(步骤四) 因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,于是当0<<2x 时,()9<+6xf x x (步骤五) (证法二)由(1)知()()=ln +1+1f x x ,由均值不等式,当>0x 时,+1+1=+2x x,故+12x(步骤一)令()()=ln +1k x x x -,则()()10=0,'=1=<0+1+1xk k x x x --,故()<0k x ,即()l n +1<x x ,由此得,当>0x 时,()3<2f x x ,记()()()=+69h x x f x x -,(步骤二) 则当0<<2x 时,()()()()()31=++69<++692+1h x f x x f x x x x ⎛''-- ⎝()()()(()()()()()11=3+1++618+1<3+1++63+18+12+12+12x x x x x x x x x x x ⎡⎤⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦()()=718<04+1xx x -(步骤三)因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,即()9<+6xf x x (步骤四) 22. (本小题满分10分)选修4-1:几何证明选讲如图,O 和'O 相交于A ,B 两点,过A 作两圆的切线分别交两圆于,C D 两点,连结DB 并延长交O 于点E .证明:(1)=AC BD AD AB ; (2)=AC AE第22题图【测量目标】圆的性质的应用. 【考查方式】给出两圆中直线位置关系,证明直线的比例关系. 【难易程度】中等 【试题解析】 证明:(1)由AC 与O 相切于A ,得=CAB ADB ∠∠,同理=ACB DAB ∠∠,(步骤一)所以ACB DAB △∽△.从而=AC ABAD BD,即=AC BD AD AB (步骤二) (2)由AD 与O 相切于A ,得=A E D B A D ∠∠,又=A D E B D A ∠∠,得EA D AB D △∽△(步骤三)从而=AE ADAB BD,即=AE BD AD AB ,(步骤四) 综合(1)的结论,=AC AE (步骤五)23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆221:+=4C x y ,圆()222:2+=4C x y -(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆12,C C 的极坐标方程,并求出圆12,C C 的交点坐标(用极坐标表示)(2)求圆1C 与圆2C 的公共弦的参数方程【测量目标】极坐标与参数方程.【考查方式】给出直角坐标系下两圆的方程,求极坐标方程,并求出两圆公共弦的参数方程. 【难易程度】容易 【试题解析】圆1C 的极坐标方程为=2ρ,圆2C 的极坐标方程为=4cos ρθ,(步骤一) 解=2=4cos ρρθ⎧⎨⎩得π=2,=3ρθ±,故圆1C 与圆2C 交点的坐标为ππ2,,2,33⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭(步骤二)注:极坐标系下点的表示不唯一(2)(解法一)由=cos =sin x y ρθρθ⎧⎨⎩,得圆1C 与圆2C 交点的直角坐标为((,1,故圆1C 与圆2C 的公共弦的参数方程为=1=x t y t⎧⎨⎩(或参数方程写成=1=x y y y ⎧⎨⎩(步骤三) (解法二) 将=1x 代入=cos =sin x y ρθρθ⎧⎨⎩,得cos =1ρθ,从而1=cos ρθ(步骤三)于是圆1C 与圆2C 的公共弦的参数方程为=1ππ=tan 33x y θθ⎧-⎨⎩剟(步骤四) 24. (本小题满分10分)选修4-5:不等式选讲已知()()=+1f x ax a ∈R ,不等式()3f x …的解集为{}21x x -剟(1)求a 的值 (2)若()22x f x f k ⎛⎫-⎪⎝⎭…恒成立,求k 的取值范围 【测量目标】不等式恒成立问题.【考查方式】给出不等式的函数表达式及其解集,求函数式中的未知数;给出不等关系求k 的取值范围.【难易程度】中等 【试题解析】(1)由+13ax …得42ax -剟,又()3f x …的解集为{}21x x -剟,所以当0a …时,不合题意当>0a 时,42x a a-剟,得=2a (步骤一) (2)记()()=22x h x f x f ⎛⎫- ⎪⎝⎭,则()1,11=43,1<<211,2x h x x x x ⎧⎪-⎪⎪----⎨⎪⎪--⎪⎩……,所以()1h x …,因此1k …(步骤二)。
1、在下面一段话空缺处依次填入词语,最恰当的一组是(3分)书是整个人类的记忆。
没有书,也许历史还在混沌未开的蒙昧中。
读书,让绵延的时光穿越我们的身体,让几千年来的智慧在我们每一个人的血液里汩汩流淌。
读书,不仅需要的精神,还需要懂得快慢精粗之分。
A.徘徊积聚宵衣旰食 B.徘徊积淀废寝忘食C.踟蹰积淀宵衣旰食 D.踟蹰积聚废寝忘食2、在画线处填上适当的关联词。
(3分)宋祁的“红杏枝头春意闹”,“闹”字①写出浓浓春意,②把视觉与听觉结合在一起写出了场面感。
李清照的“此情无计可消除,才下眉头,却上心头”,一般人可能都经历过,③,④,像李清照这样的高手⑤能传神地将这精微的心理描写出来。
答:①②③④⑤3、下列各句中,加点的词语使用恰当的一句是(3分)A.于敏院士在我国首颗氢弹的成功研制上功勋卓著,然而他淡泊名利,婉拒“氢弹之父”的称号,其人品胸襟,令人高山仰止。
B.在东海舰队组织的此次实战演练中,我军的反水雷舰艇倾巢而出,成功扫除了“敌军”在航道上隐蔽布设的多枚新型水雷。
C.某些管理机构缺乏“大数据思维”,以邻为壑,不与相关机构共享信息资源,公共数据中心的建设将有助于改变这种状况。
D.现代舞剧《十面埋伏》,以其色彩浓重的舞台背景,风格鲜明的京剧音乐以及刚柔相济的舞者形体,一举征服了现场观众。
4、下列各组词语中,加点字的注音全都正确的一组是A.缜(shèn)密感喟(kuì)紫蔷薇(wēi)暗香盈(yínɡ)袖B.镶(xiānɡ)嵌驰骋(chěnɡ)栀(zhī)子花逸兴遄(chuán)飞C.热忱(chén)别(bié)扭康乃馨(xīn)积微成著(zhù)D.菜肴(yáo)酣(hān)畅蒲(pú)公英春风拂(fó)面5、下列各句中,没有语病的一项是A.只有当促进艺术电影繁荣成为社会共识,从源头的创作方到末端的受众方的各环节都得到强有力的支持,艺术电影才能真正实现飞跃。
2012年普通高等学校招生全国统一考试(辽宁卷)数学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
(1)已知向量a = (1,—1),b = (2,x ).若a b ∙ = 1,则x = (A) —1 (B) —12 (C) 12(D)1 【命题意图】本题主要考查向量的数量积,属于容易题。
【解析】21,1a b x x ⋅=-=∴=,故选D(2)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则 ()()U U C A C B ⋂=(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U {7,9}。
故选B 【解析二】 集合)()(B C A C U U 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
(3)复数11i=+(A)1122i - (B)1122i + (C) 1i - (D) 1i + 【答案】A 【解析】11111(1)(1)222i i ii i i --===-++-,故选A 【点评】本题主要考查复数代数形式的运算,属于容易题。
1、下列各句中,加点的词语运用不正确的一项是()
A.在席卷全球的金融危机中,连那些科班出身的经济学博士都被赶出华尔街,到地铁卖热狗去了,何况他这个半路出家的?
B.在外打拼数十年后,他回到了家乡,用省吃俭用的结余捐建了一所希望小学,为发展当地的教育事业奉献了拳拳爱心。
C.长期以来,杀虫剂、除草剂、增效剂等各种农药所导致的污染,严重侵害着与农业、农村、农民息息相关的城市环境与市民生活。
D.在热心公益蔚然成风的今天,百名青年在某市首届成人礼活动中,以无偿献血作为自己成长的见证,体现了当代青年的责任感。
2、下列各句中,加点的词语使用恰当的一句是(3分)
A.于敏院士在我国首颗氢弹的成功研制上功勋卓著,然而他淡泊名利,婉拒“氢弹之父”的称号,其人品胸襟,令人高山仰止。
B.在东海舰队组织的此次实战演练中,我军的反水雷舰艇倾巢而出,成功扫除了“敌军”在航道上隐蔽布设的多枚新型水雷。
C.某些管理机构缺乏“大数据思维”,以邻为壑,不与相关机构共享信息资源,公共数据中心的建设将有助于改变这种状况。
D.现代舞剧《十面埋伏》,以其色彩浓重的舞台背景,风格鲜明的京剧音乐以及刚柔相济的舞者形体,一举征服了现场观众。
3、下面语段中画线的词语,使用不恰当的一项是
石钟山上那些错落有致的奇石以及记载着天下兴衰的石刻令人叹为观止。
石钟山的名字也叫得奇,围绕这一名字的由来,人们开展了激烈的争论。
卷入这场争论的,有名扬四海的文人墨客,也有戎马倥偬的赳赳武夫,还有名不见经传的山野村人。
无论结果如何,不容置喙的是,石钟山因此更加有名了。
A.叹为观止 B.戎马倥偬 C.名不见经传 D.不容置喙
4、下列词语中,字形和加点字的读音全都正确的一组是
A.亲和力声名鹊起闹别(biâ)扭称(chēng)心如意
B.倒胃口皇天后土瞭(liǎo)望哨金蝉脱壳(qiào)
C.哈蜜瓜明眸皓齿撑(chēng)场面姹(chà)紫嫣红
D.敞篷车异彩纷呈差(chà)不多白雪皑皑(ái)
5、阅读下文,完成22—26题。
(12分)
治学
(东汉)徐幹
①昔之君子成德立行,身没而名不朽,其故何□?学也。
②学也者,所以疏神达思,怡情理性,圣人之上务也。
民之初载,其矇未知。
譬如宝在于玄室①,有所求而不见,白日照焉,则群物斯辩矣。
学者,心之白日也。
③学犹饰也,器不饰则无以为美观,人不学则无以有懿德。
有懿德,故可以经人伦;为美观,故可以供神明。
④夫听黄钟之声,然后知击缶之细;视衮龙之文,然后知被褐之陋;涉庠序之教,然后知不学之困。
故学者如登山焉,动而益高;如寤寐焉,久而愈足。
顾所由来,则杳然其远,以其难而懈之,误且非矣。
⑤倚立而思远,不如速行之必至也;矫首而徇飞,不如修翼之必获也;孤居而愿智,不如务学之必达也。
故君子心不苟愿,必以求学;身不苟动,必以从师;言不苟出,必以博闻。
⑥君子之于学也,其不懈,犹上天之动,犹日月之行,终身亹亹②,没而后已。
故虽有其才而无其志,亦不能兴其功也。
志者,学之帅也;才者,学之徒也。
学者不患才之不赡,而患志之不立。
是以为之者亿兆,而成之者无几,故君子必立其志。
【注】①玄室:暗室。
②亹亹:勤勉不倦的样子。
22、可填入第①段方框处的虚词是()(1分)
A、兮
B、哉
C、夫
D、矣
23、第②段使用了比喻论证的手法,请结合该段内容加以分析。
(3分)
24、对第④段画线句理解正确的一项是()(2分)
A、治学不能因为目标过远而松懈。
B、人疏于学习,会犯错而招来批评。
C、治学要回顾走过的路,并加以总结。
D、人不能因为害怕困难而放松学习。
25、赏析第⑤段运用整句的表达效果。
(3分)
26、分析第⑥段作者论述治学的思路。
(3分)。