TD-LTE网络优化介绍
- 格式:docx
- 大小:38.79 KB
- 文档页数:15
TDD_LTE无线网络优化案例一、浦东大道福山路道路优化案例1. 测试环境【路测设备】:JDSU W1314A—E01 Receiver【路测软件】:JDSU E6474A-X【测试路段】:浦东大道、源深路及福山路周边路段【测试环境】:从前期的测试中发现在浦东大道福山路附近路段存在弱覆盖情况,SINR在道路上分布不满足测试需求,通过RF手段进行优化后进行前后对比。
图1浦东大道福山路附近无线环境图浦东大道福山路周边无线环境图中看出,该区域由密集居民区、高层商务写字楼、厂房及学校组成,浦东大道北侧无线环境良好,南侧道路两旁有较多建筑,对无线信号有较强的阻挡,周边主要由利男居、浦福昌、钱栖站点覆盖周边道路。
2. 优化前覆盖情况图2浦东大道福山路优化前RSRP覆盖图图3浦东大道福山路优化前CINR覆盖图从优化前的测试数据中看出浦东大道福山路附近路段RSRP值主要在-90dbm左右,但是CINR覆盖较差,浦东大道福山路至源深路之间普遍在15dB以下,不能满足道路覆盖要求,该路段主要由利男居站点覆盖,但是从该站RSRP分布情况看出,该站在浦东大道上没有出现强信号,考虑对该站重点优化。
3. 优化思路及方案图4利男居站点平面图利男居各小区照片问题路段主覆盖站点为利男居,该站点位于浦东大道44号林顿酒店7楼,天馈采用抱杆安装,挂高24米,从利男居站点各小区安装位置中看出,该站3个小区天馈周边都有阻挡物,而按照当前设计方位角,利男居_1小区的天线方位角0°,在浦东大道上是旁瓣信号覆盖,而利男居_3小区天线方位角240°覆盖方向也存在自身楼面建筑的阻挡,从而得出浦东大道该站点信号偏弱的原因,通过实际情况看中看出,利男居_1小区50°方向角有自身建筑的阻挡,往该方向调整不但不能改善浦东大道的覆盖,反而会使得信号反射而出现在背面区域,于是考虑将利男居_1调整为280°、根据挂高计算出该小区下倾调整为2°覆盖效果为最佳;利男居_2主覆盖方向由两栋高楼阻挡,导致在源深路段覆盖较差,由于建筑的阴影效果通过调整天馈是无法改善覆盖,建议该小区调整为50°来覆盖浦东大道东侧路段、利男居_3当前信号阻挡明显,调整为180°可以很好的避开阻挡物,达到最佳的覆盖效果,同时为了改善福山路近浦东大道覆盖,调整浦福昌2、钱栖1小区天馈来避免由于利男居下倾角增大后出现的弱覆盖路段,综合路测情况分析,得出具体调整方案如下:SiteNameCN CellNameCN初始值调整后Height azimuth MDownTilt azimuth MDownTilt利男居利男居_1240—22802利男居_224170050—4利男居_3242403180-4浦福昌浦福昌_121030—4浦福昌_2211001110-1浦福昌_3212401240—4钱栖钱栖_1270230—4钱栖_2271207120—4钱栖_3272402240—24. 优化后覆盖情况图5浦东大道福山路优化后RSRP覆盖图图6浦东大道福山路优化后CINR覆盖图图7浦东大道福山路优化后CELL_Identity分布图5. 优化小结从优化后的测试数据中看出,利男居_1、2小区在浦东大道上RSRP有较大幅度的提升,其主覆盖方向CINR基本能达到30的极好点,浦福昌2小区在昌邑路福山路良好,钱栖1小区天馈调整后在福山路近浦东大道信号也有所提升,从调整后的整体效果中看出,此次优化达到优化目的,当前浦东大道福山路段信号覆盖良好,各小区信号分布合理,信号满足道路覆盖指标要求。
解析TD—LTE无线网络规划设计与优化方法摘要:随着科技水平的不断发展,LD—LTE网络己经成为人们生活中密不司分的一部分,因此相关部门必须加强重视。
鉴于此,本文就TD—LTE无线网络规划设计与优化方法进行分析。
关键词:TD—LTE无线网络;规划设计;优化方法1、TD—LTE无线网络概述随着人们对于移动通信要求的不断提升,TD—LTE技术的设计水平也有一定程度的提升。
目前设计的TD—LTE所具有的宽带配置较为灵活,其支持的带宽有1.4MHZ,3MHZ,10MHZ,20MHZ等多种类型,在20MHZ带宽的条件下,TD—LTE的最大速率能够达到100Mbit/S,上行速率也能够达到50Mbit/s;控制面延迟时间能够控制在100ms内,用户面的延时时间甚至能够控制在5ms之内,这对于用户体验满意度的保证有着重要意义。
此外,TD—LET无线网络能够为用户提供100kbit/S的接入服务,但是提供此项服务的前提是用户的速度要大于350km/h。
此外,TD—LET网络的构建也能够使得CS域被取消,并让CS域的业务能够在PS 域内实现,这在一定程度日吏得系统建构被简化,对于建网成本的进一步降低有着一定的积极意义。
现阶段,TD—LTE产业链己经具备了端到端产品的能力,但是其在网络设备以及终端芯片等内容上还存在不足,因此,相关部门必须加强优化与开发。
2、TD—LTE无线网络规划设计2.1PCI规划对LTE物理小区进行PCI的标示能够为终端对不同小区无线信号的区分提供依据与便利,因此在对PCI进行规划的过程中要确保每一个小区的覆盖区域的PCI 的唯一性,并且相近区域所采用的标识PCI类型不能相同,这对于PCI作用的发挥有着极大的意义。
在进行PCI规划的过程中要遵循简单、清晰以及容易扩展等目标,并在进行PCI规划的过程中,同一个PCI组所含有的PCI必须来自同一站点,相邻站点的PCI应该划分到不同PCI组别内,这对于终端对无线信号的识别精确性的保证极为重要。
TD―LTE与TD―SCDMA协同网络优化策略就一般情况而言,网络结构对TD-LTE网络质量的影响是非常大的,若只是在原有的基础之上进行一些简单的升级,并不能改善这一问题。
基于这种情况,本文提出了一种协同网络优化方法,这种方法可以有效解决TD-SCDMA和TD-LTE的网络问题,主要研究内容包括协同优化可行性分析、TD-S/L协同优化模型以及协同网络优化实施方案等3个方面。
随着时代的不断变化,移动互联网应用的发展可谓是日新月异,因而在移动互联网基础之上所进行的数据业务的发展速度也是非常迅速。
就我国而言,中国移动所使用的是TD-SCDMA网络,且使用的时间也相对比较长,经过不断完善该网络已经发展得很好了,因此对于数据业务而言可以承担起分流的重任了。
TD-LTE是一种4G技术,它是最近几年发展起来的,具有更加优良的性能,比如更高的运行速率和更短的时延等等,因此将它运用到数据业务中,可以提高其服务能力,更大限度地满足人们的需求[1]。
协同优化可行性分析就现阶段而言,中国移动所建设的TD-SCDMA基站数量是非常庞大的,基本上达到了30万,而TD-LTE基站的数量相对要少一点点,但其数量也是非常庞大,两种基站的数量比基本达到了1:1[2]。
就TD-SCDMA和TD-LTE的特性而言,两者还是比较相似的,首先两者频段区域基本一致;然后两者在进行传播时,其效率也是相差不多的;最后两者在进行工作时所覆盖的区域面积也是差不多的,同时对天线下倾角的需求也是差不多的。
从这里可以看出TD-SCDMA 和TD-LTE的某些特性是非常相似的,因此两者所进行协同优化的可能性非常大,且成功率也相对较高。
TD-S/L?f同优化模型TD-SCDMA和TD-LTE协同优化是一个非常复杂的过程,虽然两者的特性非常相似,但是要进行协同优化则需要进行一系列的工作。
TD-SCDMA和TD-LTE在频段区域、传播效率覆盖面积和天线下倾角等方面是相似的,但是还是存在些许的差别,因此需要先进行等效处理,才能保证协同优化的顺利进行。
For personal use only in study and research;not for commercial useTD-LTE网络优化项目工作思路TD-LTE网络优化流程TD-LTE网络优化包括优化项目启动、单站验证、RF优化、KPI优化和网络验收等环节。
单站验证是指保证每个小区的正常工作,验证内容包括正常接入、好中差点吞吐量在正常范围。
RF优化用于保证网络中的无线信号覆盖,并解决因RF原因导致的业务问题。
RF优化一般以簇为单位进行优化,RF优化主要参考路测数据,RF分区优化时,各个区域之间的网络边缘也需要关注和优化。
KPI优化包括对路测数据的分析和对话统数据的分析,用于弥补RF优化时没有兼顾的无线网络问题。
通过KPI优化,解决网络中存在的各种接入失败、掉线、切换失败等与业务相关的问题。
TD-LTE和2G/3G网络优化的比较TD-LTE网络优化与2G/3G优化思想相通,同样关注网络的覆盖、容量、质量等情况,通过覆盖调整、干扰调整、参数调整、故障处理等各种网络优化手段达到网络动态平衡,提高网络质量,保证用户感知。
TD-LTE与2G/3G系统不同,导致系统优化中重选、接入、切换等各种过程涉及参数不同。
TD-LTE系统的干扰与2G/3G系统的干扰来源也有较大不同,需要通过不同手段规避。
TD-LTE的小区容量会随着小区覆盖增大逐步减小,优化需关注覆盖与容量间的平衡。
LTE性能严重依赖于SINR,吞吐量会随SINR变差迅速降低。
由于同频组网,为提高LTE 性能,主服务区范围比2G/3G要求更严格。
TD-LTE网络优化内容TD-LTE优化内容主要包括PCI优化、干扰排查、覆盖优化、邻区优化、系统参数优化。
PCI优化PCI干扰容易出现掉线、下载速率慢等问题。
PCI优化需要遵循以下三大原则:PCI复用至少间隔4层以上小区,大于5倍的小区半径;同一个小区的所有邻区列表中不能有相同的PCI;邻区导频位置尽量错开,即相邻小区模3后的余数不同。
中国移动TD-LTE无线参数设置指导优化手册-烽火分册(征求意见稿)目录1. 前言 (3)1.1 目的 (3)1.2 读者对象 (3)1.3 内容组织 (3)2. 基站功能配置 (4)3. S1AP与X2AP配置 (4)4. 有线承载配置 (4)5. 小区基本参数 (5)6. 相邻小区配置参数 (5)7. 小区资源配置参数 (6)8. 小区定时器配置参数 (7)9. 小区选择与重选参数 (7)10. 小区接入控制参数 (8)11. 小区功率控制参数 (8)12. 无线资源管理参数 (9)13. 测量与切换参数 (10)14. SON参数 (10)15. 设备管理参数 (11)16. 《LTE无线网优参数集》 (11)17. 《TD-LTE无线参数指导优化手册》 (12)1.前言1.1目的本文主要介绍了烽火TD-LTE系统R3.2版本的各个专题的相关参数,对参数进行介绍和分析,旨在帮助读者理解和使用系统中的参数,提高系统性能。
1.2读者对象本手册适用于TD-LTE系统的基本概念有一定认识的中国移动公司内部工程师。
1.3内容组织本手册是基于TD-LTE产品R3.2版本的参数介绍,其内容组织如下:第一章:对本手册的目的,读者对象,内容组织进行介绍。
第二章:基站功能配置:介绍基站级基本参数的配置方法。
第三章:S1AP与X2AP配置:介绍S1AP与X2AP协议相关参数的配置方法。
第四章:有线承载配置:介绍S1接口、X2接口IP层、传输层相关参数的配置方法。
第五章:小区基本参数:介绍小区级基本无线参数的配置方法。
第六章:相邻小区配置参数:介绍各小区的相邻LTE、TD-SCDMA、GSM小区参数的配置方法。
第七章:小区资源配置参数:介绍小区内个物理信道相关参数的配置方法。
第八章:小区定时器配置参数:介绍小区内最重要的定时器和计数器参数的配置方法。
第九章:小区选择与重选参数:介绍空闲模式下小区选择与重选参数的配置方法。
TD-LTE试验网优化案例2013年12月目录1概述 (1)2D频段优化案例 (1)2.1重叠覆盖优化 (1)2.2PCI优化 (3)2.3邻区列表优化 (5)2.4切换优化 (7)2.4.1切换参数优化 (7)2.4.2同步参数与切换 (9)2.5功控参数优化 (12)2.6天面问题整改 (14)2.6.1天线抱杆 (14)2.6.2楼层阻挡 (16)2.7干扰问题排查 (18)3F频段优化案例 (20)1 概述TD-LTE无线网络要实现系统的高性能指标, 需要有合理的网络规划设计、稳定的产品性能、良好的施工工艺以及高质量的网络优化,几者缺一不可。
本报告收录了XX市TD-LTE试验网建网以来遇到的一些典型优化案例,旨在为后续优化工作提供帮助和参考。
2 D频段优化案例2.1 重叠覆盖优化【问题描述】在华兴街靠近中和路区域测试时,UE驻留在华安证券_3(频点:38050,PCI:88),RSRP: -71dBm左右,SINR:25dB左右,但DL Throughput=31Mbps。
【问题分析】分析路测数据,发现在华兴街靠近中和路的区域,华安证券_2、华安证券_3小区RSRP电平值较接近,如上图所示,对该路段形成了重叠覆盖。
而该区域规划的主覆盖小区为华安证券_3,现场勘察发现,华安证券_2信号经周边楼宇反射至该区域,2、3小区形成重叠覆盖,造成吞吐速率降低。
【解决措施】调整华安证券_2方位角由120°调至155°,机械下倾角由12°调至6°。
【处理效果】调整小区方位角后,重叠覆盖问题得到较好解决,下载速率明显提升。
2.2 PCI优化【问题描述】在九华中路测试中,UE驻留在新都快捷酒店_1(频点:38050,PCI:51),RSRP:-74dbm左右,SINR:5db左右,下载速率:7Mbps左右。
【问题分析】分析路测数据,覆盖该路段的小区为新都快捷酒店_1和盛峰商贸_3,二者的PCI分别为51和18,经计算,两小区间存在模三冲突。
T D-L T E网络性能K P I(切换成功率)优化手册work Information Technology Company.2020YEARTD-LTE网络性能KPI(切换成功率)优化手册1切换成功率定义说明1.1指标公式1.2COUNTER定义1.2.1集团规范定义1、eNB间S1切换出请求次数:源eNB向MME发送的“切换请求”消息(HANDOVER REQUIRED)(3GPP TS 36.413),指示eNB间通过S1接口的切换出准备请求。
向不同小区发送的同一切换准备请求,需要重复统计。
2、eNB间S1切换出成功次数:源eNB收到MME发送的“UE上下文释放命令”消息(UE CONTEXT RELEASE COMMAND)(3GPP TS 36.413),指示eNB间通过S1接口的切换出执行成功。
3、eNB间X2切换出请求次数:源eNB向目标eNB发送的“切换请求”消息(HANDOVER REQUEST)(3GPP TS 36.423),指示eNB间通过X2接口的切换出准备请求。
向不同小区发送的同一切换准备请求,重复统计。
4、eNB间X2切换出成功次数:源eNB收到目标eNB发送的“UE上下文释放”消息(UE CONTEXT RELEASE)(3GPP TS 36.423),指示eNB间通过X2接口的切换出执行成功。
5、eNB内切换出请求次数:eNB向UE发送携带mobilityControlInfo 的“RRC连接重配置”消息(RRCConnectionReconfiguration),指示eNB内小区间切换出请求。
(3GPP TS 36.331)6、eNB内切换出成功次数:eNB收到UE发送的“RRC连接重配置完成”消息(RRCConnectionReconfigurationComplete),指示eNB内小区间切换出成功。
(3GPP TS 36.331)1.2.2NSN映射1、eNB间S1切换出请求次数:M8014C14:INTER_ENB_S1_HO_PREP,The number of Inter eNB S1-based Handover preparations;2、eNB间S1切换出成功次数:M8014C19:INTER_ENB_S1_HO_SUCC,The number of successful Inter eNB S1-based Handover completions;3、eNB间X2切换出请求次数:M8014C0:INTER_ENB_HO_PREP,The number of Inter-eNB X2-based Handover preparations. The Mobility management (MM) receives a listwith target cells from the RRM and decides to start an Inter-eNB X2-based Handover;4、eNB间X2切换出成功次数:M8014C7:SUCC_INTER_ENB_HO,The number of successful Inter-eNB X2-based Handover completions;5、eNB内切换出请求次数:M8009C6:ATT_INTRA_ENB_HO,The number of Intra-eNB Handoverattempts;6、eNB内切换出成功次数:M8009C7:SUCC_INTRA_ENB_HO,The number of successful Intra-eNB Handover completions;1.3信令统计点1.3.1eNB间S1切换统计点关系:M8014C14 = M8014C15 + M8014C16 + M8014C17 + M8014C18M8014C18 = M8014C19 + M8014C20(注:现网实际数据对不上)1、M8014C14:INTER_ENB_S1_HO_PREPUpdated: This counter is updated following the transmission of an S1AP:HANDOVER REQUIRED message from the source eNB to the MME if this message prepares an Inter eNB Handover.2、M8014C15:INTER_S1_HO_PREP_FAIL_TIMEUpdated: This counter is updated at the expiry of the guarding timer TS1RELOCprep if the timer was started because of the preparation of an Inter eNB Handover.3、M8014C16:INTER_S1_HO_PREP_FAIL_NORRUpdated: This counter is updated following the reception of anS1AP: HANDOVER PREPARATION FAILURE message from MME to source eNB with cause "No Radio Resources Available in Target Cell" if this message is received in response to the preparation of an Inter eNB Handover.4、M8014C17:INTER_S1_HO_PREP_FAIL_OTHERUpdated: The number of failed Inter eNB S1-based Handover preparations due to the reception of an S1AP: HANDOVER PREPARATION FAILURE message with a cause other than "No Radio Resources Available in Target Cell."5、M8014C18:INTER_ENB_S1_HO_ATTUpdated: This counter is updated following the reception of anS1AP: HANDOVER COMMAND message from the MME to the source eNB in case that this message is received in response to the preparation of an Inter eNB Handover.6、M8014C19:INTER_ENB_S1_HO_SUCCUpdated: This counter is updated following the reception of anS1AP: UE CONTEXT RELEASE COMMAND message from the MME to the source eNB with the cause value Radio Network Layer (Successful Handover) in case that this message is received for an Inter eNB Handover.7、M8014C20:INTER_ENB_S1_HO_FAILUpdated: This counter is updated following the expiry of the guarding timer TS1RELOCoverall in case that this timer was started because of an Inter eNB Handover.1.3.2eNB间X2切换Counter Counter ID NetAct nameeNB间X2切换请求次数M8014C0 INTER_ENB_HO_PREPeNB间X2切换目标小区准备失败次数M8014C2 FAIL_ENB_HO_PREP_TIME M8014C3 FAIL_ENB_HO_PREP_ACM8014C5 FAIL_ENB_HO_PREP_OTHEReNB间X2切换尝试次数M8014C6 ATT_INTER_ENB_HOeNB间X2切换成功次数M8014C7 SUCC_INTER_ENB_HOeNB间X2切换失败次数M8014C8 INTER_ENB_HO_FAIL统计点关系:M8014C0 = M8014C2 + M8014C3 + M8014C5 + M8014C6M8014C6 = M8014C7 + M8014C8(注:现网实际数据对不上)1、M8014C0:INTER_ENB_HO_PREPUpdated: This counter is updated following the transmission of an X2AP: Handover Request to the target eNB.2、M8014C2:FAIL_ENB_HO_PREP_TIMEUpdated: This counter is updated following the expiry of the guarding timer TX2RELOCprep.3、M8014C3:FAIL_ENB_HO_PREP_ACUpdated: This counter is updated following the reception of anX2AP: Handover Preparation Failure message from the target eNB.4、M8014C5:FAIL_ENB_HO_PREP_OTHERUpdated: The counter is updated if the failure detected does not match any other failure counter.5、M8014C6:ATT_INTER_ENB_HOUpdated: This counter is updated following the reception of an X2AP: Handover Request Acknowledge message from the target eNB.6、M8014C7 :SUCC_INTER_ENB_HOUpdated: This counter is updated following the reception of an X2AP:Release Resource message sent by the target eNB.7、M8014C8:INTER_ENB_HO_FAILUpdated: This counter is updated following the expiry of the guarding timer TX2RELOCoverall.1.3.3eNB内切换Counter Counter ID NetAct nameeNB内收到MR次数M8009C0 TOT_NOT_START_HO_PREP eNB内切换决断次数M8009C1 TOT_HO_DECISIONeNB内切换请求次数M8009C2 INTRA_ENB_HO_PREPeNB内切换准备失败次数M8009C3 FAIL_ENB_HO_PREP_AC M8009C5 FAIL_ENB_HO_PREP_OTHeNB内切换尝试次数M8009C6 ATT_INTRA_ENB_HO eNB内切换成功次数M8009C7 SUCC_INTRA_ENB_HO eNB内切换执行失败次数M8009C8 ENB_INTRA_HO_FAIL统计点关系:M8009C1 > M8014C2M8014C2 = M8014C3 + M8014C5 + M8014C6M8014C6 = M8014C7 + M8014C8(注:现网实际数据对不上)1、M8009C0: TOT_NOT_START_HO_PREPUpdated: The reception of an RRC Measurement Report message sent by the UE to eNB and of the RRM decision not to execute a handover. Updated to the source cell.2、M8009C1: TOT_HO_DECISIONUpdated: The reception of an RRC Measurement Report message sent by the UE to eNB and of an RRM decision to execute a handover. Updated to the source cell.3、M8009C2: INTRA_ENB_HO_PREPUpdated: An internal eNB trigger. The eNB MM receives a list with the target cells from RRM and decides on an Intra-eNB Handover. Updated to the source cell.4、M8009C6: ATT_INTRA_ENB_HOUpdated: The transmission of an RRC Connection Reconfiguration message sent by the eNB to UE, which indicates a Handover Command to the UE. Updated to the source cell.5、M8009C7: SUCC_INTRA_ENB_HOUpdated: The reception of an internal UE Context Release Request for the handover on the source side. Updated to the source cell.6、M8009C3: FAIL_ENB_HO_PREP_ACUpdated: An internal eNB trigger. The eNB MM receives a list with the target cells from the RRM. The MM or RRM AC decides not to execute an Intra-eNB Handover. Updated to the source cell.7、M8009C5: FAIL_ENB_HO_PREP_OTHUpdated: An internal eNB trigger. The eNB MM receives a list with the target cells from RRM. The MM or RRM AC decides not to execute an Intra-eNB Handover. The counter is updated if the failure detected does not match any other failure counter. Updated to the source cell.8、M8009C8: ENB_INTRA_HO_FAILUpdated: The counter is updated to the source cell when timer THOoverall expires.2影响切换成功率的因素2.1从信令流程角度分析(注:个别流程可以会有不同,但大致相当,此处仅以X2切换为例。
案例集L T E网络优化案例集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]TD-LTE网络优化案例目录1概述TD-LTE无线网络要实现系统的高性能指标, 需要有合理的网络规划设计、稳定的产品性能、良好的施工工艺以及高质量的网络优化,几者缺一不可。
本报告收录了XX市TD-LTE试验网建网以来遇到的一些典型优化案例,旨在为后续优化工作提供帮助和参考。
2D频段优化案例2.1重叠覆盖优化【问题描述】在华兴街靠近中和路区域测试时,UE驻留在华安证券_3(频点:38050,PCI:88),RSRP: -71dBm左右,SINR:25dB左右,但DL Throughput=31Mbps。
【问题分析】分析路测数据,发现在华兴街靠近中和路的区域,华安证券_2、华安证券_3小区RSRP电平值较接近,如上图所示,对该路段形成了重叠覆盖。
而该区域规划的主覆盖小区为华安证券_3,现场勘察发现,华安证券_2信号经周边楼宇反射至该区域,2、3小区形成重叠覆盖,造成吞吐速率降低。
【解决措施】调整华安证券_2方位角由120°调至155°,机械下倾角由12°调至6°。
【处理效果】调整小区方位角后,重叠覆盖问题得到较好解决,下载速率明显提升。
2.2PCI优化【问题描述】在九华中路测试中,UE驻留在新都快捷酒店_1(频点:38050,PCI:51),RSRP:-74dbm左右,SINR:5db左右,下载速率:7Mbps左右。
【问题分析】分析路测数据,覆盖该路段的小区为新都快捷酒店_1和盛峰商贸_3,二者的PCI分别为51和18,经计算,两小区间存在模三冲突。
【解决措施】将盛峰商贸_2与盛峰商贸_3的PCI对调。
【处理效果】调整PCI后,模三冲突问题得到较好解决,下载速率明显提升。
2.3邻区列表优化【问题描述】在优化初期,存在较多切换问题,如CDS测试软件显示:UE不断发送MeasurementReport给eNB请求切换,而切换始终无法执行,直到UE被Release,然后Reselection。
中国移动TD-LTE无线参数设置指导优化手册-普天分册(征求意见稿)1 前言本文主要介绍和分析了普天TD-LTE 系统R3.2版本的部分网优私有参数,旨在帮助读者理解和使用系统中的参数,提高系统性能。
2 下行功率分配下行业务信道的功率是由基站统一管理的。
基站服务UE 的下行功率大小是由参数P A 、P B 和下行参考信号功率共同决定的。
其中,P B 和下行参考信号功率是小区级参数,在小区中进行广播。
P A 值为UE 特定参数,反映了分配给UE 的type A OFDM 符号上 PDSCH (下行共享信道)的EPRE (Energy Per RE ,每RE 能量)与小区参考信号的EPRE 的的比值,并通过层3信令通知给UE ,因此在一定的小区配置下,确定了P A 值就可以确定UE 的下行发射功率。
协议中规定了P A 的取值范围是{-6, -4.77, -3, -1.77, 0, 1, 2, 3}。
PDSCH 下行功率分配的基本原理是:根据A5测量或A2测量,判断终端属于中心用户还是边缘用户,为中心用户配置较低的P A 值,边缘用户配置较高的P A 值。
对每个UE ,不包含RS 的OFDM 符号中的PDSCH 的EPRE 与RS 的EPRE 之比为A ρ;包含RS 的OFDM 符号中的PDSCH 的EPRE 与RS 的EPRE 之比为B ρ。
对于16QAM ,64QAM ,TRI>1的空间复用,当基站侧采用4天线的发送分集方式时,A ρ等于 )2(log 1010+A P ,其他情况下A ρ等于P A 。
基站通过高层信令将两个参数P A 和P B 告诉用户,使用户获得A ρ和B ρ,用于精确地解调数据。
如上所述,P A 是用户级参数,而P B 是小区级参数,由系统消息广播。
对于1天线端口和2/4天线端口分别有四种取值,取值的大小体现了小区RS 的“power boosting ”程度,具体取值如下表。
4G网络流量驻留比优化指导书(仅供内部使用)拟制: 广西LTE精品网项目组日期:更新: 日期:审核: 日期:批准: 日期:华为技术有限公司版权所有侵权必究一、综述提高4G手机用户4G网络流量驻留比,本文主要从以下五个方面进行探讨:1、4G网络的无线覆盖优化2、LTE、GSM、TD-SCDMA侧的参数调整3、提升4G终端性能4、系统间邻区优化5、专网的建设和应用二、无线覆盖优化无线网络覆盖问题产生的原因是各种各样的,总体来讲有四类:一是无线网络规划结果和实际覆盖效果存在偏差;二是覆盖区无线环境变化;三是工程参数和规划参数间的不一致;四是增加了新的覆盖需求。
良好的无线覆盖是保障移动通信质量和指标要求的前提,因此,覆盖的优化非常重要,并贯穿网络建设的整个过程。
移动通信网络中涉及到的覆盖问题主要表现为覆盖空洞、覆盖弱区、越区覆盖、导频污染和邻区设定不合理等几个方面。
三、LTE、GSM、TD-SCDMA侧的参数调整3.1、GSM侧参数调整3.1.1、重选原理在 2G/4G 互操作场景下,从 2G 到 4G 的重选时,当 MS 在全部满足下面 3 个条件保持5s就可以重选到 TDD 小区:1) LTE 频点优先级高于 GSM 服务小区2) 手机解读 SI2 quater 消息 , 提取 LTE 频点进行扫描3) RSRP>QRXLEVMINE+HPRIOTHR=-112dBm/-116dBm 。
即该邻近小区的 RSRP 高于设定值3.1.2、GSM到LTE的重选参数RLSRC:CELL=xxx,RATPRIO=0,MEASTHR=15,PRIOTHR=0,HPRIO=0,TRES=0;✧RATPRIO=0 为 GSM 优先级最低✧MEASTHR 起测门限 0~15=-98~-56dBm 步长 3dBm ,15 一直测 )✧TRES=0~3 异系统重选时延 5s 、 10s 、 15 、 20s。
TD-LTE网络优化介绍 大唐移动通信设备有限公司 贾亮亮
1. 网络优化的原因与目的
1.1 网络优化的原因 原因:一方面,是由于现网本身没有优化到位,需进行网络优化。另一方面,基础设施、障碍物、基站、用户数量及需求发生变化,导致无线环境发生变化。加之,无线信道的多径衰落等特性。导致网络质量下降。
1.2 网络优化的目的 目的:保证网络顺畅快捷,用户感知度良好(无线指标:切换、E-RAB建立成功率RRC连接建立成功、覆盖等),达到提升运营商的品牌形象。使用户获得价值最大化,达到覆盖、容量、价值的最佳组合。通过网络优化使用户提高收益率和节约成本。
2. 网络优化流程 2.1 优化基本思想 优化基本思想:与TDS基本一致。同样关注网络的覆盖、容量、质量等情况,通过覆盖调整,干扰调整,参数调整,故障处理等等各种网络优化手段达到网络动态平衡,提高网络质量,保证用户感知; 2.2 TDL与TDS优化的主要差异 与TDS的主要差异:TD-LTE与TD-SCDMA系统的RRM算法不同,导致系统优化中接入、切换等各种过程涉及参数不同;同时,TDLTE系统的干扰与TD-SCDMA系统的干扰来源也有较大不同,需要通过不同手段规避;
2.3 优化的大致流程
3. 优化过程 本来一个科学的优化体系是:建设期-单站优化-簇优化-片区优化-全网优化-成熟期。
DT测试 网络问题分析 优化方案制定 优化方案实施 验 证 性 测试 优化验收与总结 3.1 RF优化 3.1.1 RF问题的表现形式及产生原因 RF问题的表现形式有:(1)覆盖空洞:UE无法注册网络,不能为用户提供网络服务 ;(2)覆盖弱区:接通率不高,掉线率高,用户感知差 ;(3)越区覆盖:孤岛导致用户移动中掉话,用户感知差 差。 RF问题产生的原因:(1)无线网络规划结果和实际覆盖效果存在偏差 。(2)实际站点位置与规划中的理想的站点位置的偏差导致 。(3)覆盖区无线环境变化 。(4)工程参数和规划参数间的不一致 。(5)增加了新的覆盖需求。 RSRP(Reference signal received power)在系统接收带宽内,两个时隙上相应的小区参考信号的每个RSRE接收功率的线性平均。 PRS:在系统接收带宽内,两个时隙上相应的小区参考信号的每个RSRE发射功率的线性平均; PathLoss: eNodeB与UE之间的路径损耗。 RSRP = PRS * PathLoss SINR:信号与干扰加噪声比 (Signal to Interference plus Noise Ratio)。 将RB上的功率平均分配到各个RE上。 下行RS的SINR = RS接收功率 /(干扰功率 + 噪声功率) RS接收功率 = RS发射功率 * 链路损耗 干扰功率 = RS所占的RE上接收到的邻小区的功率之和 每个UE的上行SRS(Sounding Reference Symbol,探测参考信号)都放置在一个子帧的最后一个块中。SRS的频域间隔为两个等效子载波。所以一个UE的SRS的干扰只来自于其他UE的SRS。
SINR = SRS接收功率 /(干扰功率 + 噪声功率) SRS接收功率 = SRS发射功率 * 链路损耗 干扰功率 = 邻小区内所有UE的SRS接收功率之和。 好、中、差点的定义: SINR:极好点>22dB,好点:15~20dB,中点:5~10dB,差点:-5~0dB。 RSRP: 近点≥-75dBm,中点:-85~-90dBm,远点:≦105dBm。 低速:0-15Km/h,中速:40-60km/h,高速:100km/h以上。
3.1.2 覆盖空洞的定义及优化方法 定义:覆盖空洞是指在连片站点中间出现的完全没有TD-LTE信号的区域。 UE终端的灵敏度一般为-124dBm,考虑部分商用终端与测试终端灵敏度的差异,预留5dB余量,覆盖空洞定义为RSRP<-119dBm的区域 。 优化方法:一般的覆盖空洞都是由于规划的站点未开通、站点布局不合理或新建建筑导致。最佳的解决方案是增加站点或使用RRU,其次是调整周边基站的工程参数和功率来尽可能的解决覆盖空洞
3.1.3 弱覆盖的定义及优化方法 定义:弱覆盖一般是指有信号,但信号强度不能够保证网络能够稳定的达到要求的KPI的情况 。天线在车外测得的RSRP<=95dBm的区域定义为弱覆盖区域,天线在车内测得的RSRP<-105dBm的区域定义为弱覆盖区域。 优化方法:优先考虑降低距离弱覆盖区域最近基站的天线下倾角,调整天线方位角,增加站点或RRU,增加RS的发射功率。对于隧道区域,考虑优先使用RRU 。
3.1.4 越区覆盖的定义及优化方法 定义:当一个小区的信号出现在其周围一圈邻区及以外的区域时,并且能够成为主服务小区,称为越区覆盖。 优化方法:(1)首先考虑降低越区信号的信号强度,可以通过增大下倾角、调整方位角、降低发射功率等方式进行。降低越区信号时,需要注意测试该小区与其他小区切换带和覆盖的变化情况,避免影响其他地方的切换和覆盖性能。(2)在覆盖不能缩小时,考虑增强该点距离最近小区的信号并使其成为主导小区 。(3)在上述两种方法都不行时,再考虑规避方法:单边邻区、互配邻区 。
3.1.5 导频污染 定义: 强导频:RSRP>-90dBm(天线放在车顶,车内要求是-100dBm) 过多: RSRP _number>=N,设定N=4 无足够强主导频:最强导频信号和第(N)个强导频信号强度的差值如果小于某一门限值D,即定义为该地点没有足够强主导频,RSRP(fist)-RSRP(N)<=D,设定D═6dB 判断TD-LTE网络中的某点存在导频污染的条件是:RSRP>-90dB的
小区个数大于等于4个; RSRP(fist)-RSRP(4)<=6dB。当上述两个条件都满足时,即为导频污染 优化方法: 明确主导小区,理顺切换关系 。 调整下倾角、方位角、功率,使主服务小区在该区域RSCP>-90dBm 。 降低其他小区在该区域的覆盖场强。 导频污染严重的地方,可以考虑采用双通道RRU拉远来单独增强该区域的覆盖,使得该区域只出现一个足够强的导频 。
3.1.6 覆盖优化的原则 原则1:先优化RSRP,后优化PDCCH SINR; 原则2:覆盖优化的两大关键任务:消除弱覆盖(保证RSRP覆盖);净化切换带、消除交叉覆盖(保证PDCCH SINR,切换带要尽量清楚,尽量使两个相邻小区间只发生一次切换) ; 原则3:优先优化弱覆盖、越区覆盖、再优化导频污染; 原则4:优先调整天线的下倾角、方位角、天线挂高和迁站及加站,最后考虑调整RS的发射功率和波瓣宽度; 3.2 无线参数优化 3.2.1 避开模三 PCI mod 3: PCI = 3* Group ID ( S-SS)+ Sector ID (P-SS),如果PCI mod 3值相同的话,那么就会造成P-SS的干扰。 规划的原则: 可用性:满足最小复用层数与最小复用距离,从而避免可能发生的冲突。 扩展性:在初始规划时,就需要为网络扩容做好准备,避免后续规划过程中频繁调整前期规 划结果。这时就可保留一些PCI组以及其它未保留PCI组内保留若干个PCI用于扩容。 分配的基本条件: 复用距离:使用相同PCI的两个小区之间的距离需要满足最小复用距离; 复用层数:复用层数为使用相同PCI的两个小区之间间隔的基站数量; 在通常的双天线配置下,相邻小区PCI模3错开可以让下行RS符号在频域上错开,提高信道估计的准确性。 (PCI复用至少间隔4层小区以上,大于5倍的小区覆盖半径) PCI mod 6: 在时域位置固定的情况下,下行参考信号在频域有6个freq shift。如果PCI mod 6值相同,会造成下行RS的相互干扰。(在一个TX antenna下); PCI mod 30: 在PUSCH信道中携带了DM-RS和SRS的信息,这两个参考信号对于信道估计和解调非常重要,他们是由30组基本的ZC序列构成,即有30组不同的序列组合,所以如果PCI mod 30值相同,那么会造成上行DM RS和SRS的相互干扰。 6、模3不能相同,即小区特有参考信号频率资源位置不能相同;另外,参考信号的位置和物理小区标识值有关,系统通过物理小区标识对6取模来计算正确的偏置,因此模6也不能相同了。 模三最为严重,一定要保证PCI的mod3不同才可以解决问题。 以上是别人的解释。对于模3.是因为主同步信号相同导致参考信号位置相同会有干扰。
3.2.2 常用系统参数的优化 切换相关: 事件触发滞后因子Hysteresis;
干扰
系统内的干扰
系统间的干扰 扫频 事件触发持续时间TimetoTrig; 邻小区个性化偏移QoffsetCell T304定时器 T310定时器 N310 N311
覆盖相关: CRS发射功率; 信道的功率配置; PRACH信道格式 控制信道符号数 PDCCH的CCE数目 LTE事件: 系统内测量事件采用Ax来标识,系统内事件的报告各类: eventA1:服务小区质量高于一个绝对门限(serving > threshold)。用于关闭正在进行的频间测量,在RRC控制下去掉激活测量间隙(gap) 事件进入条件:Ms - Hys > Thresh 事件离开条件:Ms + Hys < Thresh 其中: Ms:为服务小区的测量结果,没有计算任何小区各自的偏置如果测量的是RSRP则单位为dBm,如果是RSRQ则单位