高中数学教案——不等式的证明第三课时
- 格式:doc
- 大小:332.00 KB
- 文档页数:8
4 不等式的证明 第3课时 几何法、反证法1.了解几何法的证明过程,并会用几何法证明简单的不等式.2.掌握反证法,并会用反证法证明不等式.1.几何法通过构造几何图形,利用几何图形的性质来证明不等式的方法称为______.【做一做1】已知x ,y ,z ∈(0,1).求证:x (1-y )+y (1-z )+z (1-x )<1.2.反证法反证法证不等式是:先假设所要证的不等式不成立,也就是说不等式的反面成立,以此为出发点,结合已知条件,进行推理论证,最后推出矛盾的结果,从而断定假设错误,因而确定要证的不等式成立.它的步骤是:(1)作出否定____的假设;(2)进行推理,导出____;(3)否定假设,肯定____.【做一做2】如果a >b >0,证明1a 2<1b 2. 答案:1.几何法【做一做1】分析:构造一个边长为1的正三角形,利用三角形的面积关系来证明.证明:如图,构造正三角形ABC ,设其边长为1,BD =x ,AF =y ,CE =z ,则根据面积关系S △ABC >S △BDF +S △DCE +S △AEF ,得1·1·sin 60°>x (1-y )sin 60°+y (1-z )s in 60°+z (1-x )sin 60°.整理,得x (1-y )+y (1-z )+z (1-x )<1.即得证.2.(1)结论 (2)矛盾 (3)结论【做一做2】分析:先假设1a 2≥1b 2成立,从假设出发,推出矛盾. 证明:假设1a 2≥1b 2,则1a 2-1b 2=b 2-a 2a 2b 2≥0. ∵a >b >0,∴a 2b 2>0,b 2-a 2=(b +a )(b -a )≥0.∵a >b >0,∴b +a >0,∴b -a ≥0,即b ≥a .这与已知a >b 矛盾.∴假设不成立,即1a 2<1b 2成立.1.反证法中的数学语言剖析:反证法适宜证明“存在性问题”,“唯一性问题”,带有“至少有一个”或“至多有一个”等字样的问题,或者说“正难则反”,直接证明有困难时,常采用反证法,下面对假设的否定也可以举一些特例来说明矛盾,尤其在一些选择题中,更是如此.2.用反证法证明不等式 剖析:(1)用反证法证明,就是从结论的反面出发,要求结论反面的情况只有有限多种,然后证明这种反面的结论都是不可能的,是与已知条件、已知事实或已证明过的定理相矛盾的.(2)要证不等式M >N ,先假设M ≤N ,由题设及其他性质推出矛盾,从而肯定M >N 成立.凡涉及的证明不等式为否定性命题,唯一性命题或是含“至多”、“至少”等字句时,可考虑使用反证法.(3)用反证法证明不等式要把握三点:①必须先否定结论,对于结论的反面出现的多种可能要逐一论证,缺少任何一种可能,证明都是不完全的.②反证法必须从否定结论进行推理,且必须根据这一条件进行论证;否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法. ③推导出来的矛盾可以是多种多样的,有的与已知条件相矛盾,有的与假设相矛盾,有的与定理、公理相违背,有的与已知的事实相矛盾等等,但推导出的矛盾必须是明显的.题型一 用几何法证明不等式【例1】已知a >0,b >0,c >0,求证:a 2-ab +b 2+b 2-bc +c 2≥a 2+ac +c 2,当且仅当1b =1a +1c时取等号. 分析:从三个根式的结构特点,容易联想到余弦定理,于是可构造图形,利用余弦定理来证明. 反思:利用几何法证明不等式的关键是构造几何图形,先要研究所证不等式两边的结构特点,再把其中的字母当作图形的边长,最后用几何图形中的不等关系来表示所要证明的不等式.题型二 用反证法证明不等式 【例2】已知a >0,b >0,且a +b >2.求证:1+b a ,1+a b中至少有一个小于2. 分析:由于题目的结论比较复杂,讨论起来比较繁琐,宜采用反证法.反思:从“正难则反”的角度考虑,即要证明不等式A >B ,先假设A ≤B .由题设及其他性质推出矛盾,从而肯定A >B .凡涉及到证明不等式为否定命题,唯一性命题式含有“至多”“至少”“不存在”“不可能”等词语时,可以考虑用反证法.答案:【例1】证明:如图,作OA =a ,OB =b ,OC =c ,∠AOB =∠BOC =60°,则∠AOC =120°,AB =a 2-ab +b 2,BC =b 2-bc +c 2,AC =a 2+ac +c 2.由几何知识知,AB +BC ≥AC ,∴a 2-ab +b 2+b 2-bc +c 2≥a 2+ac +c 2,当且仅当A ,B ,C 三点共线时等号成立. 此时有12ab sin 60°+12bc sin 60°=12ac sin 120°, 即ab +bc =ac .故当且仅当1b =1a +1c时,取得等号. 【例2】证明:假设1+b a ,1+a b都不小于2, 即1+b a ≥2,1+a b≥2. ∵a >0,b >0,∴1+b ≥2a,1+a ≥2b .两式相加,得1+b +1+a ≥2(a +b ). 即a +b ≤2,这与已知a +b >2矛盾.故假设不成立.因此,1+b a ,1+a b中至少有一个小于2.1若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少有一个值c ,使f (c )>0,则实数p 的取值范围是( ).A .⎝ ⎛⎭⎪⎫-3,32B .⎝ ⎛⎭⎪⎫-2,15C .(-1,0)D .⎝ ⎛⎭⎪⎫-12,23 2若△ABC 的三边a ,b ,c 的倒数成等差数列,则( ).A .∠B =π2 B .∠B <π2C .∠B >π2D .∠B =π33设a ,b ∈R ,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出“a ,b 中至少有一个实数大于1”的条件是__________. 4已知a ,b ,c >0,a +b >c .求证:a a +1+b b +1>cc +1. 答案:1.A 如果在[-1,1]内没有满足f (c )>0的数c ,则⎩⎪⎨⎪⎧ f -1≤0,f 1≤0,解得⎩⎪⎨⎪⎧ p ≤-12或p ≥1,p ≤-3或p ≥32.∴此时p的取值范围是⎩⎨⎧⎭⎬⎫p |p ≤-3或p ≥32,取补集即得所求实数p 的范围,即⎩⎨⎧⎭⎬⎫p |-3<p <32. 2.B 假设∠B ≥π2,则b 最大,有b >a ,b >c , ∴1a >1b ,1c >1b. ∴1a +1c >2b ,与题意中的1a +1c =2b矛盾. ∴∠B <π2.3.③ 对于①,a ,b 均可小于1;对于②,a ,b 均可等于1;对于④⑤,a ,b 均可为负数;对于③,若a ,b 都不大于1,则a +b ≤2,与③矛盾.故若③成立,则“a ,b 中至少有一个实数大于1”成立.4.证明:假设a a +1+b b +1≤c c +1,则1-1a +1+1-1b +1≤1-1c +1,即1+1c +1≤1a +1+1b +1,∴(1+a )(1+b )(1+c )+(1+a )(1+b )≤(1+b )(1+c )+(1+a )(1+c ),即(c +2)(1+a )(1+b )≤(1+c )(a +b +2),∴2ab +abc +a +b ≤c .①又∵a +b >c ,a ,b ,c >0,∴a +b +2ab +abc >c ,与①矛盾.∴假设不成立.∴a a +1+b b +1>cc +1成立.。
均值不等式1.不等式m 2+1≥2m 中等号成立的条件是( ) A .m =1 B .m =±1 C.m =-1 D .m =0 答案 A2.若0<a <b ,则下列不等式一定成立的是( ) A .a >a +b2>ab >b B .b >ab >a +b2>aC .b >a +b2>ab >aD .b >a >a +b2>ab答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b2.∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b2>ab >a .3.如果0<a <b <1,P =log 12a +b2,Q =12(log 12a +log 12b ),M =12log 12(a +b ),那么P ,Q ,M 的大小顺序是( )A .P >Q >MB .Q >P >MC .Q >M >PD .M >Q >P答案 B 解析 P =log 12a +b2,Q =12(log 12a +log 12b )=log 12ab , M =12log 12(a +b )=log 12a +b ,∴只需比较a +b2,ab ,a +b 的大小,显然a +b2>ab ,又因为a +b2<a +b (由a +b >a +b24,也就是a +b4<1),∴a +b >a +b2>ab .而y =log 12x 为减函数,故Q >P >M ,选B.4.已知0<a <1,0<b <1,则a +b,2ab ,a 2+b 2,2ab 中最大的是________. 答案 a +b解析 方法一 ∵a >0,b >0, ∴a +b ≥2ab ,a 2+b 2≥2ab , ∴四个数中最大数应为a +b 或a 2+b 2. 又∵0<a <1,0<b <1, ∴a 2+b 2-(a +b )=a 2-a +b 2-b =a (a -1)+b (b -1)<0, ∴a 2+b 2<a +b ,∴a +b 最大. 方法二 令a =b =12,则a +b =1,2ab =1,a 2+b 2=12,2ab =2×12×12=12,再令a =12,b =18,a +b =12+18=58,2ab =212·18=12,∴a +b 最大.1.两个不等式a 2+b 2≥2ab 与a +b2≥ab 都是带有等号的不等式,对于“当且仅当…时,取‘=’号”这句话的含义要有正确的理解.一方面:当a =b 时,a +b2=ab ;另一方面:当a +b2=ab 时,也有a =b .2.由均值不等式变形得到的常见的结论: (1)ab ≤(a +b2)2≤a 2+b 22;(2)ab ≤a +b2≤a 2+b 22(a ,b ∈R +);(3)b a +a b≥2(a ,b 同号);(4)(a +b )(1a +1b)≥4(a ,b ∈R +);(5)a 2+b 2+c 2≥ab +bc +ca .。
高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。
柯西不等式的证明及应用柯西( Cauchy )不等式a 1b 1 a 2b 2a nb n 2a 12a 22a n22 b 12b 22b n 2 2a ib iR, i 1,2 n等号当且仅当 a 1 a 2 a n 0 或 b ika i 时建立( k 为常数, i1,2 n )现将它的证明介绍以下:证明 1:结构二次函数f ( x)a 1 xb 1 2a 2 xb 2 2 a n x b n2= a 12 a 22a n n x 2 2 a 1b 1 a 2 b 2a nb n x b 12 b 22b n na 12 a 22a n n 0f x0 恒建立4 a 1b 1a 2b 2a nb n 24 a 12a 22a n nb 12b 22b nn即 a 1b 1 a 2b 2a nb n 2a 12a 22a n nb 12b 22b n n当且仅当 a i xb i x0 i 1,2 n即a1a 2 a n 时等号建立b 1b 2b n证明( 2)数学概括法( 1)当 n 1 时左式 = a 1b 1 22右式 = ab 11明显左式 =右式n 2 时 ,a 12a 22b 12 b 222a 2b 22a 12b 22当右 式a 1b 1a 22b 12222a 1a 2b 1b 2 a 1b 22a 1b 1 a 2 b 2a 2b 2右式仅立即 a 2 b 1a 1b 2 即a1a 2 时等号建立b 1b 2故 n 1,2时 不等式建立(2)假定 n k k, k 2 时,不等式建立即 a 1b 1 a 2b 2 a k b k 2a 12a 22a kkb 12 b 22b k k当 b i ka i , k 为常数, i1,2 n 或 a 1 a 2a k0 时等号建立设2 2 22 2212a kb 1b 2b ka aC a1b1a2 b2a k b k则a k21b k21b k21a k21b k21C22Ca k 1b k 1 a k21b k2C ak 1bk 121a2a2a2a2b2b2k b2kb212k k1121a1b1a2b2a k b k2 ak 1bk 1当 b i ka i,k为常数, i1,2n或 a1a2a k 0 时等号建立即 n k 1 时不等式建立综合( 1)(2)可知不等式建立柯西不等式是一个特别重要的不等式,灵巧奇妙的应用运用它,能够使一些较为困难的问题水到渠成,这个不等式结构和睦,应用灵巧宽泛,利用柯西不等式可办理以下问题:1)证明有关命题例 1.用柯西不等式推导点到直线的距离公式。
3.1 不等式的基本性质(1)不等式的定义用数学符号“>”“<”“≥”“≤”“≠”连接两个数或代数式,这些含有这些不等号的式子叫做不等式.(2)关于a≥b和a≤b的含义①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b或a=b中有一个正确,则a≤b正确.(3)不等式中常用符号语言2(1)如果a-b是正数,那么a>b;即a-b>0⇔a>b;(2)如果a-b等于0,那么a=b;即a-b=0⇔a=b;(3)如果a-b是负数,那么a<b,即a-b<0⇔a<b.3.不等式的基本性质性质1: 若a>b,则b<a;(自反性),a>b⇔b<a.性质2:若a>b,b>c,则a>c;(传递性)性质3:若a>b,则a+c>b+c;(加法保号性)性质4:若a>b,c>0,则ac>bc;(乘正保号性)若a>b,c<0,则ac<bc;(乘负改号性)性质5:若a>b,c>d,则a+c>b+d;(同向可加性)性质6:若a>b>0,c>d>0,则ac>bd;(全正可乘性)性质7:如果a>b>0,那么a n>b n(n∈N*).(拓展)提醒:不等式的基本性质是不等式变形的依据,也是解不等式的根据,同时还是证明不等式的理论基础.(1)在应用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件.(2)要注意每条性质是否具有可逆性.1.思考辨析(正确的打“√”,错误的打“×”)(1)若ac>bc,则a>b.( )(2)若a+c >b+d,则a>b,c>d.( )(3)若a >b ,则1a <1b.( )[答案] (1)× (2)× (3)×2.已知a 1,a 2∈()0,1,记M =a 1a 2, N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定B [由题意得M -N =a 1a 2-a 1-a 2+1=()a 1-1()a 2-1>0,故M >N .故选B .]3.若x >y ,且x +y =2,则下列不等式一定成立的是( ) A .x 2<y 2B .1x <1yC .x 2>1D .y 2<1C [因为x >y ,且x +y =2,所以2x >x +y =2,即x >1,则x 2>1,故选C .]利用不等式的性质判断和解不等式①若a >b ,则ac 2>bc 2; ②若a <b <0,则a 2>ab >b 2; ③若a >b ,则a 2>b 2;④若a <b <0,则a b >ba.其中正确命题的序号是 .(2)求解关于x 的不等式ax +1>0(a ∈R ),并用不等式的性质说明理由.(1)②④ [对于①∵c 2≥0,∴只有c ≠0时才成立,①不正确; 对于②,a <b <0⇒a 2>ab ;a <b <0⇒ab >b 2,∴②正确;对于③,若0>a >b ,则a 2<b 2,如-1>-2,但(-1)2<(-2)2,∴③不正确;对于④,∵a <b <0,∴-a >-b >0,∴(-a )2>(-b )2,即a 2>b 2.又∵ab >0,∴1ab >0,∴a 2·1ab >b 2·1ab ,∴a b >ba,④正确.所以正确答案的序号是②④.](2)[解] 不等式ax +1>0(a ∈R )两边同时加上-1得ax >-1 (不等式性质3),当a =0时,不等式为0>-1恒成立,所以x ∈R , 当a >0时,不等式两边同时除以a 得 x >-1a(不等式性质4),当a <0时,不等式两边同时除以a 得 x <-1a(不等式性质4).综上:当a =0时,不等式的解集为R ,当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-1a ,+∞,当a <0时,不等式的解集为⎝⎛⎭⎪⎫-∞,-1a .1.利用不等式判断正误的两种方法①直接法:对于说法正确的,要利用不等式的相关性质证明;对于说法错误的只需举出一个反例即可.②特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质解不等式,要求步步有据,特别是解含有参数的不等式更加要把握好分类讨论的标准.因为参数的范围不同,不等式的解集不同,所以对于参数的不同范围得到的解集都是独立的,不能求并集.[跟进训练]1.已知a <b <c 且a +b +c =0,则下列不等式恒成立的是( )A .a 2<b 2<c 2B .ab 2<cb 2C .ac <bcD .ab <acC [∵a +b +c =0且a <b <c ,∴a <0,c >0,∴ac <bc ,故选C .]2.若关于x 的不等式ax +b >0的解集为(-∞,2),则不等式bx -a >0的解集为 .⎝ ⎛⎭⎪⎫-12,+∞ [因为关于x 的不等式ax +b >0的解集为(-∞,2),所以a <0,且x =2是方程ax +b =0的实数根,所以2a +b =0,即b =-2a ,由bx -a >0得-2ax -a >0,因为a <0,所以x >-12,即不等式bx -a >0的解集为⎝ ⎛⎭⎪⎫-12,+∞.]利用不等式的性质比较代数式的大小[探究问题]1.如果a ,b 之间的大小关系分别为a >b ,a =b ,a <b ,那么a -b 分别与0的关系?反之呢?[提示] 若a >b ,则a -b >0,反之也成立; 若a =b ,则a -b =0,反之也成立; 若a <b ,则a -b <0,反之也成立.2.若a >b ,则ab >1吗?反之呢?[提示] 若a >b ,当b <0时,ab<1,即a >bab >1;若a b >1,则a b -1>0,即a -b b>0, ∴a -b >0,b >0或a -b <0,b <0,即a b >1a >b ,反之也不成立.【例2】 已知x <1,比较x 3-1与2x 2-2x 的大小.[思路点拨] 作差―→因式分解――→x <1判号―→下结论[解] x 3-1-(2x 2-2x ) =x 3-2x 2+2x -1=(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34, ∵x <1,∴x -1<0,又∵⎝⎛⎭⎪⎫x -122+34>0, ∴(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34<0, ∴x 3-1<2x 2-2x .1.(变条件)本例条件“x <1”变为“x ≥1”,比较x 3-1与2x 2-2x 的大小.[解] x 3-1-(2x 2-2x )=(x -1)(x 2-x +1)=(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34, ∵x ≥1,∴x -1≥0,又⎝⎛⎭⎪⎫x -122+34>0, ∴(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34≥0, ∴x 3-1≥2x 2-2x .2.(变题)已知:a >0, b >0, 比较1a +1b 与1a +b 的大小.[解](作差法)⎝ ⎛⎭⎪⎫1a +1b -1a +b=ab +b 2+a 2+ab -abab a +b=a 2+ab +b 2ab a +b, 因为a >0, b >0,所以a 2+ab +b 2ab a +b>0,所以1a +1b >1a +b.(作商法)因为a >0, b >0,所以1a +1b 与1a +b同为正数,所以1a +1b1a +b =a +b2ab ,所以a +b 2ab -1=a 2+ab +b 2ab>0,即a +b 2ab>1,因为1a +b >0,所以1a +1b >1a +b.(综合法)因为a >0, b >0,所以a +b >0,所以⎝ ⎛⎭⎪⎫1a +1b (a +b )=a +b a +a +b b =2+b a +a b >1,所以1a +1b >1a +b.1.作差法比较两个数大小的步骤及变形方法(1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④分母或分子有理化(针对无理式中的二次根式);⑤分类讨论.2.作商法比较大小的三个步骤 (1)作商变形; (2)与1比较大小; (3)得出结论.提醒:作商法比较大小仅适用同号的两个数.3.综合法需要结合具体的式子的特征实施,本题思路为:A >B >0⇔A ·1B>1.[跟进训练]3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .故选A .] 4.已知a ,b ∈R ,试比较a 2-ab 与3ab -4b 2的大小.[解] 因为a ,b ∈R ,所以(a 2-ab )-(3ab -4b 2)=a 2-4ab +4b 2=(a -2b )2,当a =2b 时,a 2-ab = 3ab -4b 2, 当a ≠2b 时,a 2-ab > 3ab -4b 2.证明不等式【例3】 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc . (2)已知a > b >0, m >0,求证:b a <b +ma +m.[证明] (1)∵a >b ,c >0,∴ac >bc . ∴-ac <-bc ,∵f <e ,∴f -ac <e -bc .(2)(作差法)因为a > b >0, m >0,所以b -a <0,a +m >0,所以b a -b +m a +m =b a +m -a b +m a a +m =m b -a a a +m <0,所以b a <b +m a +m;(不等式的性质)因为a > b >0, m >0, 所以am > bm, a +m >0,ab >0,所以am +ab >ab +bm ,即a (b +m )>b (a +m ),所以b a <b +m a +m.1.利用不等式的性质证明不等式(综合法)的注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.2.作差法也可以应用于证明不等式.3.第二题的结论源于生活背景的提炼:在含糖b 克的a 克糖水中放入m 克的糖,结果糖水变甜了.本质上是浓度变大了.[跟进训练]5.若bc -ad ≥0,bd >0.求证:a +b b ≤c +d d.[证明] ∵bc -ad ≥0,∴ad ≤bc ,bd >0,∴a b ≤c d ,∴a b +1≤c d +1,∴a +b b ≤c +dd . 6.已知a >b >m >0,求证:a b <a -m b -m.[证明] (作差法)因为a >b >m >0, 所以b -a <0,b -m >0,所以a b -a -m b -m =a b -m -b a -m b b -m =m b -a b b -m <0,所以a b <a -m b -m;(不等式的性质)因为a >b >m >0,所以am >bm ,b -m >0, 所以-bm >-am ,所以ab -bm >ab -am ,即b (a -m )>a (b -m ),所以a b <a -m b -m.不算式性质的应用[思路点拨] 欲求a -b 的范围,应先求-b 的范围,再利用不等式的性质求解.[解]∵1<a<4,2<b<8,∴2<2a<8,6<3b<24,∴8<2a+3b<32.∵2<b<8,∴-8<-b<-2,又∵1<a<4,∴1+(-8)<a+(-b)<4+(-2),即-7<a-b<2,故8<2a+3b<32,-7<a-b<2.即2a+3b的取值范围为(8,32),a-b的取值范围为(-7,2).相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.2.已知两个二元一次代数式的范围,求第三个二元一次式的范围,可以用双换元的方法,也可以通过待定系数法,先用已知的两个二元一次代数式表示未知的二元一次式.[跟进训练]7.已知-12≤α<β≤12,求α+β2,α-β3的取值范围.[解] ∵-12≤α<β≤12,∴-14≤α2<14,-14<β2≤14.两式相加得-12<α+β2<12.∵-16≤α3<16,-16≤-β3<16,两式相加得-13≤α-β3<13.又∵α<β,∴α-β3<0,∴-13≤α-β3<0.8.已知-4≤a -c ≤-1,-1≤4a -c ≤5,求9a -c 的范围.[解]令⎩⎪⎨⎪⎧a -c =x ,4a -c =y ,得⎩⎪⎨⎪⎧a =13y -x ,c =13y -4x ,∴9a -c =83y -53x ,∵-4≤x ≤-1,∴53≤-53x ≤203,①∵-1≤y ≤5,∴-83≤83y ≤403,②①和②相加,得-1≤83y -53x ≤20,∴-1≤9a -c ≤20.1.作差法比较大小的三个步骤作差、变形、定号,概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.2.利用不等式的性质可以判定不等式的正确性、也证明一些不等式还可以求相关量的取值范围.必须熟记不等式的性质,不可省略条件或跳步推导,更不能随意构造性质与法则.3.不等式的证明可以用比较法(作差或作商法)、也可以利用不等式的性质(综合法),注意方法的灵活应用.1.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-bB [选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以,否则如a =-1,b =0时不成立,故选B .]2.设a =3x 2-x +1,b =2x 2+x ,则( )A.a>b B.a<bC.a≥b D.a≤bC[a-b=(3x2-x+1)-(2x2+x)=x2-2x+1=(x-1)2≥0,∴a≥b.]3.已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是.(-π,2π)[结合题意可知3α-β=2(α-β)+(α+β),且2(α-β)∈(-π,π),α+β∈(0,π),利用不等式的性质可知3α-β的取值范围是(-π,2π).]4.近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a元/斤、b元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠) .(在横线上填甲或乙即可)乙[由题意得甲购买产品的平均单价为3a+3b6=a+b2,乙购买产品的平均单价为2010a+10b=2aba+b,由条件得a≠b.∵a+b2-2aba+b=a-b22a+b>0,∴a+b2>2aba+b,即乙的购买方式更优惠.]5.若a>b>0,c<d<0,e<0,求证:ea-c2>e(b-d)2.[证明]∵c<d<0,∴-c>-d>0,又a>b>0,∴a-c>b-d>0,则(a-c)2>(b-d)2>0,即1a-c2<1(b-d)2.又e<0,∴ea-c2>e(b-d)2.。
《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。
②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。
③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。
让学生享受学习数学带来的情感体验和成功喜悦。
二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。
教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。
三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。
以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。
以多媒体作为教学辅助手段,加深学生对基本不等式的理解。
四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。
2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。
教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。
2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。
)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。
五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。
高中数学基本不等式教案设计基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
接下来是小编为大家整理的高中数学基本不等式教案设计,希望大家喜欢!高中数学基本不等式教案设计一教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。
启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
3.4 基本不等式:2b a ab +≤3.4.1 基本不等式2b a ab +≤的证明 从容说课在前两节课的研究当中,学生已掌握了一些简单的不等式及其应用,并能用不等式及不等式组抽象出实际问题中的不等量关系,掌握了不等式的一些简单性质与证明,研究了一元二次不等式及其解法,学习了二元一次不等式(组)与简单的线性规划问题.本节课的研究是前三大节学习的延续和拓展.另外,为基本不等式的应用垫定了坚实的基础,所以说,本节课是起到了承上启下的作用.本节课是通过让学生观察第24届国际数学家大会的会标图案中隐含的相等关系与不等关系而引入的.通过分析得出基本不等式:2b a ab +≤,然后从三种角度对基本不等式展开证明及对基本不等式展开一些简单的应用,进而更深一层次地从理性角度建立不等观念.教师应作好点拨,利用几何背景,数形结合做好归纳总结、逻辑分析,并鼓励学生从理性角度去分析探索过程,进而更深层次理解基本不等式,鼓励学生对数学知识和方法获得过程的探索,同时也能激发学生的学习兴趣,根据本节课的教学内容,应用观察、类比、归纳、逻辑分析、思考、合作交流、探究,得出基本不等式,进行启发、探究式教学并使用投影仪辅助.教学重点 1.创设代数与几何背景,用数形结合的思想理解基本不等式;2.从不同角度探索基本不等式的证明过程;3.从基本不等式的证明过程进一步体会不等式证明的常用思路.教学难点 1.对基本不等式从不同角度的探索证明;2.通过基本不等式的证明过程体会分析法的证明思路.教具准备 多媒体及课件三维目标 一、知识与技能1.创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;2.尝试让学生从不同角度探索基本不等式的证明过程;3.从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件. 二、过程与方法1.采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.三、情感态度与价值观1.通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣.教学过程导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情) 推进新课师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找? (沉静片刻)生 应该先从此图案中抽象出几何图形.师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形? (请两位同学在黑板上画.教师根据两位同学的板演作点评)(其中四个直角三角形没有画全等,不形象、直观.此时教师用投影片给出隐含的规范的几何图形)师 同学们观察得很细致,抽象出的几何图形比较准确.这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩.(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来) [过程引导]师 设直角三角形的两直角边的长分别为a 、b ,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?生 显然正方形的面积大于四个直角三角形的面积之和.师 一定吗? (大家齐声:不一定,有可能相等)师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性? 生 每个直角三角形的面积为ab 21,四个直角三角形的面积之和为2ab .正方形的边长为22b a,所以正方形的面积为a 2+b 2,则a 2+b 2≥2ab .师这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?生没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已.师回答得很好.(有的同学感到迷惑不解)师这样的叙述不能代替证明.这是同学们在解题时经常会犯的错误.实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明.(有的同学窃窃私语,确实是这样,并没有给出证明)师请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab.生采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab.师同学们思考一下,这位同学的证明是否正确?生正确.[教师精讲]师这位同学的证明思路很好.今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样.生实质一样,只是设问的形式不同而已.一个是比较大小,一个是让我们去证明.师这位同学回答得很好,思维很深刻.此处的比较法是用差和0作比较.在我们的数学研究当中,还有另一种“比较法”.(教师此处的设问是针对学生已有的知识结构而言)生作商,用商和“1”比较大小.师对.那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到.(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)[合作探究]师请同学们再仔细观察一下,等号何时取到.生当四个直角三角形的直角顶点重合时,即面积相等时取等号.(学生的思维仍建立在感性思维基础之上,教师应及时点拨)师从不等式a2+b2≥2ab的证明过程能否去说明.生当且仅当(a-b)2=0,即a=b时,取等号.师这位同学回答得很好.请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致.(大家齐声)一致.(此处意在强化学生的直觉思维与理性思维要合并使用.就此问题来讲,意在强化学生数形结合思想方法的应用)板书:一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立.[过程引导]师这是一个很重要的不等式.对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延.只有这样,我们用它来解决问题时才能得心应手,也不会出错.(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么.此时,教师应及时点拨、指引)师当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b.生完全可以.师 为什么?生 因为不等式中的a 、b ∈R. 师 很好,我们来看一下代替后的结果.板书:ab b a ≥+2即2b a ab +≤ (a >0,b >0). 师 这个不等式就是我们这节课要推导的基本不等式.它很重要,在数学的研究中有很多应用,我们常把2b a +叫做正数a 、b 的算术平均数,把ab 叫做正数a 、b 的几何平均数,即两个正数的算术平均数不小于它们的几何平均数.(此处意在引起学生的重视,从不同的角度去理解)师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢?(此时,同学们信心十足,都说能.教师利用投影片展示推导过程的填空形式) 要证:ab b a ≥+2, 只要证a +b ≥2ab ,要证②,只要证:a +b -2ab ≥0,要证③,只要证:,0)(2≥-b a显然④是成立的,当且仅当a =b 时,④中的等号成立,这样就又一次得到了基本不等式. (此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度) [合作探究]老师用投影仪给出下列问题.如图,AB 是圆的直径,点C 是AB 上一点,A C=a ,B C=b .过点C 作垂直于AB 的弦DD′,连结A D 、B D.你能利用这个图形得出基本不等式的几何解释吗?(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础) [合作探究]师 同学们能找出图中与a 、b 有关的线段吗?生 可证△A CD ∽△B CD,所以可得ab CD =.生 由射影定理也可得ab CD =.师 这两位同学回答得都很好,那ab 与2b a +分别又有什么几何意义呢?生ab 表示半弦长,2b a +表示半径长. 师 半径和半弦又有什么关系呢? 生 由半径大于半弦可得ab b a ≥+2. 师 这位同学回答得是否很严密?生 当且仅当点C 与圆心重合,即当a =b 时可取等号,所以也可得出基本不等式2b a ab +≤(a >0,b >0). 课堂小结师 本节课我们研究了哪些问题?有什么收获?生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a 2+b 2≥2ab . 生 由a 2+b 2≥2ab ,当a >0,b >0时,以a 、b 分别代替a 、b ,得到了基本不等式2b a ab +≤ (a >0,b >0).进而用不等式的性质,由结论到条件,证明了基本不等式. 生 在圆这个几何图形中我们也能得到基本不等式.(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式.并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a >0,b >0,及当且仅当a =b 时等号成立.在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法.以后,同学们要注意数形结合的思想在解题中的灵活运用.布置作业活动与探究:已知a 、b 都是正数,试探索b a 112+,ab ,2b a +,222b a +的大小关系,并证明你的结论.分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明.(方法二)创设几何直观情景.设A C=a ,B C=b ,用a 、b 表示线段CE、OE、CD、DF的长度,由CE>OE>CD>DF可得. 板书设计基本不等式2b a ab +≤的证明 一、实际情景引入得到重要不等式 课时小结a 2+b 2≥2ab二、定理若a >0,b >0,课后作业 则ab b a ≥+2证明过程探索:。
课 题:不等式的证明(3)教学目的:1. 掌握分析法证明不等式;2.理解分析法实质——执果索因;3.提高证明不等式证法灵活性教学重点:分析法教学难点:分析法实质的理解授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.重要不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a2.定理:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab b a 3:ab ≤222b a +,ab ≤(2b a +)2 4. ba ab +≥2(ab >0),当且仅当a =b 时取“=”号; 5.定理:如果+∈Rc b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”)6.推论:如果+∈R c b a ,,,那么33abc c b a ≥++ (当且仅当c b a ==时取“=”)7.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论8.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法 用综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法二、讲解新课: 1分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法2.用分析法证明不等式的逻辑关系是:12n B B B B A ⇐⇐⇐⇐⇐3.分析法的思维特点是:执果索因4.分析法的书写格式:要证明命题B 为真, 只需要证明命题1B 为真,从而有……这只需要证明命题2B 为真,从而又有…………这只需要证明命题A 为真而已知A 为真,故命题B 必为真三、讲解范例:例1 求证5273<+ 证明:因为5273和+都是正数,所以为了证明5273<+ 只需证明22)52()73(<+展开得 2021210<+即 2521,10212<<因为2521<成立,所以22)52()73(<+成立 即证明了5273<+说明:①分析法是“执果索因”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法②分析法论证“若A 则B ”这个命题的模式是:为了证明命题B 为真, 这只需要证明命题B 1为真,从而有……这只需要证明命题B 2为真,从而又有……这只需要证明命题A 为真而已知A 为真,故B 必真例 2 证明:通过水管放水,当流速相同时,如果水管截面的周长相等,那么截面是圆的水管比截面是正方形的水管流量大分析:当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为L ,则周长为L 的圆的半径为π2L ,截面积为21)2(πL T ;周长为L 的正方形边长为4L ,截面积为)4(L 所以本题只需证明2)4()2(L L >ππ证明:设截面的周长为L ,依题意,截面是圆的水管的截面面积为2)2(ππL ,截面是正方形的水管的截面面积为2)4(L ,所以本题只需证明22)4()2(L L >ππ 为了证明上式成立,只需证明 164222L L >ππ两边同乘以正数24L ,得411>π 因此,只需证明π>4 上式是成立的,所以22)4()2(L L >ππ 这就证明了,通过水管放水,当流速相同时,如果水管截面的周长相等,那么截面是圆的水管比截面是正方形的水管流量大说明:对于较复杂的不等式,直接运用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的四、课堂练习:已知a ,b ,c ,d ∈R ,求证:ac +bd ≤))((2222d c b a ++分析一:用分析法证法一:(1)当ac +bd ≤0时,显然成立(2)当ac +bd >0时,欲证原不等式成立,只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2)即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2即证2abcd ≤b 2c 2+a 2d 2即证0≤(bc -ad )2因为a ,b ,c ,d ∈R ,所以上式恒成立,综合(1)、(2)可知:原不等式成立分析二:用综合法证法二:(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2) =(ac +bd )2+(bc -ad )2≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd 故命题得证分析三:用比较法证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0,∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd ,即ac +bd 五、小结 :通过本节学习,要求大家在理解分析法的逻辑关系的基础上掌握分析法证明不等式,并加深认识不等式证明方法的灵活性,能综合运用证明不等式的各种方法六、课后作业: 1(1)若l o g a b 为整数,且l o g ab 1>l o g a b l o g b a 2,那么下列四个结论中正确的个数是( )①b1>b >a 2 ②l o g a b +l o g b a =0 ③0<a <b <1 ④ab -1=0 A 1 B C 3 D 答案:A(2)设x 1和x 2是方程x 2+px +4=0的两个不相等的实数根,则( ) A |x 1|>2且|x 2|>2 B |x 1+x 2|>4 C |x 1+x 2|<4 D |x 1|=4且|x 2|=1 答案:B(3)若x ,y ∈R +,且x ≠y ,则下列四个数中最小的一个是( )A )11(2y x + B y x + 答案:D(4)若x >0,y >0,且y x +≤a y x +成立,则a 的最小值是( )A 22 C 2 D 2答案:B(5)已知a ,b ∈R +,则下列各式中成立的是( )A cos 2θ·lg a +sin 2θ·lg b <lg(a +b )B cos 2θ·lg a +sin 2θ·lg b >lg(a +b )C a cos2θ·b sin2θ=a +bD a cos 2θ·b sin2θ>a +b答案:A(6)设a ,b ∈R +,且ab -a -b ≥1,则有( )A a +b ≥2(2+1)B a +b ≤+1C a +b ≥(2+1)2D a +b ≤2(2+1) 答案:A2用分析法证明:3(1+a 2+a 4)≥(1+a +a 2)2证明:要证3(1+a 2+a 4)≥(1+a +a 2)2只需证3[(1+a 2)2-a 2]≥(1+a +a 2)2即证3(1+a 2+a )(1+a 2-a )≥(1+a +a 2)2∵1+a +a 2=(a +21)2+43>0 只需证3(1+a 2-a )≥1+a +a 2展开得2-4a +2a 2≥0即2(1-a )2≥0成立故3(1+a 2+a 4)≥(1+a +a 2)2成立 3用分析法证明:ab +cd ≤22c a ⋅+证明:①当ab +cd <0时,ab +cd <2222d b c a +⋅+成立②当ab +cd ≥0时,欲证ab +cd ≤2222d b c a +⋅+只需证(ab +cd )2≤(2222d b c a +⋅+)2展开得a 2b 2+2abcd +c 2d 2≤(a 2+c 2)(b 2+d 2)即a 2b 2+2abcd +c 2d 2≤a 2b 2+a 2d 2+b 2c 2+c 2d 2即2abcd ≤a 2d 2+b 2c 2只需证a 2d 2+b 2c 2-2abcd ≥0即(ad -bc )2≥0因为(ad -bc )2≥0成立 所以当ab +cd ≥0时,ab +cd ≤2222d b c a +⋅+成立综合①②可知:ab +cd ≤2222d b c a +⋅+成立 4用分析法证明下列不等式: (1)求证:15175+>+(2)求证:4321---<---x x x x (x ≥4) (3)求证:a ,b ,c ∈R +,求证:)3(3)2(23abc c b a ab b a -++≤-+ 证明:(1)欲证15175+>+只需证22)151()75(+>+展开得12+235>16+215即235>4+215只需证(235)2>(4+215)2即4>15这显然成立 故15175+>+成立(2)欲证4321---<---x x x x (x ≥4) 只需证2341-+-<-+-x x x x (x ≥4) 即证22)23()41(-+-<-+-x x x x (x ≥4)展开得2x -5+22325241-⋅-+-<-⋅-x x x x x 即)2)(3()4)(1(--<--x x x x 只需证[)4)(1(--x x ]2<[)2)(3(--x x ]2即证x 2-5x +4<x 2-5x +6即4<6这显然成立 故4321---<---x x x x (x ≥4)成立(3)欲证2(ab b a -+2)≤3(33abc c b a -++) 只需证a +b -2ab ≤a +b +c -33abc即证c +2ab ≥33abc∵a ,b ,c ∈R +∴c +2ab =c +ab +ab ≥3333abc ab ab c =⋅⋅∴c +2ab ≥33abc 成立 故原不等式成立 5若a ,b >0,2c >a +b ,求证:(1)c 2>ab(2)c -ab c -2<a <c +ab c -2证明:(1)∵ab ≤(2b a +)2<c 2 ∴ab <c 2(2)欲证c -ab c -2<a <c +ab c -2只需证-ab c -2<a -c <ab c -2即|a -c |<ab c -2即a 2-2ac +c 2<c 2-ab只需证a (a +b )<2ac∵a >0,只要证a +b <2c (已知) 故原不等式成立 6已知关于x 的实系数二次方程x 2+ax +b =0,有两个实数根α,β,证明:(1)如果|α|<2,|β|<2,那么2|α|<4+b 且|b |<4(2)如果2|α|<4+b 且|b |<4,那么|α|<2,|β|<2证明:依题设及一元二次方程根与系数的关系(韦达定理)得:α+β=-a ,αβ=b 则有:(1)(2)等价于证明|α|<2,|β|<2⇔2|α+β|<4+αβ,且|αβ|<4 2244244()(4)αβαβαβαβαβαβ⎧<⎧<⎪⎪⇔⎨⎨+<++<+⎪⎪⎩⎩ 2222444160αβαβαβ⎧<⎪⇔⎨--+>⎪⎩224(4)(4)0αβαβ⎧<⎪⇔⎨-->⎪⎩ 2222444444αβαβααββ⎧<⎧<⎪⎪⇔><⎨⎨⎪⎪><⎩⎩或442222αβαβααββ⎧<⎧<⎪⎪⇔><⎨⎨⎪⎪><⎩⎩或422, 2.2αβααββ⎧<⎪⇔<⇔<<⎨⎪<⎩七、板书设计(略)八、课后记:。