列管式换热器(化工071杨杰)
- 格式:pdf
- 大小:432.76 KB
- 文档页数:30
列管式换热器阻力损失范围下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!列管式换热器是工业领域中常见的一种热交换设备,用于加热或冷却流体。
列管式换热器实验报告列管式换热器实验报告一、引言换热是工程中常见的过程,而列管式换热器是一种常用的换热设备。
本实验旨在通过实际操作和数据记录,探究列管式换热器的换热性能和工作原理。
二、实验目的1. 了解列管式换热器的基本结构和工作原理;2. 掌握列管式换热器的性能参数测试方法;3. 分析不同操作条件下列管式换热器的换热效果。
三、实验装置和方法1. 实验装置:实验装置包括列管式换热器、水泵、流量计、温度计等设备;2. 实验方法:首先,将冷水和热水分别通过水泵送入列管式换热器,通过调节流量计控制水流速度。
然后,分别测量冷水和热水的进口温度和出口温度,并记录下来。
四、实验结果与分析通过实验记录的数据,我们可以计算出列管式换热器的换热效果。
根据实验数据,我们可以绘制出冷水和热水的温度变化曲线,并计算出换热器的传热系数。
五、实验误差分析在实验过程中,由于设备和操作的限制,可能会出现一定的误差。
例如,温度计的精确度、流量计的准确度等都会对实验结果产生影响。
为了减小误差,我们可以采取一些措施,如多次重复实验、使用更精确的仪器等。
六、实验结论通过实验数据的分析,我们可以得出以下结论:1. 列管式换热器能够有效地实现冷热介质之间的热量传递;2. 换热器的传热效果受到流速、温差等因素的影响;3. 实验误差对结果的影响不可忽视,需要进行精确的数据处理。
七、实验应用与展望列管式换热器在工业生产中有着广泛的应用,例如化工、制药、食品等领域。
通过进一步研究和改进,可以提高换热器的换热效率和节能性能。
八、总结通过本次实验,我们深入了解了列管式换热器的工作原理和性能参数测试方法。
通过实际操作和数据记录,我们对换热器的换热效果有了更深入的认识。
实验结果对于工程实践具有一定的指导意义。
九、参考文献[1] 张三, 李四. 列管式换热器的研究进展[J]. 化工技术与开发, 2018, 45(3): 56-60.[2] 王五, 赵六. 列管式换热器的性能测试与分析[J]. 热力学与能源工程, 2019,52(2): 78-82.以上是对列管式换热器实验的简要报告,通过实验的操作和数据记录,我们对该设备的工作原理和性能有了更深入的了解。
列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。
本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。
一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。
它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。
二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。
2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。
3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。
4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。
5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。
6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。
7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。
8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。
三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。
2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。
3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。
4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。
5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。
综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。
设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。
同时,还需要计算换热器的传热系数、压降和热力学参数等。
化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
化工原理课程设计任务书材化学院专业班学生姓名学号:设计题目:列管式换热器设计设计时间:200 年月日——200 年月日指导老师:吴世彪设计任务:某炼油厂用柴油将原油预热。
柴油和原油的有关参数如下表, 两侧的污垢热阻均可取1.72×10-4m2·K/W,换热器热损失忽略不计,管程的绝对粗糙度ε=0.1mm,要求两侧的阻力损失均不5设计内容:(1) 设计方案的确定及流程说明(2) 换热面积的估算(3) 管子尺寸及数目计算(4) 管子在管板上的排列(5) 壳体内径的确定(6) 附件设计(选型)(7) 换热器校核(包括换热面积、压力降等)(8) 设计结果概要或设计一览表(9) 对本设计的评述或有关问题的分析讨论(10)参考文献图纸要求:1、换热器化工设备图(1#图纸)安徽建筑工业学院材化学院化工系目录第一章文献综述 ···················································································································第一节概述··················································································································一、换热器的概念二、换热器的分类三、列管式换热器的标准简介四、列管式换热器选型的工艺计算步骤第二节换热器设备应满足的基本要求········································································一、合理的实现所规定的工艺条件二、安全可靠性三、安装、操作及维护方便四、经济合理第三节列管式换热器结构及基本参数········································································一、管束及壳程分程二、传热管三、管的排列及管心距四、折流板和支撑板五、旁路挡板和防冲挡板六、其他主要附件七、列管式换热器结构基本参数第四节设计计算的参数选择·······················································································一、冷却剂和加热剂的选择二、冷热流体通道的选择三、流速的选择四、流向的选择第二章列管式换热器的设计计算·························································································第一节换热面积的估算 ································································································一、计算热负荷二、估算传热面积第二节换热器及主要附件的试选 ·················································································一、试选管型号二、换热器结构一些基本参数的选择第三节换热器校核 ········································································································一、核算总传热系数二、核算压强降第四节设计结果一览表 ································································································第五节设计总结及感想 ································································································一、设计总结二、感想参考文献 ···························································································································第一章 文献综述(略)第二章 列管式换热器的设计计算 第一节 换热面积的估算一、计算热负荷(不考虑热损失)由于设计条件所给为无相变过程。
化工原理列管式换热器设计[1]工艺设计书列管式换热器设计摘要:首先,根据设计任务书的要求,结合换热介质的物性标准确定传热器的类型。
其次,根据流体流动及传热等章节中关于流动阻力、传热面积的计算,初步确定达到设计要求所要的传热面积,确定传热器的大致尺寸,尔后经过压降校核、传热校核,确定传热器尺寸。
最后,通过化工机械设计确定换热器各附件的尺寸。
关键词:列管式换热器设计任务书装配图The Design of Tubular Heat ExchangerSummary: First of all, according to the design plan requirements, we can combined with heat transfer medium of heat transfer properties of the standard to determine the type of device. Second, according to theories of fluid flow and heat transfer calculations on the flow resistance, heat transfer area, we can initially set to meet the heat transfer area of the design requirements, and to determine the approximate size ,and then to determine size after checking the pressure drop, heat transfer. Finally , according to theories of chemical mechanical design ,we can determine the size of all attachments of heat exchangers.Keywords: tube heat exchanger design plan assembly drawing第一部分化工设备设计任务书一、设计名称:列管式换热器的设计二、设计任务及操作条件:1、设计任务:处理能力:W S t/a煤油;19.8×105 设备形式:卧式列管式换热器。
列管式换热器的基本知识列管式换热器列管式换热器又称管壳式换热器,是目前石油化工生产中应用最广泛的一种换热器。
它与其它换热器相比,主要优点是单位体积所具有的传热面积大,传热效果好,结构比较简单,处理能力大,适应性强,操作弹性大,尤其在高温、高压和大型装置中应用更为普遍。
列管换热器的构造原理:列管换热器主要由壳体、管束、管板、折流挡板和封头等组成。
一种流体在管内流动。
其行程称为管程;另一种流体在管外流动,其行程称为壳程。
管束的壁面为传热面。
为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。
折流挡板不仅可防止流体短路、增加流体流速,还可迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。
列管换热器主要特点:1.耐腐蚀性:聚丙烯具有优良的耐化学品性,对于无机化合物,不论酸,碱、盐溶液,除强氧化性物料外,几乎直到100℃都对其无破坏作用,对几乎所有溶剂在室温下均不溶解,一般烷、径、醇、酚、醛、酮类等介质上均可使用。
2.耐温性:聚丙烯塑料熔点为164-174℃,因此一般使用温度可达110-125℃。
3.无毒性:不结垢,不污染介质,也可用于食品工业。
4.重量轻:对设备安装维修极为方便。
列管换热器应用范围:本设备适用于在化工、轻工、冶金、制药、食品、化纤等工业中做各种用途的换热设备,尤宜于做冷凝器,代替原有的不锈钢,搪瓷、石墨、玻璃冷凝器。
使用后效果显著。
无锡市凌云换热器有效公司是生产列管式换热器的专业厂家,多年来,在各大专院校、科研单位的鼎立相助和各用户单位的大力支持下,已形成了一定规模的换热器生产体系。
该厂以优质的产品和完善的售后服务使企业树立了良好的形象,并得到广大用户的一致好评和信赖。
列管式换热器选型在实际设计选型中,往往是已知高温流体与低温流体的两侧进出口温度,在做工艺设计选型时,需要考虑的是有尽可能小的换热面积下,有尽可能大的换热速率,以及较低的设备造价及施工费。
另外,在操作运行及维护清洗较方便的前提下考虑换热器的设计选型5 h3 A1 T, j3 G1、管壳式换热器是最常用的普通结构,它包括:固定管板式换热器、U型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。
,w7 x, o) E4 }: A固定管板式换热器具有结构简单、重量轻、造价低等优点;缺点就是由于热膨胀而引起管子拉弯。
U型管壳式换热器就是克服此缺点将管子作成“ U”型,- 端固定另一端活动,使得换热器不受膨胀的影响,结构较简单,重量轻,其缺点是不能机械清洗、管子不便拆换、单位容量及单位质量的传热量低,适用于温差大、管内流体介质比较干净的场合。
! B8 U- P% R7 p% @; d: |$ L H& | v带膨胀节式换热器可解决膨胀问题,用膨胀接头的结构,故适用温差大的流体和高压流体,因为可将接头拆下来进行清洗,所以可处理易结垢流体,而对低压气体则不适宜,但其缺点就是制造复杂。
+ | t1 S* iO N& ~. WO v7 g 浮头式管壳换热器,其浮头不与外壳相连,可自由伸缩,这样既解决了热膨胀的问题,也方便清洗,检修时可将管芯抽出即可。
* a. ZO k- ~7 H& H 对于固定管板、列管、套管式换热器每一外壳容积为1m3 时,其传热面积约为30〜40m3。
对U型管壳式换热器、浮头式换热器每一外壳容积为1m3时,其传热面积为70m2左右。
)P9 T; a) J9 D- D" H: Y2、板式换热器,由于板式换热器的传热面上可以压出凹凸形排液槽,在较3000 低的雷诺数条件下既可出现紊流状态,故换热系数较高,一般可达5000Kcal/m2.h. C,与同样流速下的管壳式换热器相比,此值约为管壳式换热器的传热系数的3〜5倍,虽然,这时板式换热器的阻力会大一些,如在同样耗功的条件下相比,则板式换热器的放热系数比管壳式的高一倍左右。
列管式换热器说明书⽬录⼀、设计任务 (2)⼆、概述与设计⽅案简介 (3)2.1 概述 (3)2.2设计⽅案简介 (3)2.2.1 换热器类型的选择 (3)2.2.2流径的选择 (5)2.2.3流速的选择 (5)2.2.4材质的选择 (6)2.2.5管程结构 (6)2.2.6 换热器流体相对流动形式 (6)三、⼯艺及设备设计计算 (6)3.1确定设计⽅案 (7)3.2确定物性数据 (7)3.3计算总传热系数 (7)3.4计算换热⾯积 (8)3.5⼯艺尺⼨计算 (8)3.6换热器核算 (10)3.6.1传热⾯积校核 (10)3.6.2.换热器内压降的核算 (11)四、辅助设备的计算及选型 (12)4.1拉杆规格 (12)4.2接管 (12)五、换热器结果总汇表 (13)六、设计评述 (14)七、参考资料 (14)⼋、主要符号说明 (14)九、致谢 (15)⼀、设计任务⼆、概述与设计⽅案简介2.1 概述在⼯业⽣产中⽤于实现物料间热量传递的设备称为换热设备,即换热器。
换热器是化⼯、动⼒、⾷品及其他许多部门中⼴泛采⽤的⼀种通⽤设备。
换热器的种类很多,根据其热量传递的⽅法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。
间壁式换热器⼜称表⾯式换热器或间接式换热器。
在这类换热器中,冷、热流体被固体壁⾯隔开,互不接触,热量从热流体穿过壁⾯传给冷流体。
该类换热器适⽤于冷、热流体不允许直接接触的场合。
间壁式换热器的应⽤⼴泛,形式繁多。
将在后⾯做重点介绍。
直接接触式换热器⼜称混合式换热器。
在此类换热器中,冷、热流体相互接触,相互混合传递热量。
该类换热器结构简单,传热效率⾼,适⽤于冷、热流体允许直接接触和混合的场合。
常见的设备有凉⽔塔、洗涤塔、⽂⽒管及喷射冷凝器等。
蓄热式换热器⼜称回流式换热器或蓄热器。
此类换热器是借助于热容量较⼤的固体蓄热体,将热量由热流体传给冷流体。
当蓄热体与热流体接触时,从热流体处接受热量,蓄热体温度升⾼后,再与冷流体接触,将热量传给冷流体,蓄热体温度下降,从⽽达到换热的⽬的。