沥青基及聚丙烯腈基碳纤维的功能和用途
- 格式:pdf
- 大小:206.99 KB
- 文档页数:3
聚丙烯腈基碳纤维作者:黄夏来源:《科学与财富》2011年第09期[摘要] 本文对聚丙烯腈基碳纤维的微观和宏观结构进行了阐述,以及聚丙烯腈基碳纤维的制备方法、工艺流程以及生产过程中纤维形态结构和化学结构的变化以及碳纤维的表面改性,并从纤维结构的特点上阐述了聚丙烯腈独特的应用。
[关键词] 聚丙烯腈基碳纤维结构性能制备应用碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料,是指纤维化学组成中碳元素占总质量90%以上的纤维。
碳纤维的微观结构类似人造石墨,是乱层石墨结构。
目前碳纤维的制备是利用现有的人造纤维或合成纤维,如PAN纤维、粘胶纤维等,经过预氧化热稳定后,再经炭化等工艺,间接制造具有一定性能的碳纤维,或者采用化学气相沉积方法制备纳米碳纤维或短碳纤维。
本文主要介绍以聚丙烯腈为前驱体制造的综合性能较好的碳纤维的结构性能,制备以及应用前景。
1、聚丙烯腈基碳纤维的结构碳纤维中主要是石墨和过渡态两种形式,而过渡态碳包括无定形碳、乱层石墨结构和一些三维石墨结构。
1.1微观结构构成碳纤维的基本结构是sp2型碳的原子条带组成,类似于石墨结构中的六元环网面但是在碳纤维中这样的二维面是不完整的,具有不规则的外形,带面内包含有空洞,原子错位等缺陷。
1.2宏观结构普遍认为碳纤维是由平行于纤维轴的二维乱层石墨微晶组成,并具有晶相结构、非晶相结构和针状微孔。
在乱层石墨结构中,石墨层片是基本的结构单元,一般由数十张层片组成石墨微晶,由石墨微晶再组成原纤维,最后由原纤维组成碳纤维单丝。
1.3形态结构PAN基碳纤维截面多为圆形或椭圆形,表面可以看到原纤结构。
碳纤维的纵向表面有许多与纤维轴平行的不均匀沟纹,在截面上还有皮芯结构及纤维表层圆周取向结构。
2、聚丙烯腈基碳纤维的性能碳纤维的比重轻、密度小具有超高强力与模量且纤维细而柔软具有很好的耐磨、耐疲劳、减震吸能等物理机械性能,化学性质稳定,耐酸、碱和盐腐蚀,可形成多孔表面活性、吸附性强的活性炭纤维。
聚丙烯腈纤维之物理化学性质及其应用与发展一、前言聚丙烯腈纤维,学名Polyacrylonitril,商品名为Acrylic,大陆称为腈纶。
聚丙烯腈纤维为今日已工业化之合成纤维中,最多采多姿的纤维。
聚丙烯腈纤维的定义为“属一种人造纤维形成这种纤维的物质是任何长练的聚合体所组成的,此聚合体至少含有85%以上之聚丙烯腈成分”。
而经改质过的聚丙烯腈纤维称为改质聚丙烯腈纤维(modacrylic fiber),其中聚丙烯腈成分占85%以下但至少须含有35%以上(Textile Fiber Product Identification Act 1960)。
聚丙烯腈纤维之分类聚丙烯腈纤维为高熔点之聚合物,例如奥隆(Orlon)之熔点为238℃~249℃,聚丙烯腈纤维之熔点约在240℃左右,故加热至融点时容易变质,不能融熔纺丝,一班均采用融液纺丝法。
早期因为无适当的溶剂,对于溶剂的选择上,为最大的问题点。
直到1948年,美国杜邦公司(Du pont)发现DMF(dimethyl formamide二甲基甲酰胺)为聚丙烯腈纤维之最佳的溶剂,而在1950年大量生产,命名为奥隆(Orlon)。
因为聚丙烯腈单独聚合时染色较不易,故除了奥隆及极少数商品之外,现在市场上出售的聚丙烯腈纤维皆为其共聚合物(copolymer)。
例如维尼龙N为丙烯腈与醋酸乙烯酯,压克力隆为丙烯腈与苯乙烯之共聚合物。
而共聚合之意义在于强化物理性质与改善染色性(导入染色座席使盐基性染料可染或酸性染料可染),但各个制造厂商对于所使用之共聚合原料均极端的保守秘密,不做任何明确的说明。
纯粹聚丙烯腈纤维具有甚高的强度,而改质的聚丙烯腈纤维则强度较低,与黏液嫘萦差不多。
各种聚丙烯腈纤维的纵侧面都很类似,唯有截面的形状有异。
Orlon截面之形态 Orlon纵侧面之形态Acrilan截面之形态 Acrilan纵侧面之形态特有特有性质(1)短纤维柔软、蓬松,有像羊毛般给人温暖的感觉。
沥青基碳纤维和pan碳纤维1.引言1.1 概述在概述部分,我们将介绍沥青基碳纤维和PAN碳纤维的基本概念和背景信息。
沥青基碳纤维和PAN碳纤维都是目前广泛应用于不同领域的高性能纤维材料。
沥青基碳纤维是以改性沥青为基材,在高温条件下碳化得到的连续纤维。
它具有较高的热稳定性、力学性能和疲劳性能,被广泛应用于航空航天、汽车制造、建筑材料等领域。
沥青基碳纤维的制备方法主要包括沥青改性、纺丝、碳化等工艺步骤。
PAN碳纤维是以聚丙烯腈(PAN)为主要原料制备得到的连续纤维。
它具有高强度、高模量和优异的特性,被广泛应用于航空航天、船舶、运动器材等领域。
PAN碳纤维的制备方法主要包括聚合纺丝、胶纺丝、气相重聚和高温碳化等工艺步骤。
本文将重点介绍沥青基碳纤维和PAN碳纤维的特性和制备方法,并探讨它们在不同领域的应用。
通过对比分析两种碳纤维的特点,我们可以更好地理解它们的适用范围和优势。
此外,我们也将展望沥青基碳纤维和PAN碳纤维在未来的发展方向,以期为相关领域的研究和应用提供参考和指导。
在接下来的章节中,我们将详细介绍沥青基碳纤维和PAN碳纤维的特性、制备方法和应用领域。
通过全面的研究和讨论,我们可以为碳纤维材料的发展和应用提供更深入的了解和见解。
1.2文章结构文章结构部分的内容可以写成以下形式:1.2 文章结构本文将以两个主要部分来探讨沥青基碳纤维和PAN碳纤维。
首先,我们将详细介绍沥青基碳纤维,包括其特性和制备方法。
接着,我们将探讨沥青基碳纤维在不同领域的应用。
其次,我们将转向PAN碳纤维,同样介绍其特性和制备方法,并讨论其应用领域。
最后,我们将通过对沥青基碳纤维和PAN碳纤维进行比较,总结两者的差异和优势。
此外,我们还将展望未来发展方向,探讨这两种碳纤维在新兴领域中的应用前景。
通过本文的阅读,读者将可以深入了解沥青基碳纤维和PAN碳纤维的特性、制备方法及其在不同领域的应用,为碳纤维领域的研究和开发提供有价值的参考。
聚丙烯腈基碳纤维布相关标准聚丙烯腈基碳纤维布是一种重要的新型纤维材料,具有轻质、高强度、耐腐蚀等优点,广泛应用于航空航天、船舶、汽车、建筑、电力等领域。
为了确保聚丙烯腈基碳纤维布的质量,相关标准起到了重要的作用。
本文将介绍聚丙烯腈基碳纤维布相关的国际、国家标准。
首先,国际上最常用的聚丙烯腈基碳纤维布标准是ISO 18333-1:2016。
该标准规定了聚丙烯腈基碳纤维布的分类、术语和定义、试验方法等内容。
例如,该标准要求对聚丙烯腈基碳纤维布的线密度、纤维直径、机械性能进行测试和评估。
此外,ISO 18333-1:2016还对产品的标识、包装、运输等方面进行了要求,以确保各个环节的质量控制和产品的可追溯性。
在国内,对聚丙烯腈基碳纤维布的标准主要有两个,分别是GB/T 30581-2014和HG/T 3197-2010。
其中,GB/T 30581-2014是国家标准,规定了聚丙烯腈基碳纤维布的技术要求、试验方法、标志、包装和质量证明等方面。
该标准要求对聚丙烯腈基碳纤维布的化学成分、线密度、纤维直径、机械性能、热稳定性、耐腐蚀性等进行测试和评估,以确保产品的可靠性和稳定性。
另外,HG/T 3197-2010是化工行业标准,适用于聚丙烯腈基碳纤维布的设计、制造、验收等方面。
该标准要求对聚丙烯腈基碳纤维布的纤维密度、线密度、纤维直径、机械性能、热稳定性、耐腐蚀性等进行测试和评估,同时还对质量控制的原则、方法进行了规定,以确保产品的一致性和质量稳定。
除了上述国际标准和国家标准,还有一些行业标准也涉及到了聚丙烯腈基碳纤维布。
例如,航空航天领域常用的军用标准GJB 2868-2012,该标准规定了航空航天用聚丙烯腈基碳纤维布的技术要求、试验方法和使用环境等方面。
该标准要求对聚丙烯腈基碳纤维布的纤维直径、线密度、表面密度、拉伸强度等进行测试和评估,以确保产品在特定环境下的可靠性和性能。
综上所述,聚丙烯腈基碳纤维布相关的标准既包括国际标准,也包括国家标准和行业标准。
聚丙烯腈基碳纤维简介及其发展概况摘要:聚丙烯腈基碳纤维为人造合成纤维,是一种力学性能优异的新材料,在航空航天、建筑、体育、汽车、医疗等领域得到广泛的应用。
生产碳纤维采用特殊组分且性能优异的专用PAN基纤维即PAN原丝。
本文简要介绍国内外PAN基碳纤维的发展概况和现状,PAN基碳纤维的应用,重点介绍了PAN基碳纤维的结构、性能、纺丝、制备等技术,以及分析我国碳纤维与世界先进国家之间的差距及存在的问题且提出一些建设性意见。
关键词:聚丙烯腈基碳纤维纺丝国内外发展比较差距碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。
碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。
PAN基生产工艺简单,产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的的品种。
一、碳纤维及其发展史1.1碳纤维的先驱——斯旺和爱迪生碳纤维的起源可追溯到19世纪60年代,1860年,英国人约瑟夫·斯旺用碳丝制作灯泡的灯丝早于美国人爱迪生。
十九世纪后期他俩各自设计出了白炽灯泡.他是研制碳丝的第一人,同时他的利用挤压纤维素成纤技术为后来合成纤维的问世起到了启迪作用。
爱迪生解决了碳丝应用与白炽灯的灯丝问题,他发明的电灯,这也是碳丝第一次得到了实际应用。
1910年库里奇发明了拉制钨丝取代了碳丝作为灯丝,从此碳丝的研制工作停止了下来。
指导了20世纪50年代碳丝的研制又重新出现在现在的材料科学的舞台上,但研究的目的是为了解决战略武器的耐高温和耐烧耐腐蚀材料,今天的碳纤维已经形成了一个举足轻重的新型材料体系,已广泛应用于航空、军事和民用工业领域,而且仍在强劲发展.1.2碳纤维的三大原料路线黏胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维,其中以聚丙烯腈基碳纤维应用最为广泛,也是本文将要为大家介绍的。
聚丙烯腈(PAN)基碳纤维复合材料及其在大飞机上的应用徐志鹏北京化工研究院摘要自2007年国务院公布国产大飞机战略以来,这一领域的发展获得了持续的关注。
然而当今的国际大飞机市场被波音和空客两大公司所垄断,国产大飞机想要赢得市场面临多方面的挑战,其中之一就是高性能复合材料的应用。
聚丙烯腈基碳纤维复合材料诞生五十多年以来,发展迅猛,已经从传统的航空航天领域逐渐向汽车、风电等领域拓展市场,未来市场潜力巨大。
而目前中国仅能生产相当于T300,T700性能的碳纤维,不仅无法满足国产大飞机的材料需求,而且该领域的技术短板也限制了很多行业的发展。
本文在综合了前人研究成果的基础上,介绍了碳纤维的发展历程,PAN基碳纤维的关键技术和碳纤维复合材料在商用大飞机上的应用情况。
笔者认为,有市场竞争力的国产大飞机必须大量使用高质量的碳纤维复合材料,而突破PAN基碳纤维复合材料技术壁垒的关键在于生产高质量的碳原丝,其技术突破点在于干喷湿纺和凝胶纺丝生产技术的掌握与改进。
关键字:PAN基碳纤维,大飞机,碳原丝,干喷湿纺, 凝胶纺丝ABSTRACTLarge Plane Project has been fascinating Chinese public for years since its first announcement by State Council in 2007. China-made large plane is now facing varieties of challenge, while Boeing and Airbus are on the monopoly of market, one of the main challenge is the application of carbon fiber composite material. PAN based carbon fiber composite has witnessed a boost since it’s born in the past 50years, and now is expanding its application from space project to automobile and wind power generation projects. Carbon fiber industry in China cannot satisfy the demand of large plane project and many other industrial demands, because we can only made carbon fiber as well as T300 and T700 by our self. This article introduced the history of carbon fiber, key technology of PAN based carbon fiber and how PAN based carbon fiber is used in commercial large aircrafts. The author of this article believes the China-made large plane must use plenty of carbon fiber based composite to win the market and the key technology we need to break through is dry-wet spinning and gel spinning technique to make high performance PAN-based carbon fiber precursor.Key words: PAN based carbon fiber, large plane, carbon fiber precursor前言国产大飞机战略自发布以来,引发了广泛的关注。
聚丙烯腈基碳纤维性质及其性能方面研究王立楠100201班摘要:汇述了碳纤维应用领域、世界碳纤维市场、世界碳纤维制造、聚丙烯腈(PAN)基碳纤维生产商与制造工艺以及中国碳纤维发展现状与趋势,尤其近年来在大飞机重大专项的牵引下,我国各地争上千吨级碳纤维项目,而形成“碳纤维热”。
同时,为缩小与国外先进水平的较大差距,提出“突破PAN原丝关键技术瓶颈,避免重复引进和重复研究,加快提升自主创新能力”3项发展建议。
关键词:碳纤维;应用领域;市场需求;产能;生产Study on polyacrylonitrile based carbon fiber properties and performanceLi’nan Wang class:100201Abstract: The carbon fiber application fields, world’s market, capacities of foreign producers and their extending plan, production technologies and the development situation & trend of carbon fiber in China are illustrated, especiallyin the drawing of China’s big airplane important project, several 1 000 t/a carbon fiber programs were constructed all over the country, forming “overheat”in carbon fiber in recent years. In the same time, three suggestions are put forward in order to shorten the distances with foreign companies, they are “making a breakthrough at the bottleneck of PAN precursor key technologies, avoiding the repeated imports of foreign equipment and re -searches, accelerating and raising the ability of innovation ”.Key words: carbon fiber; application territory; market demand; production capacity; advance1、聚丙烯腈(PAN)基碳纤维的用途PAN碳纤维是军事工业用量大、使用面广、地位极为重要的关键性高性能纤维材料,是各类军用高强、高模、高强高模型复合材料的原料及技术基础。
通用型沥青基炭纤维复合材料的发展和应用分析摘要:近年来,随着人们对可持续发展和环境保护的重视,新型材料的研发和应用受到高度关注。
通用型沥青基炭纤维作为一种新兴材料,具有独特的结构和性能,被广泛应用于道路建设、环境保护和能源领域。
因此,本文主要就“通用型沥青基炭纤维的发展和应用”进行探讨,旨在推动可持续发展和环境友好型的社会建设。
关键词:通用型;沥青;基炭纤维;发展;应用前言通用型沥青基炭纤维是一种由沥青基质和炭纤维增强相结合而成的复合材料。
其具有独特的结构和性能,既融合了沥青的黏性和可塑性,又借助炭纤维的高强度和高导电性。
这使得通用型沥青基炭纤维在多个领域都具备广泛的应用潜力。
一、通用型沥青基炭纤维的应用领域1. 通用型沥青基炭纤维在道路建设中的应用通用型沥青基炭纤维作为一种有效的路面增强剂,在道路建设中发挥着重要的作用。
路面增强剂是指添加到沥青混合料中的材料,旨在提高路面的强度和抗裂性能。
炭纤维的高强度和抗拉性使其成为理想的增强材料。
通过将炭纤维与沥青基质相结合,可以形成具有良好强度和韧性的复合材料,从而改善路面的性能。
以下进行详细说明:第一,炭纤维具有出色的强度特性,因此可以有效地增加路面的整体强度。
一方面,添加炭纤维可以增加材料的抗拉强度和模量,使得路面能够更好地承受交通负荷和外部应力的作用。
以减少路面的变形和损坏,从而提高路面的稳定性。
另一方面,通用型沥青基炭纤维在沥青混合料中的添加可以提高路面的抗裂性能,防止裂纹的产生和扩展。
因为炭纤维的高抗拉性和高模量可以吸收和分散应力,减轻沥青面层的应力集中,从而阻止裂纹的形成和扩展。
这对于解决路面龟裂、疲劳裂缝和反射裂缝等病害问题具有重要意义。
此外,炭纤维的添加可以显著提高路面的抗老化性能。
因为炭纤维具有较好的耐久性,降低了沥青材料的硬化和老化速度,使得路面能够更好地应对气候变化、温度变化和交通负荷的影响,从而保持较长时间的稳定性和功能性。
第二,炭纤维的高导电性能赋予了其在防水方面的独特优势。