沥青基及聚丙烯腈基碳纤维的功能和用途
- 格式:pdf
- 大小:206.99 KB
- 文档页数:3
聚丙烯腈基碳纤维作者:黄夏来源:《科学与财富》2011年第09期[摘要] 本文对聚丙烯腈基碳纤维的微观和宏观结构进行了阐述,以及聚丙烯腈基碳纤维的制备方法、工艺流程以及生产过程中纤维形态结构和化学结构的变化以及碳纤维的表面改性,并从纤维结构的特点上阐述了聚丙烯腈独特的应用。
[关键词] 聚丙烯腈基碳纤维结构性能制备应用碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料,是指纤维化学组成中碳元素占总质量90%以上的纤维。
碳纤维的微观结构类似人造石墨,是乱层石墨结构。
目前碳纤维的制备是利用现有的人造纤维或合成纤维,如PAN纤维、粘胶纤维等,经过预氧化热稳定后,再经炭化等工艺,间接制造具有一定性能的碳纤维,或者采用化学气相沉积方法制备纳米碳纤维或短碳纤维。
本文主要介绍以聚丙烯腈为前驱体制造的综合性能较好的碳纤维的结构性能,制备以及应用前景。
1、聚丙烯腈基碳纤维的结构碳纤维中主要是石墨和过渡态两种形式,而过渡态碳包括无定形碳、乱层石墨结构和一些三维石墨结构。
1.1微观结构构成碳纤维的基本结构是sp2型碳的原子条带组成,类似于石墨结构中的六元环网面但是在碳纤维中这样的二维面是不完整的,具有不规则的外形,带面内包含有空洞,原子错位等缺陷。
1.2宏观结构普遍认为碳纤维是由平行于纤维轴的二维乱层石墨微晶组成,并具有晶相结构、非晶相结构和针状微孔。
在乱层石墨结构中,石墨层片是基本的结构单元,一般由数十张层片组成石墨微晶,由石墨微晶再组成原纤维,最后由原纤维组成碳纤维单丝。
1.3形态结构PAN基碳纤维截面多为圆形或椭圆形,表面可以看到原纤结构。
碳纤维的纵向表面有许多与纤维轴平行的不均匀沟纹,在截面上还有皮芯结构及纤维表层圆周取向结构。
2、聚丙烯腈基碳纤维的性能碳纤维的比重轻、密度小具有超高强力与模量且纤维细而柔软具有很好的耐磨、耐疲劳、减震吸能等物理机械性能,化学性质稳定,耐酸、碱和盐腐蚀,可形成多孔表面活性、吸附性强的活性炭纤维。
聚丙烯腈纤维之物理化学性质及其应用与发展一、前言聚丙烯腈纤维,学名Polyacrylonitril,商品名为Acrylic,大陆称为腈纶。
聚丙烯腈纤维为今日已工业化之合成纤维中,最多采多姿的纤维。
聚丙烯腈纤维的定义为“属一种人造纤维形成这种纤维的物质是任何长练的聚合体所组成的,此聚合体至少含有85%以上之聚丙烯腈成分”。
而经改质过的聚丙烯腈纤维称为改质聚丙烯腈纤维(modacrylic fiber),其中聚丙烯腈成分占85%以下但至少须含有35%以上(Textile Fiber Product Identification Act 1960)。
聚丙烯腈纤维之分类聚丙烯腈纤维为高熔点之聚合物,例如奥隆(Orlon)之熔点为238℃~249℃,聚丙烯腈纤维之熔点约在240℃左右,故加热至融点时容易变质,不能融熔纺丝,一班均采用融液纺丝法。
早期因为无适当的溶剂,对于溶剂的选择上,为最大的问题点。
直到1948年,美国杜邦公司(Du pont)发现DMF(dimethyl formamide二甲基甲酰胺)为聚丙烯腈纤维之最佳的溶剂,而在1950年大量生产,命名为奥隆(Orlon)。
因为聚丙烯腈单独聚合时染色较不易,故除了奥隆及极少数商品之外,现在市场上出售的聚丙烯腈纤维皆为其共聚合物(copolymer)。
例如维尼龙N为丙烯腈与醋酸乙烯酯,压克力隆为丙烯腈与苯乙烯之共聚合物。
而共聚合之意义在于强化物理性质与改善染色性(导入染色座席使盐基性染料可染或酸性染料可染),但各个制造厂商对于所使用之共聚合原料均极端的保守秘密,不做任何明确的说明。
纯粹聚丙烯腈纤维具有甚高的强度,而改质的聚丙烯腈纤维则强度较低,与黏液嫘萦差不多。
各种聚丙烯腈纤维的纵侧面都很类似,唯有截面的形状有异。
Orlon截面之形态 Orlon纵侧面之形态Acrilan截面之形态 Acrilan纵侧面之形态特有特有性质(1)短纤维柔软、蓬松,有像羊毛般给人温暖的感觉。
沥青基碳纤维和pan碳纤维1.引言1.1 概述在概述部分,我们将介绍沥青基碳纤维和PAN碳纤维的基本概念和背景信息。
沥青基碳纤维和PAN碳纤维都是目前广泛应用于不同领域的高性能纤维材料。
沥青基碳纤维是以改性沥青为基材,在高温条件下碳化得到的连续纤维。
它具有较高的热稳定性、力学性能和疲劳性能,被广泛应用于航空航天、汽车制造、建筑材料等领域。
沥青基碳纤维的制备方法主要包括沥青改性、纺丝、碳化等工艺步骤。
PAN碳纤维是以聚丙烯腈(PAN)为主要原料制备得到的连续纤维。
它具有高强度、高模量和优异的特性,被广泛应用于航空航天、船舶、运动器材等领域。
PAN碳纤维的制备方法主要包括聚合纺丝、胶纺丝、气相重聚和高温碳化等工艺步骤。
本文将重点介绍沥青基碳纤维和PAN碳纤维的特性和制备方法,并探讨它们在不同领域的应用。
通过对比分析两种碳纤维的特点,我们可以更好地理解它们的适用范围和优势。
此外,我们也将展望沥青基碳纤维和PAN碳纤维在未来的发展方向,以期为相关领域的研究和应用提供参考和指导。
在接下来的章节中,我们将详细介绍沥青基碳纤维和PAN碳纤维的特性、制备方法和应用领域。
通过全面的研究和讨论,我们可以为碳纤维材料的发展和应用提供更深入的了解和见解。
1.2文章结构文章结构部分的内容可以写成以下形式:1.2 文章结构本文将以两个主要部分来探讨沥青基碳纤维和PAN碳纤维。
首先,我们将详细介绍沥青基碳纤维,包括其特性和制备方法。
接着,我们将探讨沥青基碳纤维在不同领域的应用。
其次,我们将转向PAN碳纤维,同样介绍其特性和制备方法,并讨论其应用领域。
最后,我们将通过对沥青基碳纤维和PAN碳纤维进行比较,总结两者的差异和优势。
此外,我们还将展望未来发展方向,探讨这两种碳纤维在新兴领域中的应用前景。
通过本文的阅读,读者将可以深入了解沥青基碳纤维和PAN碳纤维的特性、制备方法及其在不同领域的应用,为碳纤维领域的研究和开发提供有价值的参考。
聚丙烯腈基碳纤维布相关标准聚丙烯腈基碳纤维布是一种重要的新型纤维材料,具有轻质、高强度、耐腐蚀等优点,广泛应用于航空航天、船舶、汽车、建筑、电力等领域。
为了确保聚丙烯腈基碳纤维布的质量,相关标准起到了重要的作用。
本文将介绍聚丙烯腈基碳纤维布相关的国际、国家标准。
首先,国际上最常用的聚丙烯腈基碳纤维布标准是ISO 18333-1:2016。
该标准规定了聚丙烯腈基碳纤维布的分类、术语和定义、试验方法等内容。
例如,该标准要求对聚丙烯腈基碳纤维布的线密度、纤维直径、机械性能进行测试和评估。
此外,ISO 18333-1:2016还对产品的标识、包装、运输等方面进行了要求,以确保各个环节的质量控制和产品的可追溯性。
在国内,对聚丙烯腈基碳纤维布的标准主要有两个,分别是GB/T 30581-2014和HG/T 3197-2010。
其中,GB/T 30581-2014是国家标准,规定了聚丙烯腈基碳纤维布的技术要求、试验方法、标志、包装和质量证明等方面。
该标准要求对聚丙烯腈基碳纤维布的化学成分、线密度、纤维直径、机械性能、热稳定性、耐腐蚀性等进行测试和评估,以确保产品的可靠性和稳定性。
另外,HG/T 3197-2010是化工行业标准,适用于聚丙烯腈基碳纤维布的设计、制造、验收等方面。
该标准要求对聚丙烯腈基碳纤维布的纤维密度、线密度、纤维直径、机械性能、热稳定性、耐腐蚀性等进行测试和评估,同时还对质量控制的原则、方法进行了规定,以确保产品的一致性和质量稳定。
除了上述国际标准和国家标准,还有一些行业标准也涉及到了聚丙烯腈基碳纤维布。
例如,航空航天领域常用的军用标准GJB 2868-2012,该标准规定了航空航天用聚丙烯腈基碳纤维布的技术要求、试验方法和使用环境等方面。
该标准要求对聚丙烯腈基碳纤维布的纤维直径、线密度、表面密度、拉伸强度等进行测试和评估,以确保产品在特定环境下的可靠性和性能。
综上所述,聚丙烯腈基碳纤维布相关的标准既包括国际标准,也包括国家标准和行业标准。
聚丙烯腈基碳纤维简介及其发展概况摘要:聚丙烯腈基碳纤维为人造合成纤维,是一种力学性能优异的新材料,在航空航天、建筑、体育、汽车、医疗等领域得到广泛的应用。
生产碳纤维采用特殊组分且性能优异的专用PAN基纤维即PAN原丝。
本文简要介绍国内外PAN基碳纤维的发展概况和现状,PAN基碳纤维的应用,重点介绍了PAN基碳纤维的结构、性能、纺丝、制备等技术,以及分析我国碳纤维与世界先进国家之间的差距及存在的问题且提出一些建设性意见。
关键词:聚丙烯腈基碳纤维纺丝国内外发展比较差距碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。
碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。
PAN基生产工艺简单,产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的的品种。
一、碳纤维及其发展史1.1碳纤维的先驱——斯旺和爱迪生碳纤维的起源可追溯到19世纪60年代,1860年,英国人约瑟夫·斯旺用碳丝制作灯泡的灯丝早于美国人爱迪生。
十九世纪后期他俩各自设计出了白炽灯泡.他是研制碳丝的第一人,同时他的利用挤压纤维素成纤技术为后来合成纤维的问世起到了启迪作用。
爱迪生解决了碳丝应用与白炽灯的灯丝问题,他发明的电灯,这也是碳丝第一次得到了实际应用。
1910年库里奇发明了拉制钨丝取代了碳丝作为灯丝,从此碳丝的研制工作停止了下来。
指导了20世纪50年代碳丝的研制又重新出现在现在的材料科学的舞台上,但研究的目的是为了解决战略武器的耐高温和耐烧耐腐蚀材料,今天的碳纤维已经形成了一个举足轻重的新型材料体系,已广泛应用于航空、军事和民用工业领域,而且仍在强劲发展.1.2碳纤维的三大原料路线黏胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维,其中以聚丙烯腈基碳纤维应用最为广泛,也是本文将要为大家介绍的。
聚丙烯腈(PAN)基碳纤维复合材料及其在大飞机上的应用徐志鹏北京化工研究院摘要自2007年国务院公布国产大飞机战略以来,这一领域的发展获得了持续的关注。
然而当今的国际大飞机市场被波音和空客两大公司所垄断,国产大飞机想要赢得市场面临多方面的挑战,其中之一就是高性能复合材料的应用。
聚丙烯腈基碳纤维复合材料诞生五十多年以来,发展迅猛,已经从传统的航空航天领域逐渐向汽车、风电等领域拓展市场,未来市场潜力巨大。
而目前中国仅能生产相当于T300,T700性能的碳纤维,不仅无法满足国产大飞机的材料需求,而且该领域的技术短板也限制了很多行业的发展。
本文在综合了前人研究成果的基础上,介绍了碳纤维的发展历程,PAN基碳纤维的关键技术和碳纤维复合材料在商用大飞机上的应用情况。
笔者认为,有市场竞争力的国产大飞机必须大量使用高质量的碳纤维复合材料,而突破PAN基碳纤维复合材料技术壁垒的关键在于生产高质量的碳原丝,其技术突破点在于干喷湿纺和凝胶纺丝生产技术的掌握与改进。
关键字:PAN基碳纤维,大飞机,碳原丝,干喷湿纺, 凝胶纺丝ABSTRACTLarge Plane Project has been fascinating Chinese public for years since its first announcement by State Council in 2007. China-made large plane is now facing varieties of challenge, while Boeing and Airbus are on the monopoly of market, one of the main challenge is the application of carbon fiber composite material. PAN based carbon fiber composite has witnessed a boost since it’s born in the past 50years, and now is expanding its application from space project to automobile and wind power generation projects. Carbon fiber industry in China cannot satisfy the demand of large plane project and many other industrial demands, because we can only made carbon fiber as well as T300 and T700 by our self. This article introduced the history of carbon fiber, key technology of PAN based carbon fiber and how PAN based carbon fiber is used in commercial large aircrafts. The author of this article believes the China-made large plane must use plenty of carbon fiber based composite to win the market and the key technology we need to break through is dry-wet spinning and gel spinning technique to make high performance PAN-based carbon fiber precursor.Key words: PAN based carbon fiber, large plane, carbon fiber precursor前言国产大飞机战略自发布以来,引发了广泛的关注。
聚丙烯腈基碳纤维性质及其性能方面研究王立楠100201班摘要:汇述了碳纤维应用领域、世界碳纤维市场、世界碳纤维制造、聚丙烯腈(PAN)基碳纤维生产商与制造工艺以及中国碳纤维发展现状与趋势,尤其近年来在大飞机重大专项的牵引下,我国各地争上千吨级碳纤维项目,而形成“碳纤维热”。
同时,为缩小与国外先进水平的较大差距,提出“突破PAN原丝关键技术瓶颈,避免重复引进和重复研究,加快提升自主创新能力”3项发展建议。
关键词:碳纤维;应用领域;市场需求;产能;生产Study on polyacrylonitrile based carbon fiber properties and performanceLi’nan Wang class:100201Abstract: The carbon fiber application fields, world’s market, capacities of foreign producers and their extending plan, production technologies and the development situation & trend of carbon fiber in China are illustrated, especiallyin the drawing of China’s big airplane important project, several 1 000 t/a carbon fiber programs were constructed all over the country, forming “overheat”in carbon fiber in recent years. In the same time, three suggestions are put forward in order to shorten the distances with foreign companies, they are “making a breakthrough at the bottleneck of PAN precursor key technologies, avoiding the repeated imports of foreign equipment and re -searches, accelerating and raising the ability of innovation ”.Key words: carbon fiber; application territory; market demand; production capacity; advance1、聚丙烯腈(PAN)基碳纤维的用途PAN碳纤维是军事工业用量大、使用面广、地位极为重要的关键性高性能纤维材料,是各类军用高强、高模、高强高模型复合材料的原料及技术基础。
通用型沥青基炭纤维复合材料的发展和应用分析摘要:近年来,随着人们对可持续发展和环境保护的重视,新型材料的研发和应用受到高度关注。
通用型沥青基炭纤维作为一种新兴材料,具有独特的结构和性能,被广泛应用于道路建设、环境保护和能源领域。
因此,本文主要就“通用型沥青基炭纤维的发展和应用”进行探讨,旨在推动可持续发展和环境友好型的社会建设。
关键词:通用型;沥青;基炭纤维;发展;应用前言通用型沥青基炭纤维是一种由沥青基质和炭纤维增强相结合而成的复合材料。
其具有独特的结构和性能,既融合了沥青的黏性和可塑性,又借助炭纤维的高强度和高导电性。
这使得通用型沥青基炭纤维在多个领域都具备广泛的应用潜力。
一、通用型沥青基炭纤维的应用领域1. 通用型沥青基炭纤维在道路建设中的应用通用型沥青基炭纤维作为一种有效的路面增强剂,在道路建设中发挥着重要的作用。
路面增强剂是指添加到沥青混合料中的材料,旨在提高路面的强度和抗裂性能。
炭纤维的高强度和抗拉性使其成为理想的增强材料。
通过将炭纤维与沥青基质相结合,可以形成具有良好强度和韧性的复合材料,从而改善路面的性能。
以下进行详细说明:第一,炭纤维具有出色的强度特性,因此可以有效地增加路面的整体强度。
一方面,添加炭纤维可以增加材料的抗拉强度和模量,使得路面能够更好地承受交通负荷和外部应力的作用。
以减少路面的变形和损坏,从而提高路面的稳定性。
另一方面,通用型沥青基炭纤维在沥青混合料中的添加可以提高路面的抗裂性能,防止裂纹的产生和扩展。
因为炭纤维的高抗拉性和高模量可以吸收和分散应力,减轻沥青面层的应力集中,从而阻止裂纹的形成和扩展。
这对于解决路面龟裂、疲劳裂缝和反射裂缝等病害问题具有重要意义。
此外,炭纤维的添加可以显著提高路面的抗老化性能。
因为炭纤维具有较好的耐久性,降低了沥青材料的硬化和老化速度,使得路面能够更好地应对气候变化、温度变化和交通负荷的影响,从而保持较长时间的稳定性和功能性。
第二,炭纤维的高导电性能赋予了其在防水方面的独特优势。
聚丙烯腈基碳纤维布相关标准-回复聚丙烯腈基碳纤维布是一种具有高强度、高模量和耐腐蚀性能的纤维材料。
它广泛应用于航空航天、船舶、汽车、体育器材等领域。
为了确保产品质量,相关的标准在生产和应用中起着重要的作用。
本文将介绍聚丙烯腈基碳纤维布的相关标准,并一步一步回答中括号内的关键问题。
第一步:了解聚丙烯腈基碳纤维布的基本特性聚丙烯腈基碳纤维布是由聚丙烯腈基纤维经过高温炭化处理而成的材料。
它具有高强度、高模量、低密度和优良的耐腐蚀性能。
在应用中,它可以替代传统的金属材料,提高产品的性能,并降低重量。
第二步:了解聚丙烯腈基碳纤维布的相关标准聚丙烯腈基碳纤维布的相关标准包括材料标准、工艺标准和性能标准。
材料标准主要涉及原材料的选择和生产过程中的质量控制要求。
工艺标准主要关注生产工艺的规范和流程。
性能标准则用于评估产品的物理、力学和化学性能。
第三步:了解聚丙烯腈基碳纤维布的材料标准聚丙烯腈基碳纤维布的材料标准主要涉及原材料的选择和质量要求。
例如,标准可能要求使用特定品牌或类型的聚丙烯腈基纤维作为原材料,并对纤维的化学成分、纤度和其他物理性能进行限制。
此外,标准还可能要求严格的生产过程控制,以确保原材料的质量稳定。
第四步:了解聚丙烯腈基碳纤维布的工艺标准聚丙烯腈基碳纤维布的工艺标准主要关注生产工艺的规范和流程。
例如,标准可能要求严格控制纤维的炭化温度和时间,以确保产品具有一致的碳化程度。
此外,标准还可能要求严格控制纤维的纺纱、织造和热固化等工艺参数,以确保产品的外观和性能稳定。
第五步:了解聚丙烯腈基碳纤维布的性能标准聚丙烯腈基碳纤维布的性能标准用于评估产品的物理、力学和化学性能。
例如,标准可能要求测试产品的强度、模量、拉伸性能和耐热性能。
此外,标准还可能要求测试产品的耐候性、耐化学品性和电导率等其他性能。
第六步:总结聚丙烯腈基碳纤维布的相关标准在生产和应用中起着重要的作用。
通过遵循这些标准,可以确保产品具有稳定的质量和性能,提高产品的竞争力。
聚丙烯腈基(PAN)碳纤维复合材料2010136103徐铭华摘要:对PAN基碳纤维的发展历程、现状以及以其为增强体的复合材料进行了综述,并对PAN基碳纤维增强复合材料在航天领域的主要使用情况进行了介绍,最后对我国高性能碳纤维复合材料的现状及发展重点进行了探讨。
关键词:PAN基碳纤维;复合材料;航天领域;使用Abstract:In this article, the development of PAN-based carbon fiber, its character and composites reinforced by it is overviewed. The main application of carbon fiber reinforced composites on aerospace is also introduced here .Finally, the status and future development of PAN-based carbon fiber is discussed.Key words: PAN-based carbon fiber; composites; aerospace; application1.前言随着科技的发展和进步以及各国对空间光学遥感器的进一步需求,空间遥感器必然向高分辨率、长焦距、大口径、大视场、大体积而质量更轻的方向发展[1],然而,发展质量更轻的空间光学遥感器,必须采用性能优异的轻质结构材料,碳纤维复合材料(CFRP)的使用是实现这一要求的最好途径之一。
CFRP是以树脂为基体,碳纤维为增强体的复合材料[2]碳纤维具有碳材料的固有本征特性,又有纺织纤维的柔软可加土性,是新一代军民两用的增强纤维。
它优异的综合性能是任何单一材料无法和其比拟的,现在己经成为先进复合材料的主要增强纤维之一。
CFRP是20世纪60年代中期崛起的一种新型结构材料,一经问世就显示了强大的生命力[3,4]。
碳纤维布基本知识用途:碳纤维布与结构胶配套使用成为碳纤维复合材料,适用于混凝土结构、木质结构的加固,可有效提高构件的承载力、抗震性能和耐久性。
是处理下列工程问题的优秀备选方案:1、建筑物使用荷载增加;2、工程使用功能改变;3、材料老化;4、混凝土强度等级低于设计值;5、结构裂缝处理;6、恶劣环境服役构件修缮、防护。
其他用途:人造卫星、飞机、火箭、体育用品、工业产品等众多领域。
特点:1、碳纤维抗拉强度高,高于普通钢10-15倍;2、耐酸碱,抗腐蚀,适宜在恶劣环境中服役;与结构胶配合使用,能阻止有害介质浸渗,对部结构起保护作用;3、比重是钢材的23%,基本不增加构件自重,不改变构件截面尺寸;4、可弯曲缠绕成型,对各类曲面、异型构件加固优势更为显著;5、可任意剪裁,易粘贴,施工质量易于保证。
不需大型施工机具,可搭接粘结任意延长,无明火作业,施工工期短。
碳纤维布使用说明碳纤维布均与配套结构胶配合使用,形成高性能复合材料。
碳纤维加固工艺流程:构件表面处理→粘贴面修补找平(若平整,此步骤可省去)→涂底胶→卸荷(根据实际情况和设计要求,此步骤有时省去)→配置面胶和裁剪碳纤维布→粘贴碳纤维布→固化→检验→维护1.构件表面处理2.粘贴面修补找平(若平整,此步骤可省去)3.配置底胶4.卸荷(根据实际情况和设计要求,此步骤有时省去)5.配置面胶和裁剪碳纤维布6.粘贴碳纤维布7.固化8.检验9.维护碳纤维发展简史1860年,斯旺制作碳丝灯泡1878年,斯旺以棉纱试制碳丝1879年,爱迪生以油烟与焦油、棉纱和竹丝试制碳丝(持续照明45小时)1882年,碳丝电灯实用化1911年,钨丝电灯实用化1950年,美国Wright--Patterson空军基地开始研制黏胶基碳纤维1959年,美国UCC公司生产低模量黏胶基碳纤维“Thornel—25”,日本大阪工业试验所的进藤昭男发明了PAN基碳纤维1962年,日本碳公司开始生产低模量PAN基碳纤维(0.5吨/月)1963年,英国皇家航空研究所(RAE)的瓦特和约翰逊成功地打通了制造高性能PAN基碳纤维(在热处理时施加力)的技术途径1964年,英国Courtaulds,Morganite和Roii--Roys公司利用RAE技术生产PAN基碳纤维1965年,日本群马大学的大谷杉郎发明了沥青基碳纤维美国UCC公司开始生产高模量黏胶基碳纤维(石墨化过程中牵伸)1970年,日本吴羽化学公司生产沥青基碳纤维(10吨/月),日本东丽公司与美国UCC进行技术合作1971年,日本东丽公司工业规模生产PAN基碳纤维(1吨/月),碳纤维的牌号为T300,石墨纤维为M401972年,美国Hercules公司开始生产PAN基碳纤维日本用碳纤维制造钓竿,美国用碳纤维制造高尔夫球棒1973年,日本东邦人造丝公司开始生产PAN基碳纤维(0.5吨/月)日本东丽公司扩产5吨/月1974年,碳纤维钓竿、高尔夫球棒迅速发展日本东丽公司扩产13吨/月1975年,碳纤维网球拍商品化美国UCC公司公布利用中间相沥青制造高模量沥青基碳纤维“Thornel—P”美国UCC的高性能沥青基碳纤维商品化1976年,东邦人造丝公司与美国塞兰尼斯进行技术合作住友化学与美国赫格里斯(Hercules)成立联合公司1979年,日本碳公司与旭化成工业公司成立碳纤维公司1980年,美国波音公司提出需求高强度、大伸长的碳纤维1981年,台塑设立碳纤研究中心,日本三菱人造丝公司与美国Hitco公司进行技术合作1984年,台塑与美国Hitco公司进行技术合作,日本东丽公司研制成功高强中模碳纤维T8001986年,日本东丽公司研制成功高强中模碳纤维T10001989年,日本东丽公司研制成功高模中强碳纤维M601992年,日本东丽公司研制成功高模中强碳纤维M70J,氏摸量高达690GPa碳纤维生产技术路线及应用领域按原料体系的不同,碳纤维主要分为:黏胶基碳纤维、聚丙烯腈基碳纤维和沥青基碳纤维。
作者简介:张旺玺:32岁,讲师,现从事碳纤维前驱体聚丙烯腈原丝的研究工作,该工作得到国家自然科学基金等多项资助,发表论文十余篇。
专题论述聚丙烯腈基碳纤维综述张旺玺 王艳芝(山东工业大学,山东济南,250061) 摘 要:对国内外聚丙烯腈基碳纤维的发展历史作了评述,重点对世界聚丙烯腈基碳纤维发展最新趋势作了介绍,并提出了作者对发展我国碳纤维的建议。
关键词:聚丙烯腈 碳纤维 发展 高性能碳纤维的问世,标志着材料发展史上的又一突破。
它具有高比强度、高比模量、耐烧蚀、耐磨、抗疲劳等优异性能。
作为先进复合材料的增强纤维,目前已成为航空航天飞行器不可缺少的材料。
在卫星、运载火箭、战术导弹、飞机上使用,可大幅度减轻结构重量,进而提高技术性能。
在工业,民用产品方面的应用也得到不断开发、扩大,例如:文体用品、运输车辆、机械、建筑材料等。
自聚丙烯腈(PAN )纤维制得了高性能碳纤维以来,由于其生产工艺与粘胶基、沥青基碳纤维相比,具有方法简单,产品力学性能良好等特点得到了大力发展。
PAN 基碳纤维将以强劲的发展势头迈入2000年,届时其生产能力可望突破4.8万吨[1],世界上各大公司竞相扩充自己的生产能力,开发应用范围,形成了系列化、规模化、垄断化高效益生产。
1 国外聚丙烯腈基碳纤维 的发展 1961年日本东丽公司成功地开发出了特殊共聚的PAN 纤维,结合美国Union Carbide 公司的碳化技术,生产出高强、高模的碳纤维。
其后,该公司高性能碳纤维产量一直独居世界之首。
由于该碳纤维是极高附加价值产品,在日本东丽、东邦人造丝、三菱人造丝等公司也争相发展自己的技术,积极参与碳纤维的市场竞争。
70年代末,许多以PAN 纤维为原料制造碳纤维的厂家为扩大产品销路,占领国际市场,在原料供应及碳纤维的生产、供销方面进行广泛交流合作,合资建厂,从而促进了PAN 基碳纤维工业的进一步发展。
80年代后期各公司则着重发展从原丝到碳纤维、制品的配套生产,力求提高经济规模,因此一些大厂不断扩大生产能力,由于产品应用范围开拓不足,从而使世界碳纤维总生产能力大于实际需求。