陶瓷添加剂的正确使用
- 格式:docx
- 大小:12.37 KB
- 文档页数:5
陶瓷的上釉步骤
上釉是陶瓷制作过程中的一个重要环节,也是影响陶瓷制品性能
的关键环节。
它涉及到各种原料的选择和工艺技术的应用,部分决定
了陶瓷制品的最终外观、力学性能和耐久性。
陶瓷上釉步骤大致可以
分为:
一、选择上釉料
首先要根据不同的陶瓷品种,选择相应的上釉料。
一般情况下,
我们会选择经过磨光的釉料,即经过加工的高粘度初熔剂浆料,以保
证上釉效果的良好。
二、添加各类添加剂
在上釉料中添加各类添加剂,以提升其物理性能、改善表面硬度、防止釉料老化、抗击穿,提高陶瓷制品耐久性等。
三、将料涂到陶瓷器皿上
接下来,将上釉料涂到陶瓷器皿上,一般使用沾布涂刷方法,推
荐至少2-3次涂刷,以确保形成致密的膜层。
然后,将涂刷后的陶瓷
器皿烘干,以去除多余的水分。
四、室温上釉
室温上釉的温度一般定在650℃左右,时间一般在15分钟~1个小
时不等。
上釉后,可以将涂刷上釉料的陶瓷器皿放入烤炉中,以保证
上釉的良好效果。
五、烧成
烧成是完成上釉的最终环节,其温度一般在1100℃~1250℃之间,
釉料完全融化可以形成致密且耐磨的抗性膜。
一般情况下,烧成时间
在1~2小时不等,时间过长可能会造成釉料熔熔化,从而引起上釉质
量问题。
六、热处理
上釉完成后,需要对陶瓷进行热处理,以获得更好的外观和性能。
一般情况下,热处理温度在200~300℃之间,热处理时间一般在1至2
小时不等,以保证釉料的稳定性。
陶泥的制作方法引言陶泥是一种用于制作陶瓷器和雕塑等艺术品的材料。
它由黏土和其他添加剂混合而成,经过一系列的加工和烧制过程,最终形成坚固的陶瓷作品。
本文将介绍陶泥的制作方法,包括选材、制作和后续处理等环节。
选材选材是制作陶泥的第一步,合适的黏土质地对最终作品的质量至关重要。
常用的黏土有黏土矿石、粘土和陶土等。
黏土矿石是一种含有大量黏土颗粒的天然矿石,通常需要经过粉碎和筛选等处理。
粘土是一种含有高比例黏土颗粒的土壤,常见于河道和水域附近。
陶土是一种可塑性较好的黏土,适合用于制作各种陶瓷作品。
除了黏土,还需要添加一些其他材料来改善黏土的性能。
常见的添加剂包括石英砂、长石粉、瓷石粉和高岭土等。
这些添加剂可以提高陶泥的延展性、增强陶瓷的强度,以及改善陶瓷作品的外观。
制作过程1. 准备材料开始制作陶泥之前,首先要准备好所有需要的材料和工具。
除了黏土和添加剂,还需要一些基本的工具,如刮板、刷子、切割刀和擦拭布等。
此外,还需要一张平整的工作台和一盆清水。
2. 黏土处理将黏土倒入工作台,并用刮板将其压平。
然后,用清水将黏土浇湿,并用手揉搓黏土,使其变得柔软。
在揉搓的过程中,可以适当添加一些水来保持黏土的湿润度,以便更好地进行造型。
3. 添加剂混合将所需的添加剂加入到黏土中,并用刮板将其混合均匀。
具体添加的比例可以根据陶瓷作品的要求进行调整。
在混合过程中,可以适当添加一些水来使黏土与添加剂更好地融合。
4. 造型用双手将黏土揉搓成所需的形状。
可以使用刮板、切割刀和其他工具来帮助塑造黏土。
在塑造的过程中,可以适当添加水来湿润黏土,以便更好地塑造细节。
5. 干燥制作完成后,将陶泥作品放置在通风处进行自然干燥。
避免暴露在阳光下,以免导致陶瓷表面裂纹。
干燥的时间根据陶瓷作品的大小和厚度而有所不同。
通常情况下,需要等待几天到几周,让陶泥完全干燥。
后续处理1. 抛光在陶泥完全干燥之后,可以使用砂纸或研磨机等工具对其表面进行抛光。
添加剂对釉浆性能的影响作者:毛旭琼来源:《佛山陶瓷》2013年第07期摘要:本文主要针对目前陶瓷砖生产中容易出现与釉浆性能相关的各种问题,从理论与实践的角度,详细阐述各种添加剂的性能、对釉浆的影响,以及其在陶瓷砖生产中的作用。
实践表明,釉料的工艺性能仅靠原材料配方的调整是很难达到最佳使用效果的,必须通过合适的添加剂来进行合理的调节与改善才能实现。
关键词:添加剂;陶瓷砖;釉浆性能;控制;改善1 前言经过数十年的摸索与沉淀,如今,陶瓷砖的生产工艺已趋于稳定。
尤其在釉浆性能等方面得到了较好的改善,这主要得益于各种新型添加剂的推广和应用。
新型添加剂的引入,可让陶瓷釉浆性能得到显著的提高,并保持稳定。
虽然其加入量很少,但能起到优化工艺、提高产品质量的作用。
衡量釉浆性能好坏的主要指标有以下几方面:釉浆的粘性、流动性、保水性、悬浮性、分散性、干水速度、保存时间、釉面强度等。
另外,还要保证辊筒、丝网印花的各种印刷性能等。
必须说明的是,以上有些性能不是独立的,具有统一性。
2 添加剂对釉浆性能的影响2.1 甲基与三聚磷酸钠对釉浆性能的影响2.1.1釉浆沉淀及处理方法在大生产过程中,釉浆在静置或搅拌速度较慢时,会出现分层及沉淀现象。
有的沉淀不严重,搅动后其性能又可恢复;有的沉淀较严重,很难搅起,就算搅起后在很短一段时间内又会重新沉淀,严重影响线上的使用性能。
尤其是颜色较深的釉,分层与沉淀会导致颜色的不均匀,产生色差与色边等缺陷。
这一般是由塑性粘土、CMC及三聚磷酸钠的种类与添加的配比不合适引起的。
就CMC而言,我们宜选用分子链较长的中、高粘类型产品,与三聚磷酸钠搭配,其添加量也需经过反复实验来确定。
若CMC加入量过多,会导致生产线上因釉浆比重低、干水速度慢,而不利于二次烧的淋釉工艺。
尤其是辊筒印花,釉面太湿会加剧白边、白点,以及后辊粘前辊的问题;添加量太少又会导致釉浆悬浮性不够而出现沉淀。
总之,CMC 的添加量与比例不能随意而定,要在保证釉浆不沉淀的条件下,具有较高的比重与较好的流动性。
一种高介电常数微波介质陶瓷材料及其制备
方法
高介电常数微波介质陶瓷材料在无线通信、雷达技术等领域具有广泛的应用前景。
本文将介绍一种制备这种材料的方法。
首先,该方法使用的原料主要包括陶瓷粉体和添加剂。
陶瓷粉体通常是使用一
种或多种金属氧化物制备而成,并具有高介电常数特性。
添加剂则是用于调节材料的物理和化学性质,提高材料的稳定性和加工性能。
制备方法的第一步是将陶瓷粉体和添加剂按照一定的配比混合均匀。
混合时可
以使用机械搅拌或者球磨的方法,以确保粉体和添加剂的颗粒均匀分散。
接下来,将混合均匀的粉体压制成坯体。
常用的压制方法包括干式压制和浸渍法。
干式压制是将混合物放入压模中,通过加压形成坯体;而浸渍法则是先制备一定尺寸的基体,然后将混合物溶解在适当的溶剂中,浸渍基体,再通过干燥和烧结形成坯体。
在得到坯体后,需要进行烧结处理。
烧结是指将坯体置于高温下,使其颗粒间
发生结合,形成致密的陶瓷材料。
烧结温度和时间需要根据具体的陶瓷材料和添加剂来确定,通常在1200°C-1600°C的范围内进行。
最后,进行表面处理和性能测试。
通过对材料表面进行磨削、抛光等处理,可
以得到光滑的表面。
然后进行介电常数、热膨胀系数和热导率等性能的测试,确保材料达到设计要求。
综上所述,通过适当的原料选择和制备工艺优化,可以制备出具有高介电常数
的微波介质陶瓷材料。
这种材料在无线通信和雷达技术等领域的应用前景非常广阔,有望为相关行业带来更加可靠和高效的解决方案。
膨润土在陶瓷坯体中的用量膨润土是一种重要的陶瓷原料,其在陶瓷坯体中的用量对制品的质量和性能有着重要的影响。
正确合理地使用膨润土不仅可以改善坯体的塑性和可塑性,还可以提高产品的硬度、强度和耐火性能。
首先,我们来了解一下膨润土的特性。
膨润土具有很好的吸附性能和离子交换能力,能够吸附并固定坯体中的各类杂质和有害物质,净化坯体,同时能改善坯体的可塑性和塑性,使得坯体更加易于成型和加工。
在陶瓷坯体中使用膨润土时,首先需要确定合适的用量。
一般来说,膨润土的添加量应根据制品的具体需求来确定,不同的陶瓷制品对膨润土的用量要求也不同。
一般而言,添加2%~8%的膨润土可以起到良好的塑性调节作用,并使得坯体更加均匀致密。
其次,膨润土的使用方法也需要注意。
在将膨润土加入到原料中时,应将其事先充分细化和分散,避免形成团块。
可以选择干法或湿法加入,但要确保膨润土与其他原料充分混合均匀。
同时,在加入膨润土后,要适当调整坯体的湿度,保证坯体良好的塑性和可塑性。
此外,膨润土的选择也需要根据制品的要求进行。
不同的膨润土具有不同的物理和化学性质,选择合适的膨润土可以使得制品更好地达到预期的效果。
常见的膨润土有天然膨润土和人工合成膨润土,其中人工合成膨润土具有粒度均匀、化学稳定等优点,但价格相对较高。
最后,膨润土在陶瓷坯体中的用量不仅要根据产品需求来确定,还需要结合工艺条件和设备设施来综合考虑。
在具体生产中,可以通过试验和实践来确定最佳的膨润土添加量,最终获得理想的制品质量和产品性能。
综上所述,膨润土在陶瓷坯体中的用量对产品质量和性能有着重要的影响。
正确地选择和使用膨润土,合理确定添加量,遵循正确的使用方法,可以改善坯体的塑性和可塑性,提高产品的硬度、强度和耐火性能。
因此,在陶瓷制品的生产中,我们应该认真对待膨润土的使用,不断探索和实践,以提高产品质量和市场竞争力。
氧化锌使用说明书一、产品描述氧化锌是一种无机化合物,以白色结晶或粉末形式存在。
其化学符号为ZnO,其分子量为81.38,密度为5.606 g/cm³。
氧化锌具有广泛的应用领域,包括橡胶制品、塑料添加剂、陶瓷材料、化妆品等。
本说明书将详细介绍氧化锌的使用方法和注意事项。
二、使用方法1. 安全操作在使用氧化锌前,请确保您已阅读并理解本说明书的内容。
使用氧化锌时,请佩戴适当的防护设备,如手套、面具和护目镜,以避免接触到皮肤、呼吸道和眼睛。
2. 储存条件氧化锌应储存在干燥、通风良好的地方,远离火源和易燃物品。
避免与酸、氧化剂和有机物接触,以防止化学反应和危险品的产生。
3. 氧化锌的用途和操作步骤a) 橡胶制品:将适量的氧化锌加入橡胶中,通过混合、加热等工艺步骤,制成橡胶制品,如轮胎、密封件等。
b) 塑料添加剂:根据所需的塑料材料类型和比例,将氧化锌与塑料混合均匀,并加热至熔融状态,然后进行模压或注射成型。
c) 陶瓷材料:将氧化锌与其他原料混合,并按照所需的比例和工艺,通过成型、烧结等步骤制成陶瓷制品。
d) 化妆品:根据所需的配方和用途,将适量的氧化锌加入化妆品中,进行充分混合,然后进行灌装或包装。
4. 安全注意事项a) 避免吸入:使用氧化锌时,请保持通风良好的环境,避免长时间暴露于氧化锌粉尘中,并使用防护设备。
b) 避免接触皮肤:避免将氧化锌直接接触到皮肤上,以免引起不适或过敏反应。
如不慎接触,请立即用清水冲洗,并寻求医疗帮助。
c) 避免接触眼睛:使用氧化锌时,请小心避免将氧化锌颗粒或溶液溅入眼睛中。
如不慎发生,请立即用清水冲洗眼睛,并立即就医。
d) 避免儿童接触:请将氧化锌存放在儿童无法触及的地方,以免造成误食或其他意外事故。
三、紧急措施1. 发生皮肤接触:立即用清水冲洗受影响的皮肤部位,如果症状严重,请寻求医疗帮助。
2. 发生眼睛接触:立即用清水冲洗眼睛约15分钟,如果症状持续,请立即就医。
第43卷第1期2024年1月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.1January,2024复合添加MgO 和La 2O 3对纳米微晶氧化铝陶瓷微观结构的影响李㊀慧,张金平,高景霞,王二萍,张洋洋(黄河科技学院工学部,郑州㊀450006)摘要:纳米微晶氧化铝磨料具有良好的通用性和高精度磨削能力,且性价比较高,在机械制造㊁轴承㊁模具㊁汽车等领域有广泛的应用潜力㊂本研究以勃姆石(γ-AlOOH)为原料,MgO㊁La 2O 3为添加剂,采用溶胶-凝胶工艺合成纳米微晶氧化铝㊂通过差示扫描量热仪㊁X 射线衍射仪㊁扫描电子显微镜和从头算分子动力学方法模拟计算研究了添加剂对微晶氧化铝相转化㊁物相组成㊁微观结构及力学性能的影响㊂结果表明:复合添加MgO 和La 2O 3可以使氧化铝中间相θ-Al 2O 3向α-Al 2O 3转化的温度从1257ħ降低到1105ħ,将致密化温度从1600ħ降低到1350ħ,将微晶氧化铝的晶粒尺寸从1.04mm 减小到120nm,实现了低温致密烧结㊂关键词:纳米微晶;Al 2O 3;MgO;La 2O 3;溶胶-凝胶;添加剂;低温烧结中图分类号:TB321㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)01-0339-08Effects of MgO and La 2O 3Composite Additives on Microstructure of Nano-Microcrystalline Alumina CeramicsLI Hui ,ZHANG Jinping ,GAO Jingxia ,WANG Erping ,ZHANG Yangyang (Engineering Department,Huanghe Science and Technology College,Zhengzhou 450006,China)Abstract :The nanocrystalline alumina abrasive,with its excellent versatility and high-precision grinding capability,has become a cost-effective choice for various applications in fields such as mechanical manufacturing,bearings,molds and automobiles.In this study,nano microcrystalline alumina was synthesized by sol-gel process,with boehmite (γ-AlOOH)as raw material,MgO and La 2O 3as additives.The effects of MgO and La 2O 3additives on the phase transformation,phase composition,microstructure and mechanical properties of nanocrystalline alumina were investigated by differential scanning calorimetry,X-ray diffraction,scanning electron microscopy and ab initio molecular dynamics simulation.The results showthat MgO and La 2O 3composite additives can reduce the transformation temperature of alumina from the intermediate phase θ-Al 2O 3to α-Al 2O 3from 1257ħto 1105ħ,lower the densification temperature of the material from 1600ħto 1350ħ,and reduce the grain size of nanocrystalline alumina from 1.04mm to 120nm,thus realizing the low-temperature dense sintering.Key words :nano-microcrystalline;Al 2O 3;MgO;La 2O 3;sol-gel;additive;low-temperature sintering 收稿日期:2023-07-10;修订日期:2023-09-21基金项目:河南省科技攻关项目(212102210187,212102210603,232102210183)作者简介:李㊀慧(1980 ),女,副教授㊂主要从事电子功能陶瓷方面的研究㊂E-mail:leehui@通信作者:张洋洋,博士,教授㊂E-mail:yyzhang@0㊀引㊀言陶瓷磨具在机械加工和制造行业中起着重要作用,其中磨料是磨具最主要的功能部分㊂随着高端机械材料加工和表面处理技术的发展,传统的陶瓷磨料已无法满足磨削需求,迫切需要能适应不同磨削要求的新磨料[1]㊂纳米微晶氧化铝磨料是20世纪80年代出现的一种新型氧化铝基烧结磨料,由于纳米微晶氧化铝磨料的一个磨粒是由数十万个晶粒尺寸为100~500nm 的氧化铝晶体组成,磨削时磨钝的微小晶粒会沿晶界脱落而暴露出新的微晶体切削刃[2],所以用纳米微晶氧化铝磨料做成的磨具使用寿命长㊁自锐性好㊁磨削效率高㊁不易340㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷烧伤工件,且可以保持高磨削稳定性,易于实现高精度磨削[3]㊂除了性能上的优势以外,相比于电熔法制备的刚玉磨料,采用低温烧结的纳米微晶氧化铝节能减排效果显著;相比于超硬磨料,纳米微晶氧化铝磨料通用性较好,可用于黑色或有色金属的磨削加工,弥补了立方氮化硼和金刚石在磨削方面的不足,且价格远低于两者,不需要特殊设备,维修简单,性价比高㊂因此纳米微晶氧化铝在机械制造㊁轴承㊁汽车㊁模具等领域具有很大的应用前景㊂根据新思界产业研究中心发布的‘2022 2026年中国纳米微晶氧化铝磨料行业市场行情监测及未来发展前景研究报告“,目前全球纳米微晶氧化铝磨料市场仍集中在欧美和日韩,国产的纳米微晶氧化铝磨料主要为中低端产品,尚不具备与国际品牌相竞争的能力㊂为了缩短与国际市场的差距,有必要继续改进纳米微晶氧化铝磨料的产品性能,以促进磨削行业技术发展,提升我国磨削行业在国际上的竞争力㊂微观结构是影响磨料性能的一个重要因素㊂致密的结构㊁细小且均一的晶粒有助于提高纳米微晶氧化铝磨料的磨削性能㊂纯氧化铝由于晶格能较大㊁烧结难度大,需要较高的烧结温度(ȡ1600ħ)才能达到致密的结构,而温度过高会导致晶粒异常长大,因此,实现低温致密烧结和微观结构控制是纳米微晶氧化铝磨料制备的关键和难点㊂1985年,自从Kumagai等[4]报道了添加剂能降低γ-Al2O3到α-Al2O3的相转化温度,从而实现了小晶粒㊁均匀化的微观结构,添加剂(如MgO[5-8]㊁TiO2[5]㊁CeO2[5,9]㊁CaO[8]㊁SiO2[8]㊁La2O3[10]㊁Nd2O3[10]㊁Y2O3[11]㊁ZrO2[11]㊁Al[12]等)对微晶氧化铝微观结构影响的研究开始引起了国内外研究者的广泛关注㊂研究[5-8]发现,CaO㊁SiO2㊁MgO的添加能促进陶瓷的低温致密烧结,但由于CaO㊁SiO2会形成液相膜,易引起晶粒异常长大,而MgO能改变各向异性的液固界面能,从而使边界自由能降低,所以能有效抑制晶粒的异常长大,有助于陶瓷结构的均一化,且MgO价格低廉㊁易于实现产业化,因此,MgO是目前最受关注的氧化铝陶瓷添加剂之一㊂但MgO的加入会促进氧化铝晶粒生长,不利于形成纳米级细小晶粒[6]㊂研究[10]表明,La2O3很难与氧化铝形成固溶体,其存在于氧化铝的晶界上,阻碍离子迁移,从而降低晶界迁移速率,抑制晶粒生长㊂但La3+会抑制γ-Al2O3向α-Al2O3转化,从而提高α-Al2O3的相转化温度,不利于低温烧结[10]㊂在纳米微晶氧化铝陶瓷的制备过程中,单纯添加一种添加剂已无法满足性能提高需求㊂研究[13-15]发现,相比于单一添加剂,在微晶氧化铝中复合添加多种添加剂对材料性能的优化效果更为显著㊂为了能制备出结构致密㊁晶粒均匀的纳米微晶氧化铝陶瓷,本研究将MgO和La2O3作为复合添加剂,综合发挥两种添加剂的协同作用,用La2O3阻碍氧化铝晶粒长大,用MgO促进陶瓷的低温致密烧结并抑制晶粒异常长大,以实现结构致密㊁晶粒均匀的纳米微晶氧化铝陶瓷的制备㊂烧结是影响纳米微晶氧化铝显微结构的一个重要因素㊂氧化铝烧结过程中主要依靠晶界迁移来完成结构致密化,烧结易导致晶粒异常长大甚至会出现晶粒的二次长大,严重影响了材料的力学性能[14]㊂为了抑制烧结后期晶粒的快速生长,热压[16]㊁微波[17]及火花等离子[18-19]等多种烧结新技术逐渐被应用于陶瓷材料的制备中㊂虽然这些烧结技术能很好地抑制晶粒长大,但生产成本高,不利于产业化㊂Chen等[20]在制备Y2O3陶瓷时首次使用二步烧结法(two step sintering,TSS),实现了陶瓷的晶粒细化和烧结致密化㊂Brard 等[21]研究发现,相比于自然烧结,使用二步烧结法能将Y2O3-MgO复合陶瓷的晶粒尺寸从350nm降低到150nm,致密度得到极大的提高㊂为了减小微晶氧化铝的晶粒尺寸㊁提高陶瓷致密度,本研究以勃姆石为原料,以MgO和La2O3作为添加剂,结合二步烧结法,制备了晶粒细小㊁结构致密㊁力学性能优良的纳米微晶氧化铝陶瓷,并研究了复合添加MgO和La2O3对氧化铝陶瓷相转变㊁微观结构及力学性能的影响㊂1㊀实㊀验1.1㊀样品制备将70%(体积分数)的HNO3与一定比例的去离子水混合,配成pH=2.0的HNO3水溶液㊂将20%(质量分数)的γ-AlOOH纳米粉加到配制好的HNO3水溶液中,并以聚乙烯醇(polyvinyl alcohol,PVA)作为分散剂,得到稳定的半透明γ-AlOOH溶胶㊂在溶胶中加入5%(质量分数,下同)La2O3作为添加剂,置于球磨机中以一定速度球磨24h后取出,加入一定的Mg(NO3)2㊃9H2O使其凝胶化㊂干燥后以1ħ/min的升温速度,缓慢煅烧到480ħ后取出,破碎后过40/60目(0.425/0.250mm)分级筛进行分级㊂随后在高温烧结炉中,分别采用二步烧结和传统烧结工艺,对样品进行高温烧结,得到纳米微晶氧化铝磨料㊂其中二步烧结工第1期李㊀慧等:复合添加MgO和La2O3对纳米微晶氧化铝陶瓷微观结构的影响341㊀艺的第一步烧结温度为1400ħ,第二步烧结温度为1300ħ,保温时间为2h㊂1.2㊀结构与性能表征γ-AlOOH溶胶的胶粒粒度用MICROTRAC-X100型激光粒度测试仪测量,用冷场发射JSM-6700F扫描电子显微镜(scanning electron microscope,SEM)分析纳米微晶氧化铝陶瓷表面的微观形貌,用PHILIPS-XPERT X射线衍射仪(X-ray diffraction,XRD)对氧化铝的物相进行定性分析,用分析软件Nano-measurer测量晶粒尺寸,NETZSCH-STA409综合热分析仪对一水氧化铝干凝胶进行差示扫描量热法(differential scanning calorimetry,DSC)分析,纳米微晶氧化铝磨料的密度由ET-320固体密度测试仪测定,纳米微晶氧化铝颗粒的单颗粒抗压强度用DKY-1型单颗粒抗压强度测定仪测定㊂2㊀结果与讨论2.1㊀球磨时间对γ-AlOOH溶胶胶粒的影响研究表明,α-Al2O3的形貌和晶粒尺寸与前驱体的形貌和晶粒尺寸密切相关[22-23]㊂前驱体的晶粒尺寸越小㊁分布越均匀,越有助于降低α-Al2O3的相转化温度,实现低温致密烧结㊂图1为不同球磨时间下勃姆石溶胶胶体粒子的粒径分布㊂由图1可知,勃姆石原料粒径分布广,粗粉含量高,随着球磨时间延长至10h,胶粒粒径迅速变小且逐渐趋于均匀㊂当球磨时间延长至20h时,胶粒粒径继续缓慢变小且更加均匀,此时大部分胶体粒子的粒径为100nm左右㊂但是当球磨时间增加到48h时,胶体粒子的粒径反而有所增大㊂这是因为在球磨破碎过程中,胶体粒子不断破碎产生新的微小颗粒,随着球磨时间的增加,胶体粒子越来越细,这些超细颗粒具有极高的表面能,极易发生团聚现象从而导致胶粒的表观粒径变大[24]㊂图1㊀不同球磨时间下勃姆石溶胶胶体粒子的粒径分布Fig.1㊀Particle size distribution of boehmite sol colloid particles at different ball milling time2.2㊀添加剂对纳米微晶氧化铝磨料相转化的影响图2为勃姆石干凝胶的DSC曲线,其中曲线Ⅰ和Ⅱ分别是MgO㊁La2O3复合添加和无添加的勃姆石干凝胶的DSC曲线,可以看出,两条曲线都有两个明显的放热峰㊂处于400~500ħ的放热峰代表AlOOH干凝342㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图2㊀勃姆石干凝胶的DSC 曲线Fig.2㊀DSC curves of boehmite dry gel 胶结构水及表面羟基脱除,AlOOH 转化为氧化铝的中间相θ-Al 2O 3㊂1100ħ左右的放热峰代表θ-Al 2O 3转化为α-Al 2O 3㊂对比这两条曲线,不难发现,MgO㊁La 2O 3复合添加对AlOOH 向θ-Al 2O 3转化的温度影响不大,但明显降低了θ-Al 2O 3向α-Al 2O 3转化的温度㊂纯勃姆石干凝胶的θ-Al 2O 3向α-Al 2O 3转化的温度为1257ħ,而添加了MgO㊁La 2O 3的勃姆石干凝胶的θ-Al 2O 3向α-Al 2O 3转化的温度为1105ħ㊂MgO㊁La 2O 3复合添加使α-Al 2O 3的相变温度降低了近150ħ㊂图3(a)和(b)分别为添加及未添加MgO㊁La 2O 3的勃姆石干凝胶在不同温度下退火的XRD 谱㊂XRD 结果表明,添加了MgO㊁La 2O 3的θ-Al 2O 3在1150ħ已全部转化为α-Al 2O 3,而未添加MgO㊁La 2O 3的干凝胶中的θ-Al 2O 3在1300ħ时才完全转化为α-Al 2O 3㊂结合DSC 曲线和XRD 谱可知,复合添加MgO㊁La 2O 3可明显降低θ-Al 2O 3向α-Al 2O 3转化的温度㊂图3㊀勃姆石干凝胶在不同烧结温度下的XRD 谱Fig.3㊀XRD patterns of boehmite dry gel at different sintering temperatures 2.3㊀微观结构分析图4㊀纳米微晶氧化铝的显微照片Fig.4㊀Micrograph of nano-microcrystalline alumina 图4是烧结后直径为250~380mm 的纳米微晶氧化铝的显微照片,其中内嵌图为微晶氧化铝颗粒的断面照片㊂可以看出,纳米微晶氧化铝呈油脂光泽的半透明状㊂图5是不同添加剂和烧结工艺下纳米微晶氧化铝的SEM 照片㊂图5(a)是在1350ħ烧结制备的未掺杂添加剂的纳米微晶氧化铝SEM 照片,可以看出,微晶氧化铝晶粒均匀,晶粒平均尺寸为1.04mm(由nano measure 分析软件任意测量50个晶粒,取平均值得出),但结构疏松㊂图5(b )是添加了5%La 2O 3㊁在1350ħ烧结制备的纳米微晶氧化铝SEM 照片,晶粒的平均尺寸为220nm,说明La 2O 3的添加显著减小了微晶氧化铝的晶粒尺寸㊂这是因为La 3+半径(1.06Å)比Al 3+半径(0.53Å)大得多,所以很难与氧化铝形成固溶体,而是存在于氧化铝的晶界上,从而阻碍了离子迁移,降低晶界迁移速率,抑制晶粒生长,减小氧化铝的晶粒尺寸㊂图5(c)是添加了5%(质量分数,下同)MgO㊁在1350ħ烧结制备的纳米微晶氧化铝SEM 照片,晶粒的平均尺寸为810nm㊂相比于单掺La 2O 3,虽然单掺MgO 时的氧化铝晶粒尺寸相对较大,但是氧化铝的致密度相对较高㊂这是因为Mg 2+半径(0.65Å)与Al 3+半径(0.53Å)相近,在烧结过程中,Mg 2+第1期李㊀慧等:复合添加MgO和La2O3对纳米微晶氧化铝陶瓷微观结构的影响343㊀容易置换Al2O3中的Al3+,形成点缺陷,点缺陷会促进氧化铝烧结过程中的质量传输,从而增加氧化铝晶粒的生长速度和致密化速率[7,25]㊂图5(d)和(e)是同时添加了5%MgO和5%La2O3,但在不同烧结工艺下(其中图5(d)对应二步烧结工艺,图5(e)对应传统烧结工艺)制备的纳米微晶氧化铝㊂对比图5(d)和(e)可以看出,无论是采用二步烧结还是传统烧结工艺,MgO㊁La2O3复合添加的微晶氧化铝都显示出致密的微观结构,但相比传统烧结工艺下制备的微晶氧化铝(晶粒尺寸约为200nm),二步烧结工艺下制备的微晶氧化铝晶粒更小(约为120nm)㊂这是因为高温烧结过程中,晶粒间具有较高的晶界能,从而使晶界迁移率较高,如果在高温阶段保温,会造成晶粒迅速长大㊂在二步烧结工艺中,由于在第二阶段烧结温度骤然下降,晶界能得到了快速释放,晶粒间较低的晶界能使晶界迁移得到抑制,从而有效避免了晶粒长大㊂图5(f)是复合添加MgO和La2O3㊁在1400ħ烧结的纳米微晶氧化铝SEM照片㊂从图中可以看出部分晶粒异常长大,并伴随有团聚熔融现象,说明氧化铝在此温度下存在过烧现象㊂图5说明复合添加MgO㊁La2O3并结合二步烧结工艺可以在保持微晶氧化铝晶粒细小的同时实现低温致密烧结㊂图5㊀不同添加剂和烧结工艺下纳米微晶氧化铝的SEM照片Fig.5㊀SEM images of nano-microcrystalline alumina with different additives and sintering processes图6是添加5%La2O3和5%MgO后,采用从头算分子动力学方法模拟计算氧化铝反应前后的晶体结构图㊂在模拟过程中,采用正则(NVT)系综在1350ħ运行5ps㊂从图6可以看出,反应前氧化铝晶体结构中的Al O键长为1.969Å,反应后Al O平均键长减小到1.805Å,键长的减小会使晶胞体积变小㊂由于晶粒是由多个晶胞组成,晶胞体积的减小可使整个晶粒体积变小,所以MgO㊁La2O3的复合添加有助于获得更细小的氧化铝微晶晶粒㊂344㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图6㊀复掺MgO 和La 2O 3微晶氧化铝反应前后的晶体结构图(白㊁灰㊁黑和深灰球分别代表Al㊁O㊁Mg 和La 原子)Fig.6㊀Crystal structure diagram of MgO and La 2O 3microcrystalline alumina before and after reaction(white,gray,black and dark gray spheres represent the positions of Al,O,Mg and La atoms,respectively)2.4㊀单颗粒抗压强度和体积密度研究[15]显示,材料的单颗粒抗压强度与微观结构有密切关系㊂材料的晶粒越小㊁致密度越高,单颗粒抗压强度越大㊂MgO㊁La 2O 3复合添加和无添加纳米微晶氧化铝单颗粒抗压强度和密度随烧结温度的变化曲线分别如图7和图8所示㊂由图可知,在任一烧结温度下,MgO㊁La 2O 3复合添加微晶氧化铝的单颗粒抗压强度和密度均高于无添加纳米微晶氧化铝㊂无添加纳米微晶氧化铝单颗粒抗压强度和密度在1450ħ达到最大值55N㊁3.6g /cm 3,MgO㊁La 2O 3复合添加纳米微晶氧化铝单颗粒抗压强度和密度在1350ħ达到最大值80N㊁3.96g /cm 3,说明MgO㊁La 2O 3复合添加实现了纳米微晶氧化铝的低温致密烧结,有效细化了晶粒尺寸,提高了材料的致密度,进而提高了陶瓷的单颗粒抗压强度㊂图7㊀纳米微晶氧化铝的单颗粒抗压强度随烧结温度的变化Fig.7㊀Change of single particle compressive strength of nano-microcrystalline alumina with sinteringtemperature 图8㊀纳米微晶氧化铝的密度随烧结温度的变化Fig.8㊀Change of density of nano-microcrystalline alumina with sintering temperature表1列举了近年来不同添加剂及烧结工艺纳米微晶氧化铝颗粒的晶粒尺寸㊁密度及单颗粒抗压强度㊂对比可知,相比于其他添加剂,MgO 和La 2O 3复合添加剂显著降低了纳米微晶氧化铝的晶粒尺寸,提高了颗粒致密度,从而获得了较高的单颗粒抗压强度㊂表1㊀不同添加剂及烧结工艺纳米微晶氧化铝颗粒的晶粒尺寸㊁密度及单颗粒抗压强度Table 1㊀Grain size ,density and single particle compressive strength of nano-microcrystalline aluminawith different additives and sintering processesAdditive Sintering process Grain size /nm Density/(g㊃cm -3)Single particle compressive strength /N Reference SiO 2-MgO-CaO One step sintering(1300ħ)550 3.9243.6[13]La 2O 3-TiO 2-SiO 2TSS(1300ħң1200ħ)334 3.87 [14]BaO-B 2O 3-Cr 2O 3TSS(1400ħң1350ħ)1090 61.22[15]MgO-La 2O 3TSS(1400ħң1300ħ)120 3.9680.00This work第1期李㊀慧等:复合添加MgO和La2O3对纳米微晶氧化铝陶瓷微观结构的影响345㊀3㊀结㊀论1)MgO㊁La2O3复合添加对AlOOH向氧化铝中间相θ-Al2O3的转化温度影响不大,但将θ-Al2O3向α-Al2O3转化的温度从1257ħ降低到了1105ħ㊂2)复合添加5%La2O3和5%MgO的氧化铝在1150ħ完全转化为α-Al2O3,并在1350ħ达到致密烧结㊂3)MgO㊁La2O3复合添加能使Al O键长由1.969Å减小到1.805Å,使氧化铝晶胞体积变小,有助于微小晶粒的形成㊂4)La2O3能细化微晶氧化铝晶粒,MgO能促进微晶氧化铝的低温烧结,二步烧结工艺可避免晶粒的长大,因此,MgO和La2O3的复合添加结合二步烧结工艺实现了微晶氧化铝的低温致密烧结,并使晶粒尺寸减小到120nm左右㊂参考文献[1]㊀康会峰,黄新春,牛亚洲.微晶刚玉磨料磨削性能研究[J].机械设计与制造,2016(1):144-147+150.KANG H F,HUANG X C,NIU Y Z.The research on the properties of microcrystalline corundum abrasives[J].Machinery Design& Manufacture,2016(1):144-147+150(in Chinese).[2]㊀边华英,陈㊀虎,王㊀焱,等.焙烧温度对微晶陶瓷磨料晶粒度的影响[J].中国陶瓷,2020,56(11):33-38.BIAN H Y,CHEN H,WANG Y,et al.Influence of calcination temperature on grain size of microcrystalline alumina abrasive[J].China Ceramics,2020,56(11):33-38(in Chinese).[3]㊀边华英,王学涛,尹青亚,等.微晶氧化铝基烧结磨料的制备研究[J].河南科学,2018,36(7):1070-1074.BIAN H Y,WANG X T,YIN Q Y,et al.Preparation of sintered microcrystalline ceramic alumina abrasive[J].Henan Science,2018,36(7): 1070-1074(in Chinese).[4]㊀KUMAGAI M,MESSING G L.Controlled transformation and sintering of a boehmite sol-gel byα-alumina seeding[J].Journal of the AmericanCeramic Society,1985,68(9):500-505.[5]㊀AL-AMIN M,MUMU H T,SARKER S,et al.Effects of sintering temperature and zirconia content on the mechanical and microstructuralproperties of MgO,TiO2and CeO2doped alumina-zirconia(ZTA)ceramic[J].Journal of the Korean Ceramic Society,2023,60(1):141-154.[6]㊀BAE S I,BAIK S.Critical concentration of MgO for the prevention of abnormal grain growth in alumina[J].Journal of the American CeramicSociety,1994,77(10):2499-2504.[7]㊀CHEN C R,MA Q,HE C,et al.Effects of MgO and Fe2O3additives on the microstructure and fracture properties of aluminium titanate flexibleceramics[J].Ceramics International,2023,49(12):19806-19816.[8]㊀PARK C W,YOON D Y.Effects of SiO2,CaO2,and MgO additions on the grain growth of alumina[J].Journal of the American CeramicSociety,2000,83(10):2605-2609.[9]㊀HASSANZADEH-TABRIZI S A,TAHERI-NASSAJ E.Sol-gel synthesis and characterization of Al2O3-CeO2composite nanopowder[J].Journalof Alloys and Compounds,2010,494(1-2):289-294.[10]㊀HEVELING -doped alumina,lanthanum aluminate,lanthanum hexaaluminate,and related compounds:a review covering synthesis,structure,and practical importance[J].Industrial&Engineering Chemistry Research,2023,62(6):2353-2386.[11]㊀TAAVONI-GILAN A,TAHERI-NASSAJ E,AKHONDI H.The effect of zirconia content on properties of Al2O3-ZrO2(Y2O3)compositenanopowders synthesized by aqueous sol-gel method[J].Journal of Non-Crystalline Solids,2009,355(4/5):311-316.[12]㊀LI H,LU H X,WANG S,et al.Preparation of a nano-sizedα-Al2O3powder from a supersaturated sodium aluminate solution[J].CeramicsInternational,2009,35(2):901-904.[13]㊀李海涛,樊利存,程浩艳,等.助烧剂对微晶Al2O3刚玉磨料结构与性能的影响[J].河南科技大学学报(自然科学版),2023,44(3):1-6+14.LI H T,FAN L C,CHENG H Y,et al.Effect of sintering aids on structure and properties of microcrystalline Al2O3corundum abrasive[J].Journal of Henan University of Science and Technology(Natural Science),2023,44(3):1-6+14(in Chinese).[14]㊀赵㊀炯,李㊀专,邹凌峰,等.溶胶-凝胶法结合二步烧结制备陶瓷刚玉磨料的微结构控制及晶粒细化机理[J].粉末冶金材料科学与工程,2022,27(3):319-326.ZHAO J,LI Z,ZOU L F,et al.Microstructure control and grain refinement mechanism of ceramic corundum abrasives prepared by sol-gel combined with two step sintering process[J].Materials Science and Engineering of Powder Metallurgy,2022,27(3):319-326(in Chinese).[15]㊀黄㊀璐.微晶陶瓷刚玉磨料的制备与性能及微观形貌研究[D].天津:天津大学,2019:25-26.HUANG L.Study on preparation,properties and micro-morphology of microcrystalline ceramic corundum abrasive[D].Tianjin:Tianjin346㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷University,2019:25-26(in Chinese).[16]㊀MA H J,JUNG W K,BAEK C,et al.Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgOnanocomposite[J].Journal of the European Ceramic Society,2017,37(15):4902-4911.[17]㊀陈㊀朋,邹㊀斌,薛㊀锴.微波烧结工艺对Sialon陶瓷刀具材料力学性能的影响[J].硅酸盐学报,2022,50(12):3236-3242.CHEN P,ZOU B,XUE K.Effect of microwave sintering process on mechanical properties of Sialon ceramic tool materials[J].Journal of the Chinese Ceramic Society,2022,50(12):3236-3242(in Chinese).[18]㊀HUANG L,YAO W L,LIU J,et al.Spark plasma sintering and mechanical behavior of magnesia-yttria(50:50vol.%)nanocomposites[J].Scripta Materialia,2014,75:18-21.[19]㊀XIE J X,MAO X J,LI X K,et al.Influence of moisture absorption on the synthesis and properties of Y2O3-MgO nanocomposites[J].CeramicsInternational,2017,43(1):40-44.[20]㊀CHEN I W,WANG X H.Sintering dense nanocrystalline ceramics without final-stage grain growth[J].Nature,2000,404(6774):168-171.[21]㊀BRARD N,PETIT J,EMERY N,et al.Control of the nanostructure of MgO-Y2O3composite ceramics using two-step sintering for hightemperature mid infrared window applications[J].Ceramics International,2023,49(11):18187-18194.[22]㊀孙春晖,朱玲玲,李㊀赛,等.前驱体预处理及卤化铵添加剂对α-氧化铝微粉颗粒形貌的影响[J].无机盐工业,2018,50(9):19-23.SUN C H,ZHU L L,LI S,et al.Effect of pretreated precursor and halogenated ammonia additives on the morphology ofα-Al2O3powders[J].Inorganic Chemicals Industry,2018,50(9):19-23(in Chinese).[23]㊀PARK Y K,TADD E H,ZUBRIS M,et al.Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides[J].Materials ResearchBulletin,2005,40(9):1506-1512.[24]㊀唐㊀琛,张崇才,盛智勇,等.超细WC-TiC-Co硬质合金粉体制备及其成型特性[J].西华大学学报(自然科学版),2008,27(3):58-60.TANG C,ZHANG C C,SHENG Z Y,et al.Preparation and forming characteristics of ultrafine WC-TiC-Co cemented carbide powder[J].Journal of Xihua University(Natural Science Edition),2008,27(3):58-60(in Chinese).[25]㊀BERRY K A,HARMER M P.Effect of MgO solute on microstructure development in Al2O3[J].Journal of the American Ceramic Society,1986,69(2):143-149.。
压电陶瓷原料配方压电陶瓷是一种具有压电效应的陶瓷材料,广泛应用于电子元器件、传感器、医疗设备等领域。
压电陶瓷的性能取决于其原料的配方,不同的配方会影响陶瓷的压电效应、机械性能和稳定性等方面。
压电陶瓷的主要原料包括压电陶瓷粉体、陶瓷添加剂和稳定剂。
压电陶瓷粉体是制备压电陶瓷的关键原料,其主要成分通常为铅酸钛(PbTiO3)和锆酸钛(PbZrO3)等。
这些粉体具有较高的压电系数和压电常数,能够产生较强的压电效应。
同时,压电陶瓷粉体的颗粒大小和分布对陶瓷的性能也有影响,通常需要经过粉体处理和烧结工艺来获得理想的颗粒形态和尺寸。
陶瓷添加剂主要用于调节压电陶瓷的性能,常用的添加剂包括钛酸锶(SrTiO3)、氧化锌(ZnO)和氧化镁(MgO)等。
添加这些材料可以改变陶瓷的晶体结构和晶格常数,从而调节压电性能和介电性能。
此外,添加剂还可以提高陶瓷的机械强度和耐热性,增强陶瓷的稳定性和可靠性。
稳定剂是用于稳定陶瓷结构的添加剂,常用的稳定剂有碱金属氧化物和稀土氧化物等。
稳定剂的添加可以减少陶瓷的晶格缺陷和位错,提高陶瓷的晶体结构稳定性。
此外,稳定剂还可以降低陶瓷的烧结温度和烧结时间,提高陶瓷的致密性和机械强度。
除了以上主要原料,压电陶瓷的配方还可以根据具体应用需求添加其他辅助材料。
例如,为了提高陶瓷的电介质性能,可以添加氧化镁、氧化钠等。
为了改善陶瓷的导电性能,可以添加导电粉体或导电陶瓷材料。
为了增加陶瓷的抗磨损性能,可以添加硅酸盐颗粒等。
在压电陶瓷原料配方过程中,需要综合考虑陶瓷的压电效应、机械性能和稳定性等因素。
不同的应用领域对压电陶瓷的要求也不尽相同,因此需要根据具体需求选择合适的原料配方。
同时,配方的优化还需要考虑原料成本、加工工艺和环境友好性等因素。
通过合理的原料配方,可以制备出性能优良、稳定可靠的压电陶瓷材料,满足不同领域的应用需求。
压电陶瓷的原料配方是影响陶瓷性能的关键因素,合理的配方可以调节陶瓷的压电效应、机械性能和稳定性。
影响稀释剂解胶性能的常见因素分析
?随着现代陶瓷技术的发展,人们对陶瓷的性能提出了更高的要求,稀释剂是建筑卫生陶瓷中常用的一种添加剂,因其加入量少,而又起到优良的作用,被称为陶瓷工业中的“味精”,陶瓷稀释剂在陶瓷生产中正起着越来越重要的作用。
稀释剂又称减水剂、解胶剂、解凝剂,其作用主要是用来提高建筑卫生陶瓷坯、釉料浆的流动性,使其浆料水份最少,流动性能更好,不絮凝沉淀,便于操作。
同时,合理选用稀释剂也可为陶企节约能耗,降低生产成本。
对于喷雾干燥料而言,由于含水量降低,可使干燥能耗降低,同时增加粉料的产出量;对于釉浆而言,则可防止絮凝,在保证生产工艺要求下,使水份减少,这对要求釉浆比重大,含固量高的某些产品显得尤为重要。
有些厂家使用助磨稀释剂,在相同的工艺要求下,可减少球磨时间,节约电耗。
但有些厂家在使用稀释剂的过程中,由于使用方法不当,或者其它方面因素的影响,导致影响了稀释剂的使用效果。
本人结合在多个国家陶瓷厂的技术服务经验,浅析一下有哪些因素影响了稀释剂的解胶性能和使用效果。
总体而言,大致有以下几个方面:?
? 一、稀释剂加入量的影响
在稀释剂的使用过程中,很多陶瓷企业认为稀释剂的加入量越多,泥浆的稀释效果就会越好,其实不一定。
针对不同的坯料,其使用的稀释剂都会有一个用量范围。
当稀释剂的加入量最少或最多时,泥浆的流动性并不一定好,只有通过实验确认其最佳的范围时,泥浆的流动性才会更好,而且更经济。
? ? 二、球磨细度的影响
在陶瓷生产中,不同的产品其球磨细度的工艺要求是不同的。
在稀释剂的实验过程中,一定要注意不同的细度会影响稀释剂的使用效果。
那怕是使用同一种稀释剂,不同细度其稀释效果也是有差别的。
所以,必须严格按照大生产的细度要求来进行实验工作。
? ? 三、粘土的矿物结构与成分的影响
在陶瓷原料中,不同的粘土其矿物结构、组分、性质是大不相同的。
例如,高岭石类和蒙脱石类粘
土,由于其矿物结构和组成成分的特点,一般使用常规稀释剂效果不是很明显。
而伊利石类的粘土,由于它本身矿物结构所致,相对而言它的稀释效果会好一些。
在实际的使用过程中,很多陶瓷企业认为同一种稀释剂可以在不同产品坯料里使用。
其实不然,我们是针对不同坯料并结合坯料的相关结构,给客户调整出最佳型号的稀释剂和加入量,使其使用效果和成本达到最佳。
? ? 四、原科固相颗粒形状与大小的影响
在一定浓度的泥浆中,固相颗粒越细,颗粒间平均距离就会越小,其吸引力会增大,位移时所需克服的阻力会增大,流动性就会减少。
此外,由于水有偶极性,而且胶体粒子带有电荷,使每个颗粒周围会形成水化膜,导致固相颗粒呈现的体积比真实体积大得多,因而阻碍了泥浆的流动,使其稀释效果变差。
所以,原料固相颗粒形状与大小对泥浆的稀释效果有很大的关系。
? ? 五、泥浆的PH值影响
控制PH值是提高泥浆流动性、悬浮性的方法之一。
PH值会影响泥浆离解程度,又会引起胶粒§——电位发生变化,导致改变胶粒表面的吸力与斥力的平衡,最终使一些氧化物(如两性物质)胶溶成絮凝。
而且在陶瓷生产中,泥浆的稳定性随着PH值的降低,会形成卡片结构,使自由水受到束缚,导致泥浆体系的粘度增加,使泥浆稳定性降低。
一般泥浆PH值多是控制在7-9之间,这样不仅泥浆的效果较好,而且不易腐蚀生产机械设备。
在中国的陶瓷企业中,一般其泥浆的PH多是控制在8-9之间,而在国外的一些陶瓷企业中,因其坯料本身PH值因素的影响,也有些在5-7之间。
例如,笔者曾做过马来西亚的一家陶瓷企业的土样,而其泥浆的PH值在5-6之间。
? ? 六、水质的影响
陶瓷生产中使用水是很多的,在使用稀释剂时要注意水质的变化,这也是很多陶瓷企业不引起注意的地方。
陶瓷生产中主要是用水作为分散介质的,水中的电解质会影响粘土--水系统中的溶解平衡和离子浓度,而溶解平衡受粘土——水体系中PH值和离子浓度的影响。
下式表示了在中性条件下,溶解平衡
的建立过程:
2H2O==H3O+OH一
PH=一log[H3O+]
如果水中含有可溶性盐,则溶解平衡的建立,受Ca2+、Mg2+、Cl一等离子的影响。
由于溶解离子和水会形成水化膜,而本身电价低、离子半径小的水化膜厚,这样有利于分散体系的稳定,如Na+。
反之二价阳离子如Ca2+、Mg2+,能降低分散体系的稳定性,甚至产生絮凝,不利于泥浆解胶。
所以二价离子越多,这种干扰作用就越大,同时水的硬度也会越大。
要使水的硬度变小,这就需要更多或更有效的稀释剂来束缚这些阳离子。
另外,在陶瓷生产中,水的性质受PH值、水的硬度、水中的可流动性盐的种类和含量等因素影响。
水与固相粒子间的反应则受到固相颗粒(如粘土)的化学组成、矿物组成、颗粒组成和地质成因等因素的影响。
由于粒子间的相互引力,泥浆系统具有粒子间团聚的倾向。
当粒子过大或料浆流动性不好时就会产生团聚,如果浆料粘度过高,流动性差也会产生团聚。
而稀释剂它是通过增强粒子间的斥力作用,来阻止泥浆团聚的产生或使泥浆团聚解开。
时下全球陶瓷企业纷纷进行节能降耗工作,很多企业将生产中的水进行回收利用。
在回收水的净化处理过程中,绝大多数企业都要添加絮凝剂,而有些企业由于回收水中的絮凝剂处理的不是很彻底,致使有一小部分的絮凝剂残留在回收水中,而絮凝剂的作用与稀释剂的作用恰恰相反。
当将未处理好的回收水用于大生产的球磨过程中,其将会严重影响泥浆的流动性,更严重的将会出现絮凝甚至放不出泥浆。
所以,水质对泥浆的解胶性能影响很大,在生产中一定要引起重视。
? ? 七、辅助添加剂的影响
在陶瓷的生产过程中,有些陶瓷企业在原料的球磨过程中,除了添加稀释剂外,还要添加其它的一
些辅助添加剂,如坯体增强剂等。
由于一些厂家在使用辅助添加剂时,其加入的方式不一样,导致间接影响了稀释剂的使用效果。
在很多陶瓷企业做实验时,本来其大生产是加了辅助添加剂,但往往在做小实验时,他们却不加辅助添加剂,这样得出的结果是不一样的,甚至是相反的,更不能正确地放映出稀释剂的使用效果。
有些陶瓷企业在泥浆的大球磨过程中还要加入一些色料,当泥浆球磨到一定细度后,才加入色料,而一些技术人员在做实验时要么一开始就将色料和原料一起球磨,要么有的索性不加色料做实验,这些都会影响稀释剂的正常效果。
所以,在做稀释剂的实验时,一定要按照大生产的所有工艺参数和工序进行,这样作出的结果才会更贴近大生产。
? ? 八、气候的影响
经常有一些陶瓷企业反映:在潮湿季节,泥浆流动性好端端的,但到干燥季节便开始变差,且一直要到次年的潮湿季节才能转好。
并且这期间的坯料配方、球磨工艺及稀释剂等都没有变,这是为什么呢?在国外一些地区,随着季节的不同而形成的雨水量及环境温度存在着明显的差异。
干燥季节雨水普遍较少,空气较干燥,环境温度较低,而潮湿季节则相反。
一些添加剂(如纯碱)易在高湿度的季节受潮而变质。
轻则使其解凝能力降低,重则会因纯碱受潮变成碳酸氢钠,使泥浆絮凝。
在实际生产中,有部分陶瓷企业使用水玻璃,而水玻璃长期放置也会因吸潮水解析出胶体二氧化硅,严重影响泥浆稀释效果。
如果稀释剂的量是在潮湿季节经实验确定的,按此加入量进入到干燥季节,由于上述原因,这时稀释剂的量实际多于潮湿季节的有效量,影响稀释效果。
此外,一些地区干燥季节降水量较少,由于雨水较少而出现Ca2+、Mg2+离子较多,这也是导致原定稀释剂量过多而引发泥浆流动性下降的原因之一。
易吸潮的纯碱、水玻璃等曾是用于改善泥浆流动性的廉价添加剂,但其会因季节的变化而造成泥浆质量的变化,而这些不易引起操作人员的重视。
所以,现在绝大部分陶瓷企业多弃用水玻璃、纯碱等,纷纷采用一些其替代产品。
总之,泥浆的粘度和流动性受到原料系统中各个组分的影响,只有考虑到每一种组分及其相互间的影响,才可能获得最佳的稀释和分散效果。
同时,客户在选用稀释剂时一定要选择一些专业的生产厂
家,这样才能做到既经济又合理。