人教版高中数学必修三 第一章 算法初步基本算法语句——循环语句
- 格式:doc
- 大小:282.50 KB
- 文档页数:3
高中数学必修③课本练习,习题参考答案第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)解; 题目:在国内寄平信(外埠),每封信的质量x (克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。
算法如下:第一步,输入质量数x 。
第二步,判断是否成立,若是,则输出y=120,否则执行第三步。
第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。
程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。
第三步,,i=i+1,返回第二步。
第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。
高中数学第一章算法初步 1.1 算法与程序框图(第4课时)预习导航新人教A版必修31.了解两种循环结构的概念以及各自的运行过程,明确循环终止的条件.2.能用循环结构设计程序框图解决有关问题.循环结构(1)概念:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.可以用如图①②所示的程序框图表示.(2)直到型循环结构:如图①所示,其特征是:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.(3)当型循环结构:如图②所示,其特征是:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.归纳总结对循环结构的理解:①循环结构中包含顺序结构、条件结构.②循环结构内不存在无终止的循环.③循环结构实质上是判断和处理的结合,可以先判断,再处理,此时是当型循环结构;也可以先处理再判断,此时是直到型循环结构.④循环结构中常用的几个变量:计数变量:即计数器,用来记录执行循环体的次数,如i=i+1,n=n+1.累加变量:即累加器,用来计算数据之和,如S=S+i.累乘变量:即累乘器,用来计算数据之积,如P=P*i.⑤在程序框图中,一般要根据实际情况先给这些变量赋初始值.一般情况下,计数变量的初始值为1,累加变量的初始值为0,累乘变量的初始值为1.【做一做1-1】在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是( )A.分支型循环B.直到型循环C.条件型循环D.当型循环答案:D【做一做1-2】如图所示的程序框图中,循环体是( )A.① B.② C.③ D.②③答案:B。
高中数学人教版必修3全套教案第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
算法初步与程序框图1、算法的概念:算法通常指按照一定的规则解决某一类问题的明确和有限的步骤。
2、程序框图:用程序框、流程线及文字说明来表示算法的图形叫做程序框图或流程图。
(1)用框图表示算法步骤的一些常用的图形符号图形符号名称功能终端框(起止框)表示一个算法的起始和结束,是任何算法程序框图不可缺少的输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置处理框(执行框)赋值、计算.算法中处理数据需要的算式、公式等,它们分别写在不同的用以处理数据的处理框内判断框判断某一条件是否成立,成立时出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框,表示算法进行的前进方向以及先后顺序连接点如果一个流程图需要分开来画,要在断开处画上连接点,并标出连接的号码(2)程序框图的结构形式①顺序结构;②条件结构;③循环结构;(3)基本算法语句①输入语句;②输出语句;③赋值语句;④条件语句;⑤循环语句;3、程序框图举例:开始11(1)(2)4、辗转相除法:5、更相减损术:6、秦九韶算法:7、二分法:8、进位制:9、流程图和结构图框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系,框图可分为流程图和结构图,流程图与结构图直观形象、简洁、明了,在日常生活中应用广泛.一、流程图:流程图常常用来表示一个动态过程,通常会有一个“起点”,一个或多个“终点”.程序框图是流程图的一种.流程图可以直观、明确地表示动态过程从开始到结束的全部步骤.它是由图形符号和文字说明构成的图示.流程图用于描述一个过程性的活动,活动的每一个明确的步骤构成流程图的一个基本单元,基本单元之间用流程线联系.基本单元中的内容要根据需要而确定.可以在基本单元中具体说明,也可以为基本单元设置若干子单元.10、流程图的种类(1)算法流程图①算法流程图在必修课程中已经学过,它是一种特殊的流程图,主要适用于计算机程序的编写.②在算法流程图内允许有闭合回路.(2)工艺流程图①工艺流程图是常见的一种流程图,又称统筹图,在日常生活、生产实践等各方面经常用到工艺流程图.②用来描述具有先后顺序的时间特征的动态过程.③工艺流程图的构成由矩形框、流程线和名称(代号)构成.④工艺流程图可以有一个或多个“起点”,一个或多个“终点”,对于同一个矩形框可以有多个流出点和流入点.⑤在工艺流程图中不允许出现几道工序首尾相连接的圈图或循环回路.20、绘制流程图的一般过程首先,用自然语言描述流程步骤;其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达; 再次,分析各步骤之间的关系;最后,画出流程图表示整个流程.二、结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图.10、结构图的种类常用的结构图一般包括知识结构图、组织结构图、建筑结构图、布局结构图及分类结构图.20、绘制结构图步骤:(1)确定组成系统的基本要素,及它们之间的关系.(2)将系统的主体要素及其之间的关系表示出来.(3)确定主体要素的下位要素(从属主体的要素)“下位”要素比“上位”要素更为具体,“上位”要素比“下位”要素更为抽象.(4)逐步细化各层要素,直到将整个系统表示出来为止.三、结构图与流程图的区别:流程图和结构图不同.流程图是表示一系列活动相互作用、相互制约的顺序的框图.结构图是表示一个系统中各部分之间的组成结构的框图.流程图描述动态过程,结构图刻画系统结构.流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由有向线连接;结构图则更多地表现为“树”状结构,其基本要素之间一般为逻辑关系.四、考点详解考点一:流程图类型一:算法流程图例1、写出方程0ax b += (,a b 为常数)的根的流程图.分析:因为,a b 是实数,要解方程需先判断a 是否为0,当0a ≠时,方程根为b x a =-;当0a =时,需再次判断b 是否为0,若0b =,则方程根为全体实数,若0b ≠,则方程无解,因此可以用算法中的条件结构来实现,相应程序语句是条件语句.解:根据以上的算法分析可得出算法流程图:点评:算法流程图是学习算法语言的必备工具,在使用时必须用其标准的图形符号.变式练习1:某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7类型二: 工序流程图例2、某工厂装配一辆轿车的工序、工序所花的时间及各工序的先后关系如下表所示:开始输入,a b0a ≠? b x a=- 0b ≠? 输出方程无解 输出方程根是全体实数输出原方程根为x 结束否 否是是注:紧前工序,即与该工序相衔接的前一工序.(1)画出装配该轿车的工序流程图;(2)装配一辆轿车的最短时间是多少小时?分析:要画工序流程图,首先要弄清整项工程应划分为多少道工序,这当然应该由上到下,先粗略后精细,其次是仔细考虑各道工序的先后顺序及相互联系、制约的程度,最后考虑哪些工序可以平行进行,哪些工序可以交叉进行.一旦上述问题都考虑清楚了,一个合理的工序流程图就成竹在胸了,依据其去组织生产,指挥施工,就能收到统筹兼顾的功效.解:(1)工序流程图如下图所示:(2)装配一辆轿车的最短时间是1154125340+++++=(小时).点评: 有关工序流程图应先理清工序大体分几个阶段,再对每一阶段细分,每一步应注意先后顺序,这是十分关键的,否则会产生错误.在画工序流程图时,不能出现几道工序首尾相接的圈图或循环回路.变式练习2:某成品的组装工序图如下,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是( )A. 11小时B. 13小时C. 15小时D. 17小时考点二: 结构图类型一: 知识结构图例3、设计一个结构图,表示《数学{5}》第二章“数列”的知识结构图. 分析:画知识结构图的过程与方法:首先,要对所画结构图从头到尾抓住主要脉络进行分解;然后将每一步分解进行归纳与提炼,形成一个个知识点,并将其逐一地写在矩形框内;最后,按其内在的逻辑顺序将它们排列起来并且用线段相连,这样就画成了知识结构图.解:本章的知识结构图如下:点评:要熟悉知识结构,注意实际问题的逻辑顺序和概念上的从属关系,这个结构图从整体上反映了数列的结构,从左向右反映的是要素之间的从属关系.在画结构图时,应根据具体需要确定复杂程度,简洁的结构图有时能更好地反映主体要素之间的关系和系统的整体特点.另外在画结构图时还应注意美观、明了. 变式练习3:下图是《集合》的知识结构图,如果要加入“子集”,则应该放在( )A. “集合的概念”的下位B. “集合的表示”的下位C. “基本关系”的下位D. “基本运算”的下位类型二: 组织结构图例4、下面为某集团的组织结构图,请据下图分析财务部和人力资源部的隶属关系.分析: 根据组织结构图,分析好各部门之间的从属关系,最后作答.解:由组织结构图可分析得:财务部直属总裁管理;而总裁又由董事长管理,董事长服从于董事会管理.人力资源部由董事长助理直接管理,董事长助理服从董事长管理,董事长又服从于董事会管理,董事会是最高管理部门.点评:有关组织结构图一般都呈“树”形结构.这种图直观,容易理解,被应用于很多领域中.在组织结构图中,可采用从上到下或从左到右的顺序绘制图,注意各单元要素之间的关系,并对整个组织结构图进行浏览处理,注重美观、简洁、明了.变式练习4:某公司做人事调整:设总经理一个,配有经理助理一名;设副经理两人,直接对总经理负责,设有6个部门,其中副经理A 管理生产部、安全部和质量部,经理B 管理销售部、财务部和保卫部;生产车间由生产部和安全部共同管理,公司配有质检中心和门岗。
人教版高中数学必修三第一章算法初步算法案例分析算法案例分析自主学习1.算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。
菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
比如解方程的算法、函数求值的算法、作图的算法,等等。
2. 2.算法的重要特征:(1)有限性:一个算法在执行有限步后必须结束;(2)确定性:算法的每一个步骤和次序必须是确定的;(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.师生互动例1解:算法如下:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
这是判断一个大于1的整数n是否为质数的最基本算法。
点评:通过例1明确算法具有两个主要特点:有限性和确定性。
练1解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.点评:在日常生活中做任何一件事情,者是按照一定规则,一步一步进行,比如在工厂中生产一部机器,先把零件一道道工序进行加工,多面手一,又把各种零件按一定法则组装成一产,了完整机器,它们的工艺流程就是算法;在农村,种庄稼有耕地、播种、育苗、施肥、中耕、收割等各个环节,这些栽培技术也是算法。
总之,在任何这些数值计算或非数值计算的过程中所采取的方法和步骤,都称之为算法。
例2。
解:8251=6105×1+2146显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。
第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
示范教案整体设计教学分析前面学习了算法、程序框图与几种算法语句,本节课作为本章的小结,旨在和学生一起站在全章的高度,以算法思想为灵魂,以问题解决为主线,以典型例题为操作平台,以巩固知识、发展能力、提高素养为目的对本章作全面的复习总结,帮助学生进一步提高对算法的理解和认识,优化知识结构.三维目标1.对本章知识形成知识网络,提高学生的逻辑思维能力,培养学生的归纳能力.2.熟练应用算法、程序框图与基本算法语句来解决问题,培养学生的分析问题和解决问题的能力,逐步学会用数学方法去认识世界、改造世界.重点难点教学重点:应用算法、程序框图与基本算法语句解决问题.教学难点:形成知识网络.课时安排1课时教学过程导入新课思路1(情境导入).大家都熟悉围棋高手“石佛”李昌镐吧,他曾经打遍天下无敌手,你知道他最令人可怕的地方吗?他的技术很全面,但他最厉害的技术是“官子”,他的“官子”层次分明,可以说滴水不漏,堪称世界第一.我们的这次复习也要像围棋中的“官子”,也要做到层次分明、滴水不漏.思路2(直接导入).前面我们学习了算法、程序框图与基本算法语句等内容,今天我们对本章知识、方法、数学思想进行全面、系统的总结与复习.推进新课新知探究提出问题(1)请同学们自己梳理本章知识结构.(2)回顾算法的定义及特征.(3)回忆程序框图的三种逻辑结构.(4)总结算法语句.讨论结果:(1)本章知识结构如下图.(2)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.算法的特征:①确定性:算法的每一步都应当做到“准确无误、不重不漏”“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣、分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(3)顺序结构、条件分支结构、循环结构.(4)赋值语句:变量=表达式.输入语句:变量=input.输出语句:print(%io(2),变量).条件语句:格式1:if表达式语句序列1;else语句序列2;end格式2:if表达式语句序列1;end循环语句:for语句:for循环变量=初值:步长:终值循环体;endwhile语句:while表达式循环体;end应用示例例1如下图所示,该程序框图输出的结果为________.解:该程序框图的运行过程是:A=1;S=1;S=1+9=10;A=1+1=2;A≤2,成立;S=10+9=19;A=2+1=3;A=3≤2,不成立;输出S=19.答案:19点评:解决同一个问题,可以有多种算法,那么就有多种程序框图和语句,再就是不同版本的教材算法语句的语言形式也不相同,因此高考试题中通常不会考查画程序框图或编写程序.由于学习本章的目的是体会算法的思想,所以已知程序框图或程序,判断其结果是高考考查本章知识的主要形式,这也是课程标准和考试说明对本章的要求.其判断方法是具体∴y =π2×2-5=π-5. 例2到银行办理个人异地汇款(不超过100万元),银行收取一定的手续费.假设汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取;超过5 000元,一律收取50元手续费.试用程序框图描述汇款额为x 元时,银行收取手续费y 元的过程.分析:这是一个实际问题,故应先建立数学模型,y =⎩⎪⎨⎪⎧ 1(0<x ≤100),0.01x (100<x ≤5 000),50(5 000<x ≤1 000 000).由此看出,要求手续费,需先判断x 的范围.解:程序框图如下图:点评:条件分支结构经常与分段函数有密切的关联;判断框里要写明分支的条件,从而决定下一步该作出怎样的选择.例3已知函数y =⎩⎪⎨⎪⎧ 2x -1,x ≤-1,log 3(x +1),-1<x<2,x 4,x ≥2,试设计一个算法,输入x 的值,求对应的函数值.分析:对输入x 的值与-1和2比较大小,即分类讨论.解:算法如下:S1 输入x 的值;S2 当x ≤-1时,计算y =2x -1,否则执行下一步;S3 当x ≥2时,计算y =x 4,否则执行下一步;S4 计算y =log 3(x +1);S5 输出y.点评:分段函数是高考考查的重点,在考虑算法步骤时,要用到分类讨论思想,这为复习程序框图和算法语句打好了基础.知能训练1.下面程序框图输出的结果是( )A .11B .12C .132D .1 320分析:该程序框图的运行过程是:i =12;s =1;i =12≥10,成立;s =1×12=12;i =12-1=11;i =11≥10,成立;s =12×11=132;i =11-1=10;i =10≥10,成立;s =132×10=1 320;i =10-1=9;i =9≥10,不成立;输出s =1 320.答案:D2.下图是表示求解方程x 2-(a +1)x +a =0(a ∈R ,a 是常数)过程的程序框图.请在标有序号(1)(2)(3)(4)处填上你认为合适的内容将框图补充完整.(1)____________;(2)____________;(3)____________;(4)____________.解析:所解方程是一元二次方程,先计算判别式Δ=(a +1)2-4a =(a -1)2,所以(1)处填(a -1)2;计算判别式Δ的大小后,再判断其符号,由于Δ=(a -1)2,则只需判断a 是否等于1即可,则(2)有两种填法a =1或a ≠1,当(2)处填a =1时,(3)处填x 1=x 2=1,(4)处填x 1=a ,x 2=1;当(2)处填a ≠1时,(3)处填x 1=a ,x 2=1,(4)处填x 1=x 2=1.答案:(1)(a -1)2 (2)a =1 (3)x 1=x 2=1 (4)x 1=a ,x 2=1或(1)(a -1)2 (2)a ≠1(3)x 1=a ,x 2=1 (4)x 1=x 2=13.下列程序的功能是________.s =0;for i =1:1:100s =s +1/i ;endprint(%io(2),s);解析:该程序的执行过程是:s =0;i =1,s =0+11=1; i =2,s =1+12;i =3,s =1+12+13; ……i =100,s =1+12+13+…+1100. 答案:计算1+12+13+…+1100的值 拓展提升数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1 000的所有“水仙花数”.(1)写出算法步骤;(2)画出程序框图.分析:由于需要判断大于100,小于1 000的整数是否满足等于它各位上的数字的立方的和,所以需要用循环结构.解:(1)算法步骤如下:S1 i =101;S2 如果i 不大于999,则执行第3步,否则算法结束;S3 若这个数i 等于它各位上的数字的立方的和,则输出这个数;S4 i =i +1,返回第2步.(2)程序框图如下图所示.课堂小结(1)复习了本章知识,形成了知识网络.(2)判断算法的功能或输出结果.作业本章小结Ⅲ.巩固与提高 4、5.设计感想本节通过大量生动活泼的例题对本章进行系统的总结,通过精彩的点评渗透算法的基本思想,使学生的知识得到进一步巩固,使学生的思想方法不断升华.备课资料人机大战的启示人类的许多进步之所以产生,多半是发明了一个更好、更有力的工具.物质工具使工作速度加快并使人们从重体力劳动中解脱出来,而信息工具则扩大人们的智力.物质工具如犁、起重机、推土机、内燃机、电动机等等,是人的四肢的延伸,而计算机是人的大脑的延伸.它最初只能进行数值计算,但随着其发展,应用范围不断扩大.它不仅能够进行计算,还能进行记忆、判断、推理、设计、控制、自动化处理等等.一句话,只要是能输入计算机里的信息,它都能按照人的要求对信息进行迅速而圆满的处理.因此,计算机也被称为电脑.在短短十几年的时间里,我们经历了计算机深入生活每一个角落的过程,深深感受到了计算机多方面的强大的功能.其中,国际象棋大师卡斯帕罗夫与IBM“深蓝”的人机大战的结果曾引起世人瞩目和激烈讨论,留下了有关计算机与人的关系的种种思考.1989年,美国IBM公司成立了“深蓝”(Deep Blue)项目小组,开始着手研究有关计算机下棋方面的技术,其实就是设计下棋的算法.其目的是证明它具有能够处理复杂博弈模式的能力,而真正的意图是,以此作为一个模型,将并行技术深入到其他各种复杂应用领域.1988年,“深蓝”的前身“深思”(Deep Thought)在华裔科学家许峰雄等人的开发下,已经具备与人进行国际象棋比赛的能力.“深蓝”在开始设计时就以超越“深思”为目的,特别在运算速度与处理能力部分.经过不断的努力,1996年2月,当今最优秀的国际象棋棋手、世界冠军卡斯帕罗夫与“深蓝”计算机展开了第一次真正的角逐.比赛为六局对抗赛.虽然卡斯帕罗夫最终以4∶2的比分取胜,但今天计算机所达到的能力,也着实让全世界吃了一惊.尤其是第一局,“深蓝”以获胜来了个“开门红”.卡斯帕罗夫在赛后承认,“深蓝”是必须认真对待的劲敌,他说:“我没有料到它如此难以对付,我输掉第一局非常幸运,因为那是给我发出的最严重警告.”由于卡斯帕罗夫战胜“深蓝”,他预言“在严肃、经典的比赛中,计算机在本世纪没有赢棋的机会.”然而,卡斯帕罗夫对计算机技术的飞速发展估计错了.仅仅一年后,“深蓝”就战胜了这位大师.1997年5月人机大战重开.前五局战平,5月11日第六局决胜局的比赛,卡斯帕罗夫仅走了19步便向“深蓝”认输.“深蓝”的重量达1.4吨,拥有32个节点,每一节点有8块专门为进行国际象棋对弈设计的处理器,从而拥有每秒运算超过2亿步的惊人速度.为了使“深蓝”能拥有更多的资源规划棋步,开发小组汇集了一个开放棋局的数据库,输入了100年来世界顶级棋手的棋局,此外还有残局数据库,即最后五步时的走法,形成了汇集10亿个棋局的数据库.自1996年在输给卡斯帕罗夫之后,美国特级大师本杰明加盟“深蓝”,将他对象棋的理解编成语句输入“深蓝”,且在1997年的比赛中,每场对局结束后,小组都会根据卡斯帕罗夫的情况相应地修改特定的参数.“深蓝”在比赛中,不会疲倦、不会有心理和情绪上的起伏,只是不动声色地进行高速准确的运算.因此,卡斯帕罗夫的对手并不是“深蓝”主机,而是一群人如何运用电脑的硬、软件来向一个人的智慧和反应挑战.电脑的胜利说到底是人脑的胜利.但是“深蓝”的这次胜利,毕竟标志着计算机技术又上了一个新台阶,更准确地说,这次“深蓝”胜利,是人脑经过电脑胜过人脑.它也反过来让人们思考,什么是思维的本质?它第一次让人类如此真切地感受到了电脑与人的相异却又能够与人对抗的能力,这种力量还会从人们今后的努力中得到滋养从而不断壮大.有人曾将人机大战称为捍卫人类尊严的比赛,此次“深蓝”获胜,绝不意味人类的尊严丧失殆尽.许峰雄博士说得好:“棋王卡斯帕罗夫的胜利是为人类的过去赢了一盘棋;今年,‘深蓝’胜卡斯帕罗夫,是为人类的未来赢了一盘棋.”另外,深具意义的是,“深蓝”证明了人类的极限.超越人类的极限是一件很大的事情,人类就是在不断超越自己的极限中而进步的.。
最全高中数学必修三知识点总结归纳(经典版)必修三知识点总结归纳(经典版)第一章算法初步1.1.1 算法的概念算法是指可以用计算机来解决的某一类问题的程序或步骤,必须是明确和有效的,而且能够在有限步之内完成。
算法具有有限性、确定性、顺序性与正确性、不唯一性和普遍性等特点。
1.1.2 程序框图程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括起止框、输入、输出框、处理框和判断框等部分,需要掌握各个图形的形状、作用及使用规则。
算法的三种基本逻辑结构是顺序结构、条件结构和循环结构。
顺序结构是最简单的算法结构,由若干个依次执行的处理步骤组成,是任何一个算法都离不开的一种基本算法结构。
循环语句循环结构可以通过循环语句来实现。
在程序设计语言中,一般有两种循环结构:当型(WHILE型)和直到型(UNTIL 型),对应于程序框图中的两种循环结构。
下面分别介绍这两种语句结构。
1.WHILE语句WHILE语句的一般格式如下:WHILE 条件循环体WEND当计算机遇到WHILE语句时,先判断条件的真假。
如果条件符合,就执行WHILE与XXX之间的循环体。
然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。
这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行XXX之后的语句。
因此,当型循环有时也称为“前测试型”循环。
2.UNTIL语句UNTIL语句的一般格式如下:DO循环体LOOP UNTIL 条件当计算机执行该语句时,先执行一次循环体,然后进行条件的判断。
如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句。
因此,直到型循环又称为“后测试型”循环。
注意,是先执行循环体后进行条件判断的循环语句。
辗转相除法与更相减损术1.辗转相除法辗转相除法,也叫欧几里德算法,用于求最大公约数。
2021-4-29 20XX年复习资料教学复习资料班级:科目:第3课时循环结构学习目标核心素养1.掌握两种循环结构程序框图的画法,能进行两种循环结构程序框图的相互转化.(难点) 2.能正确设计程序框图,解决有关实际问题.(重点)1.通过循环结构的学习,提升逻辑推理素养.2.借助含循环结构的程序框图的设计,培养数学抽象素养.1.循环结构的概念及相关内容(1)循环结构:按照一定的条件反复执行某些步骤的结构.(2)循环体:反复执行的步骤.2.循环结构的分类及特征名称直到型循环当型循环结构特征先执行循环体,后判断条件,若条件不满足,则执行循环体,否则终止循环先判断条件,若条件满足,则执行循环体,否则终止循环思考:循环结构中含有条件结构吗?它在其中的作用是什么?[提示]循环结构中必须包含条件结构,以保证按条件进行循环并在适当时候终止循环.1.如图所示的程序框图中,是循环体的序号为()A.①②B.②C.②③D.③[答案]B2.一个完整的程序框图至少包含()A.起止框和输入、输出框B.起止框和处理框C.起止框和判断框D.起止框、处理框和输入、输出框A[一个完整的程序框图至少包含起止框和输入、输出框.] 3.下列框图是循环结构的是()A.①②B.②③C.③④D.②④C[①是顺序结构,②是条件结构,③④是循环结构.] 4.在如图所示的程序框图中,输出S的值为()A .11B .12C .13D .15B [由框图知:S =3+4+5=12.]循环结构程序框图的运行【例1】 如图是求12+12+12的程序框图,图中空白框中应填入( )A .A =12+AB .A =2+1AC .A =11+2AD .A =1+12AA [初始:A =12,k =1≤2,因为第一次应该计算12+12=12+A,k =k +1=2;执行第2次,k =2≤2,因为第二次应该计算12+12+12=12+A ,k =k +1=3,结束循环,故循环体为A =12+A,故选A.]与循环结构有关问题的解题策略(1)已知程序框图,求输出的结果.可按程序框图的流程依次执行,最后得出结果. (2)完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.[跟进训练]1.阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )A .30B .31C .62D .63B [由程序框图可知该算法的功能为计算S =1+21+22+23+24的值, 即输出的值为S =1+21+22+23+24=31.故选B.]含循环结构的程序框图的设计[探究问题]1.在循环结构中,计数变量和累加(乘)变量有什么作用?[提示] 一般地,循环结构中都有一个计数变量和累加(乘)变量:计数变量用于记录循环次数,同时它的取值还可能用于判断循环是否终止;累加(乘)变量用于表示每一步的计算结果.计数变量和累加(乘)变量一般是同步执行的,累加(乘)一次,计数一次.2.循环结构中的判断框中的条件是唯一的吗?[提示]不是,在具体的程序框图设计时,这里的条件可以不同,但不同表示应该有共同的确定的结果.3.你认为循环结构适用于什么样的计算?[提示]循环结构主要用在一些有规律的重复计算中,如累加求和,累乘求积等问题.【例2】写出一个求满足1×3×5×7×…×n>50 000的最小正整数n的算法,并画出相应的程序框图.思路点拨:(1)计数变量与累乘变量的初始值应为多少?(2)循环体是怎样构成的?(3)怎样设置终止条件?[解]算法如下:第一步,S=1.第二步,n=3.第三步,如果S≤50 000,那么S=S×n,n=n+2,重复第三步;否则,执行第四步.第四步,n=n-2.第五步,输出n.程序框图如图所示:1.(变条件)写出一个求满足1+2+3+…+n>10 000的最小正整数n的算法,并画出相应的程序框图.[解] 法一:第一步,S =0. 第二步,n =0. 第三步,n =n +1. 第四步,S =S +n .第五步,如果S >10 000,则输出n ;否则执行第六步.第六步,返回第三步,重新执行第三步、第四步、第五步.该算法的程序框图如图所示.法二:第一步,取n 的值等于1. 第二步,计算n (n +1)2.第三步,如果n (n +1)2的值大于10 000,那么n 即为所求;否则,让n 的值增加1后转到第二步重复操作.根据以上的操作步骤,可以画出如图所示的程序框图.2.(变结论)画出求满足1×3×5×7×…×n<1 000的最大自然数n的程序框图.[解]用循环结构描述算法应注意的问题要注意循环条件、变量初值、循环体各语句之间的影响.(1)注意各个语句顺序不同对结果的影响;(2)注意各个变量初始值不同对结果的影响;(3)要对循环开始和结束的变量及结束时变量的值认真检验,以免出现多循环或者漏循环.循环结构的实际应用【例3】一个球从100 m高处落下,每次落地后反弹回原来高度的一半再落下,在第10次落地时,共经历多少路程?第10次下落的高度为多高?试设计一个程序框图解决问题.思路点拨:本题中小球的每相邻两次下落高度之间满足h i +1=h i2(i ∈N *,1≤i ≤10),所以本题的实质是有规律的数的求和问题.关键是明确小球的运行路线,找准其规律,合理设置变量.[解] 程序框图如图所示.利用循环结构解决应用问题的方法[跟进训练]2.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:队员i 1 2 3 4 5 6 三分球个数a 1a 2a 3a 4a 5a 6如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框中应填________,输出的S =________.6 a 1+a 2+…+a 6 [由题意知该程序框图是统计该6名队员在最近三场比赛中投进的三分球总数,故图中判断框应填i ≤6?输出的S =a 1+a 2+…+a 6.]1.(1)循环结构是指在算法中需要重复执行一条或多条指令的控制结构; (2)在循环结构中,通常都有一个起循环计数作用的变量,即计数变量; (3)循环变量、循环体、循环终止条件称为循环结构的三要素. 2.画程序框图要注意: (1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大多数框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)框图中若出现循环结构,一定要分清当型和直到型结构的不同; (5)在图形符号内描述的语言要非常简练、清楚.1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)循环结构中不一定包含条件结构.( )(2)循环结构中反复执行的步骤叫做循环体. ( )(3)循环结构中不存在无终止的循环.( )(4)当型循环与直到型循环结构是常见的两种循环结构. ( )[答案] (1)× (2)√ (3)√ (4)√2.为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4B [由程序框图的算法功能知执行框N =N +1i计算的是连续奇数的倒数和,而执行框T =T +1i +1计算的是连续偶数的倒数和,所以在空白执行框中应填入的命令是i =i +2,故选B.]3.如图所示的程序框图中,语句“S =S ×n ”将被执行的次数是( )A .4B .5C .6D .7B [由框图知:S =1×2×3×…×n .又1×2×3×4×5=120<200,1×2×3×4×5×6=720>200,故语句“S =S ×n ”被执行了5次.]4.用循环结构画出求1+12+13+14+…+11 000的算法的程序框图. [解] 程序框图如图所示.结束语同学们,相信梦想是价值的源泉,相信成功的信念比成功本身更重要,相信人生有挫折没有失败,相信生命的质量来自决不妥协的信念。
第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
第1页 共3页
基本算法语句——循环语句
教学目标
(1)正确理解循环语句的概念,并掌握其结构;
(2)会应用循环语句编写程序.
教学重点
两种当型循环语句的表示方法、结构、用法和区别,分别用两种形式表示算法.
教学难点
理解循环语句的表示方法、结构和用法,会编写程序中的循环语句.
教学过程
一、问题情境
1.问题1:设计计算135799的一个算法,并画出流程图.
二、学生活动
解决问题1的算法是:
对于以上算法过程,我们可以用循环语句来实现.
三、建构数学
1.循环语句:循环语句一般有3种:“For循环”、“While循环”和“Do循环”
(1)“For循环”是在循环次数已知时使用的循环,属于当型循环。
其一般形式为:
例如:问题1中算法可用“For循环”语句表示为:
1S
Print S
End
说明:①上面“For”和“End For”之间缩进的步骤称为循环体;
②如果省略“Step 2”,默认的“步长”为1,即循环时,I的值每次增加1(步长也
可以为负,例如,以上“For循环”第1行可写成:For I From 99 To 1 Step -2);
③“For循环”是当型循环结构,即先判断后执行.
(2)“While循环”的一般形式为:
其中A为判断执行循环的条件.
例如:问题1中的算法可“While循环”语句表示为:
S1 S←1
S2 I←3
S3 S←S×I
S4 I←I+2
S5 若I≤99,则返回S3
S6 输出S
结束
开始
流程图:
For I From“初值”To“终值”Step
“步长”
…
End for
For I From 1 To 99 Step 2
SSI
End For
While A
循环体
End while
第2页 共3页
1S
3I
Print S
End
说明:①上面“While”和“End While”之间缩进的步骤称为循环体;
②“While循环”是当型循环结构,其特点先判断,后执行.若初始条件不成立,则
一次也不执行循环体中的内容;
③任何一种需要重复处理的问题都可以用这种前测试循环来实现.
四、数学过程
1.例题:
例1.编写程序,计算自然数1+2+3+……+99+100的和。
解:用“For循环”表示如下: 用“While循环”表示如下:
例2.试用算法语句表示:寻找满足1357_____10000的最小整数的算法.
解:本例中循环的次数不定,因此可用“While循环”语句,具体描述如下:
例3.抛掷一枚硬币时,既可能出现正面,也可能出现反面,预先作出确定的判断是不可能
的,但是假如硬币质量均匀,那么当抛掷次数很多时,出现正面的频率应接近50%.试设
计一个循环语句模拟抛掷硬币的过程,并计算抛掷中出现正面的频率.
分析:抛掷硬币的过程实际上是一个不断重复地做同一件事情的过程,利用循环语句,我
们很容易在计算机上模拟这一过程.
在程序设计中,有一个随机函数“Rnd”,它能产生0与1之间的随机数.这样,我们
可用大于0.5的随机数表示出现正面,不大于0.5的随机数表示出现反面.
解:本题算法的伪代码如下:
0S
Read n
While I≤99
SSI
2II
End While
1S
For I From 1 To 100 Step 1
SSI
End For
Print S
End
1S
While I≤100
SSI
1II
End While
Print S
End
1S
1I
While S≤10000
2II
*SSI
End While
Print I
End
第3页 共3页
For I From 1 To n
If Rnd>0.5 Then 1SS
End For
Print 出现正面的频率为Sn.
End
2.练习:课本第23页 练习 第1题.
五、回顾小结:
1.循环语句的概念,并掌握其结构;
2.“For循环”、“While循环”在用法上的区别与联系.
作业:
课本第23页 练习 第2、3、4题;
课本第24页 习题 第4、6、7题.