TD-LTE业务时延的分析与优化课件
- 格式:ppt
- 大小:504.50 KB
- 文档页数:24
数据业务专题优化5.8.3.1 GPRS网络无线侧优化从网络拓扑结构角度,无线侧部分侧重于BSS部分,包括无线空口、Abis、G-Ater、GP 等网络单元。
基与优化的最终目标—EGPRS的指标提升以及提升用户感知,可以将现有影响EGPRS 性能众多的因素进行分解和划分,总的说来,可以分成容量资源的优化、无线环境的优化、EGPRS参数优化、核心网优化以及数据业务终端和上层应用优化等内容。
如下图所示:优化前期对网络性能进行完整的评估是很有必要的,这样一方面可以帮助制定比较合理的优化目标;同时可以对网络的现状和潜在的问题有一定的了解,为后期的网络优化方案制定提供有效的参考。
通常在网络性能调查的时候,可以分成三个方面:KPI指标收集和分析。
OSS KPI主要包括数据业务质量、移动性能指标、无线、GP、Gb/Iu_PS的拥塞情况;外场DT和CQT测试。
基于外场的测试在获取无线环境信息的同时也可以反映用户终端的实际感知度,主要包括无线信号强度、C/I、CS/MCS的分布情况、时隙分配情况、BLER、RLC层吞吐率、小区重选和路由区更新的频繁程度;核心网侧的信令跟踪和分析。
主要分析Gb、Iu_PS、Gn、Gi侧信令,分析用户行为情况。
综上所述,数据业务端到端优化无线侧工作内容概述如下:1、GPRS优化评估测试在项目开始前期将根据局方提供的路段和测试点进行GPRS优化评估测试,以此对现网中数据业务的性能进行初步了解,借此辅助项目中后期对于GPRS的优化,并根据后期复测情况体现优化效果。
测试包括DT和CQT测试。
测试项目包括EDGE下载速率,FTP下载速率以及WAP首页显示时延等。
GPRS优化过程一个重要的环节:测试优化,GPRS网络存在的问题主要是通过主动测试来发现并解决,通过实地的测试可以更好的优化GPRS网络,提升GPRS网络服务质量,如下图:2、测试问题点分析处理GPRS是承载在GSM网络之上的,因此它也和GSM网络优化有着共同之处――无线环境优化。
LTE系统时延分析前言LTE不仅可以提供更高的频谱效率.对于服务质量。
特别是对实时业务时延的控制都是其设计目标。
LTE系统采用由eNode B构成的单层结构,这种结构有利于简化网络和减小延迟,实现了低时延、低复杂度和低成本的要求。
为使用户能够获得“Always Online”的体验.LTE对时延的具体要求为:用户平面内部单向传输时延(UE—eNode B)小于5ms。
控制平面从睡眠状态到激活状态迁移时间小于50ms.从驻留状态到激活状态的迁移时间小于100ms。
1 用户面时延用户面时延是指在UE IP层与RAN边缘节点IP层之间的数据包的单向传输时间.其中RAN边缘节点是指与核心网络直接进行通信连接的基站。
LTE系统要求对于小IP包(仅含IP帧头),在空载(单用户但数据流时)条件下用户面时延应小于5ms。
另外,E—UTRAN系统的带宽也影响实际的传输时延。
用户面时延如图l所示。
实际网络中LTE系统的用户面时延主要包括处理时延、TTI长度以及帧调整。
整个时延的构成如图2所示。
以下用户面时延的计算是在预调度模式下.基于0%-30%的HARQ重传情况下计算的。
所有计算结果表明RAN内部双向(从下行PDCP至上行PDCP)时延小于10ms的要求是可以达到的,时延计算过程如下:a)无重传情况下的单向用户面时延为Dupl=1(编码)+0.5(帧调整)+1(TTI)+l(解码)=3.5msb)考虑30%的HARQ重传的单向用户面时延为Dupl+nx5(帧调整)=3.5ms + n×5ms式中,n——重传次数c)从而可以得到平均的用户面时延计算方法。
Dup=3.5ms + P×5ms式中:P--第一次HARQ重传时发生的错误概率d)P=30%时的环回时延为3.5+3.5+2×0.3×5=10mse)P=20%时的环回时延为3.5+3.5+2×0.2×5=9msf)P=0%时的环回时延为3.5+3.5+2×0×5=7ms表l列出了当HARQ最初的错误概率为30%时用户面的时延情况。