太阳能电池板跟踪的超前余量研究
- 格式:pdf
- 大小:218.93 KB
- 文档页数:5
光伏发电系统最大功率跟踪技术应用研究[摘要] 光伏电池输出功率随外部环境和负载的变化而变化,太阳能最大功率点跟踪技术(MPPT)是光伏发电领域中一项非常具有价值的技术。
其中恒压跟踪法和扰动观察法因其具有简单有效的优点而得到广泛应用。
针对恒压跟踪法的缺点,为充分发挥光伏电池的效能,在恒压跟踪方法的基础上引入扰动观察法。
本文采用单片机实现扰动观察法,扰动步长针对最大功率点处稳态特性进行优化,优化后,扰动观察法可有效消除光伏器件输出功率在最大功率点的振荡现象,从而提高系统效率。
仿真和实验研究证明,该方法可以快速跟踪外部环境变化,并消除系统在最大功率点的振荡现象。
[关键词] 单片机光伏发电最大功率点跟踪1.光伏电池特性光伏电池输出功率的函数为:式中:I、Isc、Io分别为光伏电池输出电流、光伏电池短路电流和光伏电池反向饱和电流,Isc由日照强度决定;q为电荷常数;A为光伏电池中半导体器件的pn结系数;K为Blotzman常数;T为绝对温度;U为光伏电池输出电压。
太阳光照射到电池上时,电池的电压与电流的关系(即伏安特性)可以简单用图1来表示,图中:V oc为开路电压;Isc为短路电流;Vmp为最佳工作电压;Imp为最佳工作电流。
图1太阳电池伏安特性曲线2.光伏路灯控制系统组成及功能本控制系统由太阳能电池板、蓄电池、路灯和系统控制器四大部分组成。
其结构如图2所示。
系统控制器不仅要实现普通光伏路灯的基本功能,如:路灯定时;蓄电池充放电的管理;蓄电池的过充、过放保护;太阳能电池反接保护等,还要实现太阳能最大功率点跟踪的功能。
图2 光伏路灯控制系统框图系统适应了机动车和非机动车道照明的不同,具备了双路路灯控制,即主灯为机动车道照明,副灯为非机动车道照明。
两路控制互相独立,可根据需要分别进行定时。
3.主要功能单元及原理3.1 主控单元本系统选用的主控器件为美国Silicon Labs公司的C8051F330型8位单片机。
太阳能最大功率跟踪研究综述太阳能具有无污染、无噪音、取之不尽、用之不竭等优点,为光伏并网和完善电网提供了前提,高性能的太阳能发电不但能减少污染,还可以解决能源危机的问题。
太阳能发电存在的主要问题是太阳能电池的输出特性受外界环境和转换效率的问题,温度和光照许多因素都会影响输出功率,而且初期成本比较高。
因此需要提高太阳能电池的利用率。
标签:太阳能;最大功率跟踪;效率1 太阳能光伏发电的意义能源问题越来越为人们所关注,作为一种具有绿色、安全、清洁等优点的太阳能被认为是最具发展潜能的新科技能源之一,其可再生性,清洁型及取之不尽,用之不竭等特点,目前其在太空研究领域得到广泛应用,同时也成为宇宙飞船、太空站等太空设备的后续能量来源。
太阳能的利用在国内来说,其应用领域正在不断向大众化迈进。
如现在城市一些路灯都实现了太阳能跟风能结合供电,大城市绿化带、风景区等亦是如此。
现在的农业也在朝自动化、无公害等方向发展,太阳能这一新兴能源在农业方面也得到了应用。
为太阳光照充足的偏远地区提过电能,可以避免水、火电网进行电能输送的高成本,而且偏远地区的住房分散,加大了输电的难度。
利用太阳能来供电,可以节约用电成本,方便供电。
2 太阳能光伏发电的原理以及主要形式太阳能光伏发电的原理就是光生伏特效应,太阳的光能直接转化为可用的电能。
光伏发电系统的发展到现在,主要有四种类型的应用:家庭使用的网络系统,非家庭使用的离网系统,分布式和网格连接系统。
3 太阳能电池特性光伏电池会因光照强度、温度、湿度等多种因素影响输出发生变化。
而且不同条件下的输出功率点也不同。
而且在常温下,同一光照强度时太阳能电池板的输出总存在一个最大功率点,便是该温度光照强度下最大功率点。
4 最大功率点以及跟踪的意义太阳能电池板的P-V曲线是非线性的,因此在某一电压值时候,存在一点功率最大,当电压达到一定值时,功率可达到最。
此时功率因为电压的影响而变化。
太阳能电池输出功率达到最大的点即为太阳能电池的最大功率点。
光伏发电系统中的最大功率追踪算法研究随着全球环境问题的不断加剧和人们对可再生能源的需求不断增长,光伏发电系统得到了广泛的应用。
在光伏发电系统中,最大功率追踪算法是一项重要的技术,它可以实现光伏电池板的最大输出功率,进而提高光伏发电系统的效率。
本文将介绍光伏发电系统中的最大功率追踪算法,并对其研究现状进行分析和讨论。
一、最大功率追踪算法的原理在光伏发电系统中,光伏电池板是获取太阳能并将其转化为电能的核心设备。
然而,光照强度的变化和光伏电池板本身的特性使得其输出电压和电流随时都在变化。
因此,为了提高光伏发电系统的效率,需要实现光伏电池板的最大输出功率追踪。
最大功率追踪算法是通过对光伏电池板输出电压和电流进行测量和监控,进而计算出光伏电池板的输出功率,并实时调整电池板的工作状态,以保证输出功率达到最大。
最常用的最大功率追踪算法包括模拟算法、传统的启发式算法和基于人工智能的算法。
模拟算法是最早被使用的最大功率追踪算法,它根据光伏电池板的电特性建立模型,通过计算机模拟来获取最大功率点。
传统的启发式算法则是通过试错法逐步调整电压和电流,不断接近最大功率点。
基于人工智能的算法则是采用神经网络、遗传算法等技术,通过自学习来找到最大功率点。
二、最大功率追踪算法的研究现状目前,最大功率追踪算法的研究主要集中在以下几个方向:1. 基于模糊控制的最大功率追踪算法基于模糊控制的最大功率追踪算法是利用模糊控制理论来建立光伏电池板最大功率追踪系统的一种方法。
这种方法的优点是具有较强的适应性和鲁棒性,能够在光照变化频繁、天气复杂的环境下实现高效的最大功率追踪。
2. 基于人工智能的最大功率追踪算法基于人工智能的最大功率追踪算法是通过利用神经网络、遗传算法等技术来实现最大功率追踪。
这种方法能够有效地解决光伏电池板的输出功率经常变化的问题,具有自适应性强、稳定性好的优点。
3. 基于无线传感器网络的最大功率追踪算法基于无线传感器网络的最大功率追踪算法是利用物联网技术来实现光伏电池板最大功率追踪的方法。
第1章绪论1.1太阳能利用的前景当今,煤,石油,天然气等常规矿产能源,储量越来越少,世界各大经济体都面临能源危机。
按照目前的开采和使用速度,己探明的矿产能源仅够人类再利用几十年,可以说,己经是处在日益枯竭的形势之下。
为了能够获得更多的资源,在石油储量丰富的地区,一直以来冲突不断,而且有外部势力的干预。
为了得到能源,保证经济这架大车的正常运转,不惜以战争为手段,以人民的生命为代价。
中国,作为世界上最大的发展中国家,对石油的依赖程度很高。
以2010年为例:海关总署公布的数据显示,2010年全年我国进口原油2.39亿吨,去年全年原油产量2亿吨,对外依存度逼近55%。
我国已经进入能源预警阶段。
根据国家能源局的报告,到2010年中国已成为世界第一大能源消费国。
其中,电力消费从2005年的2.5亿千瓦时增加到2010年的4.2亿千瓦时,年均增长11.1%;煤炭消费量从2005年的23.18亿吨增加到2010年的32亿吨,年均增长6.8%;石油消费从3.25亿吨增加到4.28亿吨,年均增长5.7%;天然气消费从468亿立方米增加到1090亿立方米,年均增长18.5%;非石化能源消费从1.6亿吨标准煤增加到2.6亿吨标准煤,年均增长10.1%。
“十二五”期间我困能源消费总量将增加8亿至1亿吨标准煤,年均增长4.8%至5.5%,到2015年能源消费总量达41亿至42.5亿吨标准煤。
从以上的数据,很容易看出,完全依靠煤炭!石油等常规能源,是无法满足未来社会经济发展对于能源需求的[1]。
另外一个方面,矿产能源在使用中产生的二氧化碳会造成温室效应;其它的废渣废气对环境造成了无法挽回的损失。
即使是这些能源本身泄漏都会对环境造成危害,如石油管道损坏造成的石油泄漏。
基于以上两个方而的原因,人类正在寻找更适合的能源。
希望能够逐步取代常规的矿产能源。
在填补现有能源不足的同时,也为保护环境做积极的改善。
目前所开发和利用的新能源主要有核能、风能、太阳能、潮汐能等。
光伏发电系统中最大功率跟踪控制方法的研究的开题报告一、选题背景随着环保意识的不断加强和对可再生能源的需求越来越高,光伏发电技术已经成为了当前最流行的可再生能源之一。
在光伏发电系统中,最大功率跟踪控制是一个非常重要的技术,可以有效提高系统的能量利用率。
在光伏发电系统中,光伏电池的输出电压和电流受到多种因素的影响,因此需要通过最大功率点跟踪控制来调整传感器输出信号,从而使系统能够选择最佳的工作点,最大化输出功率。
二、选题目的本研究旨在探讨光伏发电系统中最大功率跟踪控制方法,以提高光伏发电系统的能量利用率。
通过研究和分析已有的最大功率跟踪控制方法,为光伏发电系统的最大功率跟踪控制提供更加有效和可靠的方法。
三、选题意义在目前的环境下,绿色能源已经成为了趋势,而光伏发电技术是绿色能源中最有力的形式之一。
然而,虽然光伏发电系统在环保方面很有优势,但是由于太阳能多变的特性,它的发电效率并不高,因此如何提高光伏发电系统的能量利用率成为了一个非常重要的问题。
最大功率跟踪控制是解决这一问题的有效方法之一。
因此,本研究的意义在于提出更加高效和可靠的最大功率跟踪控制方法,以提高光伏发电系统的能量利用率,从而实现绿色能源的可持续发展。
四、研究内容本研究主要包括以下几个方面:1. 光伏电池的基本原理和工作特性分析。
2. 光伏发电系统的最大功率跟踪控制方法研究,包括传统的Perturb and Observe(P&O)法、Incremental Conductance(INC)法等方法的分析和比较。
3. 基于模糊逻辑控制的最大功率跟踪控制方法研究,设计和实现基于模糊逻辑控制的最大功率跟踪控制系统,测试系统的性能和效率。
4. 最大功率跟踪控制方法的优化研究,探讨如何进一步提高光伏发电系统的能量利用率,减小系统的成本和能耗。
五、研究方法本研究将采用以下方法:1. 文献调研法:对光伏电池、光伏发电系统以及光伏发电系统中最大功率跟踪控制方法相关的文献进行综合分析和总结。
光伏发电系统中的最大功率点跟踪技术优化随着可再生能源的快速发展,光伏发电系统成为了一种重要的绿色能源解决方案。
光伏发电系统的核心是太阳能电池板,它将太阳能转化为直流电能。
然而,太阳能电池板的输出功率和太阳辐射强度之间存在一个非线性的关系,即存在一个最大功率点。
为了最大化光伏发电系统的效能,需要使用最大功率点跟踪技术来实现最大功率点的稳定锁定。
最大功率点跟踪技术(MPPT)是一项关键技术,可以确保光伏发电系统在不同光照条件下始终在最大功率点运行。
其目标是通过调整太阳能电池板的工作点,使得输出功率达到峰值。
而光伏发电系统的效率和经济性主要取决于MPPT技术的优化与应用。
在光伏发电系统中,常见的MPPT技术有模拟技术和数字技术两类。
模拟技术是通过传统的电路设计方法实现MPPT的一种方法。
其中最常见的是基于模拟电路的功率转移技术(P&O)和逐渐逼近法(GA)。
P&O技术是通过测量输入电流和电压来实现最大功率点的跟踪,然后根据该信息调整电池板的工作点。
虽然这种方法简单而成本较低,但受到环境条件的不稳定以及传感器测量误差的影响,造成功率输出不稳定的问题。
逐渐逼近法利用电池板工作电压的信号及其变化趋势,通过不断调整工作点来逼近最大功率点。
尽管逐渐逼近法的效果相对较好,但它的处理效率较低,且受到光照辐射和温度变化的影响较大。
数字技术则通过数字信号处理器(DSP)或微处理器来实现MPPT。
其中最常见的是基于模型预测控制(MPC)和人工智能(AI)技术的MPPT。
MPC技术通过根据太阳辐射变化模型,预测最佳功率点,并调整工作点。
这种技术不仅能够实现精确的功率跟踪,而且对于不同环境条件下的光伏发电系统具有较好的适应性。
人工智能技术则运用神经网络和模糊控制等方法,通过学习和自适应来实现最大功率点跟踪,更加适用于复杂环境和非线性系统。
为了进一步优化光伏发电系统中的MPPT技术,可以考虑以下几方面的优化措施:首先,改进传感器和测量方法,以提高最大功率点跟踪准确度。
光伏电池最大功率点跟踪控制方法的对比研究及改进摘要:光伏发电系统中光伏电池的输出特性具有唯一的最大功率点(MPP),需要对光伏电池的最大功率点进行跟踪(MPPT)。
文中分析了几种常见的最大功率点跟踪控制方法,对比分析了它们的优缺点。
针对MPPT控制方法中存在的启动特性较差、跟踪过程不稳定、精度不高等特点,采用一种改进爬山法,该法以恒定电压法作为启动特性及采用变步长进行跟踪控制,并利用Matlab/Simulink搭建了改进爬山法的MPPT控制模型,仿真结果验证该方法的有效性。
关键词:光伏发电;最大功率点跟踪;改进爬山法面对日益枯竭的化石能源和不断恶化的生态环境,人类需要进行第三次能源结构转换,从矿物能源向可再生能源转换,用可再生能源替代矿物能源,用无碳能源、低碳能源替代高碳能源[1]。
为降低对传统能源的依赖,世界对新型能源的重视越来越高。
太阳能是最具潜能的新能源形式之一,其中光伏发电是太阳能利用的有效方式之一。
光伏发电具有许多优点,如:安全可靠,无噪声,无污染,能量随处可得,无需消耗燃料,不受地域限制,规模大小随意,无需架设输电线路,可以方便地与建筑物相结合等,这些优点都是常规发电和其他发电方式所不可比拟的[1]。
在光伏发电系统中,要提高系统的整体效率,达到充分利用太阳能资源的目的,一个重要的途径就是实时调节光伏电池的工作点,使之工作在最大功率点附近,这一过程就称为最大功率点跟踪[2]。
1 光伏电池模型及输出特性1.1 光伏电池的数学模型在光照强度和环境温度一定时,光伏电池既非恒压源,也非恒流源,也不可能为负载提供任意大的功率,是一种非线性直流电源。
其等效电路如图1所示[1,3]。
图1中,UJ为PN 结电压,Id为光伏电池在无光照时的饱和电流,Id=Io{EU+IRS) nKT-1}.一个理想的太阳能电池,由于串联电阻RS很小,旁路电阻Rsh很大,所以在进行理想电路的计算时,它们均可忽略不计。
由图1的太阳能光伏电池等效电路得出:I=Iph-I0[eq(U+IRS) nKT -1]- U+IR R s sh(1)式中,I为光伏电池输出电流;I0为PN结的反向饱和电流;Iph为光生电流;U为光伏电池输出电压;q为电子电荷,q=1.6伊10-19 C;k为波尔兹曼常数,k=1.38伊10-23 J/K;T 为热力学温度;n为N结的曲线常数;Rs,Rsh为光伏电池的自身固有电阻。
《太阳能电池板追日自动跟踪系统的研究》篇一一、引言随着科技的进步和人类对可再生能源需求的日益增长,太阳能作为清洁、可再生的能源受到了广泛关注。
太阳能电池板作为太阳能利用的核心设备,其效率的提高对于推动绿色能源发展具有重要意义。
追日自动跟踪系统作为一种能够提高太阳能电池板光电转换效率的技术,近年来得到了广泛的研究和应用。
本文旨在研究太阳能电池板追日自动跟踪系统的原理、设计及其应用,以期为太阳能利用技术的发展提供理论支持和实践指导。
二、追日自动跟踪系统的基本原理追日自动跟踪系统基于太阳能电池板对太阳辐射的响应,通过传感器和控制系统实现自动跟踪太阳的运动轨迹,以达到最大化光电转换效率的目的。
系统主要包括以下几个部分:太阳位置传感器、控制单元、驱动单元和太阳能电池板。
太阳位置传感器负责实时监测太阳的位置,将太阳的位置信息传递给控制单元。
控制单元根据太阳的位置信息,结合预设的算法,计算出太阳能电池板需要调整的角度,并发出控制信号给驱动单元。
驱动单元根据控制信号驱动太阳能电池板进行相应的旋转和调整,使其始终保持最佳的光照角度。
三、追日自动跟踪系统的设计1. 硬件设计:追日自动跟踪系统的硬件设计主要包括传感器、电机和控制电路等部分。
传感器负责监测太阳的位置和环境光强等信息;电机用于驱动太阳能电池板的旋转和调整;控制电路则负责将传感器信号转换为控制信号,驱动电机进行相应的动作。
2. 软件设计:软件设计是追日自动跟踪系统的核心部分,主要包括控制算法和控制系统软件等。
控制算法负责根据太阳的位置信息和预设的规则,计算出太阳能电池板需要调整的角度;控制系统软件则负责将控制算法的输出转换为电机驱动信号,实现对太阳能电池板的精确控制。
四、追日自动跟踪系统的应用追日自动跟踪系统在提高太阳能电池板光电转换效率方面具有显著的优势。
通过实时监测太阳的位置,并调整太阳能电池板的姿态,使太阳能电池板始终保持最佳的光照角度,从而提高其光电转换效率。