高三数学天天练20
- 格式:doc
- 大小:125.50 KB
- 文档页数:1
点点练20 数列的概念及表示1.数列1,-3,5,-7,9,-11,…的一个通项公式为( )A .a n =(-1)n +1(2n +1)B .a n =(-1)n +1(2n -1)C .a n =(-1)n (2n +1)D .a n =(-1)n (2n -1)2.有下列一列数:12,1,1,1,( ),1113,1317,1519,1723,…,按照规律,括号中的数应为( )A.34B.911C.910D.233.设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1的值为( )A.12B.14C.18D.1164.已知数列{a n }满足a n +1=11-a n(n ∈N *),a 8=2,则a 1=( ) A.59 B.811C.79D.125.在数列{a n }中,a 1=1,a n +1-a n =sin (n +1)π2,记S n 为数列{a n }的前n 项和,则S 2 018=( )A .0B .2 018C .1 010D .1 0096.已知数列⎩⎨⎧⎭⎬⎫n +2n ,要使它的前n 项的乘积大于36,则n 的最小值为( )A .7B .8C .9D .107.已知数列32,54,76,9m -n,m +n 10,…,根据前3项给出的规律,实数对(m ,n )为________.8.已知数列{a n }的前n 项的和为S n ,a 1=1.当n ≥2时,a n +2S n -1=n ,则S 2 016=________.1.[2016·全国卷Ⅲ]定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意的k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个2.[2018·全国卷Ⅰ]记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.3.[2016·上海卷]无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和.若对任意的n ∈N *,S n ∈{2,3},则k 的最大值为________.1.[2020·内蒙古阿拉善左旗月考]已知数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 018等于( ) A .1 B .-1C .-12D .-22.[2020·石家庄模拟]数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *) B .a n =(-1)n +12n +1n 3+3n(n ∈N *) C .a n =(-1)n +12n -1n 2+2n(n ∈N *) D .a n =(-1)n +12n +1n 2+2n(n ∈N *) 3.[2020·宝鸡模拟]设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n ∈N *),若数列{a n }是常数列,则a =( )A .-2B .-1C .0D .(-1)n4.[2020·聊城模拟]大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则此数列的第20项为( )A .180B .200C .128D .1625.[2020·德阳诊断]若存在常数k (k ∈N *,k ≥2),q ,d ,使得无穷数列{a n }满足a n +1=⎩⎪⎨⎪⎧ a n +d ,n k ∉N *,qa n ,n k ∈N *,则称数列{a n }为“段比差数列”,其中常数k ,q ,d 分别叫做段长、段比、段差.设数列{b n }为“段比差数列”,若{b n }的首项、段长、段比、段差分别为1,3,0,3,则b 2 016=( )A .3B .4C .5D .66.已知数列{a n }的任意连续三项的和是18,并且a 5=8,a 13=9,那么a 2 019=( )A .10B .9C .5D .47.[2020·广西南宁联考]已知数列{a n }是递减数列,且对任意的正整数n ,a n =-n 2+λn 恒成立,则实数λ的取值范围为________.8.[2020·河南四校联考]已知数列{a n }满足a 1=12,a 1+a 2+…+a n =n 2·a n ,则数列{a n }的通项公式是________.1.已知下列数列{a n }的前n 项和S n ,求{a n }的通项公式.(1)S n =2n 2-3n ;(2)S n =3n +b .2.设数列{a n }满足a 1+a 2+a 3+…+a n =n -a n (n ∈N *).(1)求a 1,a 2;(2)若b n=n(2-n)(a n-1),求{b n}的最大项,并写出取最大项的项数.。
南华中学高2016级文科数学天天练习(20)姓名:一、选择题:1.已知集合1{2},{lg 0}2x A x B x x =>=>,则()R A B =I ð( ) A .1+∞(,) B .(0,1] C .(1,1]- D .(1,1)- 2.若变量,x y 满足约束条件0,4,0,x y x y y k -≥⎧⎪+≤⎨⎪+≥⎩且3z x y =+的最小值为8-,则k =( )A .3B .3-C .2D .2-3.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为( )A .(1,)+∞B .(,)e +∞C .(0,1)D .(0,)e二、填空题:4.设集合2{12},{log 2},A x x B x x =-≤≤=≤,则A ∩B =____________.5.已知1tan 24α=,则1cos sin αα-=____________. 6.定义在R 上的奇函数()f x ,当0x >时,2()2x f x x =-,则(1)(0)(3)f f f -++= ____________.三、解答题:7.已知数列{}n a 的前n 项和为n S ,()*233n n S a n N =-∈。
(1)求数列{}n a 的通项公式;(2)若数列3log n n n b a a =+,求数列{}n b 的的前n 项和n T 。
天天练20参考答案1. C.【解】{|1},{|1},{|1}R A x x B x x B x x =>-=>=≤ð,所以()R A B =I ð(1,1]-.2.C 【解】试题分析:当3z x y =+取得最小值8-时,即直线38x y +=-与0x y -=的交点(2,2)A --在可行域的顶点处,所以0y k +=经过点(2,2)A --,即2k =,故选C .3.D 【解】试题分析:设ln t x =,则不等式(ln )3ln 1f x x >+等价于()31f t t >+, 设()()31g x f x x =--,则()()3g x f x ''=-,∵()f x 的导函数()3f x '<,∴()()30g x f x ''=-<,此时函数在R 上单调递减, ∵(1)4f =,∴(1)(1)310g f =--=,则当x <1时,()(1)0g x g >=,即()0g x >,则此时()()310g x f x x =-->, 即不等式()31f x x <+的解为1x <,即()31f t t >+的解为1t <,由ln 1x <,解得x e 0<<,即不等式(ln )3ln 1f x x >+的解集为(0,e),4.(]0,25.146.2-7.。
目录高考数学一轮复习基础夯滚天天练(1) 集合的基本运算高考数学一轮复习基础夯滚天天练(2) 命题和逻辑联结词高考数学一轮复习基础夯滚天天练(3) 充分条件和必要条件高考数学一轮复习基础夯滚天天练(4) 函数及其表示方法高考数学一轮复习基础夯滚天天练(5) 函数的解析式和定义域高考数学一轮复习基础夯滚天天练(6) 函数的值域和最值高考数学一轮复习基础夯滚天天练(7) 函数的单调性和奇偶性高考数学一轮复习基础夯滚天天练(8) 函数的图象高考数学一轮复习基础夯滚天天练(9) 二次函数高考数学一轮复习基础夯滚天天练(10) 函数的应用高考数学一轮复习基础夯滚天天练(11) 指数与对数高考数学一轮复习基础夯滚天天练(12) 幂函数、指数函数与对数函数高考数学一轮复习基础夯滚天天练(13) 函数与方程高考数学一轮复习基础夯滚天天练(14) 导数的概念及运算高考数学一轮复习基础夯滚天天练(15) 导数在研究函数中的简单应用高考数学一轮复习基础夯滚天天练(16) 同角三角函数的关系及诱导公式高考数学一轮复习基础夯滚天天练(17) 三角函数的图象高考数学一轮复习基础夯滚天天练(18) 三角函数的性质(1)高考数学一轮复习基础夯滚天天练(19) 三角函数的性质(2)高考数学一轮复习基础夯滚天天练(20) 和差倍角的三角函数高考数学一轮复习基础夯滚天天练(21) 正弦定理和余弦定理高考数学一轮复习基础夯滚天天练(22) 三角函数及解三角形高考数学一轮复习基础夯滚天天练(23) 一元二次不等式高考数学一轮复习基础夯滚天天练(24) 简单的线性规划高考数学一轮复习基础夯滚天天练(25) 基本不等式及其应用高考数学一轮复习基础夯滚天天练(26) 直线的斜率和直线的方程高考数学一轮复习基础夯滚天天练(27) 两条直线的位置关系高考数学一轮复习基础夯滚天天练(28) 圆的方程高考数学一轮复习基础夯滚天天练(29) 直线与圆、圆与圆的位置关系高考数学一轮复习基础夯滚天天练(30) 直线与圆的综合运用高考数学一轮复习基础夯滚天天练(31) 椭圆(1)高考数学一轮复习基础夯滚天天练(32) 椭圆(2)高考数学一轮复习基础夯滚天天练(33) 双曲线高考数学一轮复习基础夯滚天天练(34) 抛物线高考数学一轮复习基础夯滚天天练(35) 圆锥曲线高考数学一轮复习基础夯滚天天练(36) 向量的概念与线性运算高考数学一轮复习基础夯滚天天练(37) 平面向量的基本定理与坐标运算高考数学一轮复习基础夯滚天天练(38) 平面向量的数量积高考数学一轮复习基础夯滚天天练(39) 平面向量的应用高考数学一轮复习基础夯滚天天练(40) 复数的概念、几何意义及运算高考数学一轮复习基础夯滚天天练(41) 数列的概念高考数学一轮复习基础夯滚天天练(42) 等差数列高考数学一轮复习基础夯滚天天练(43) 等比数列高考数学一轮复习基础夯滚天天练(44) 等差数列与等比数列高考数学一轮复习基础夯滚天天练(45) 数列的通项与求和高考数学一轮复习基础夯滚天天练(46) 数列综合题高考数学一轮复习基础夯滚天天练(47) 平面的基本性质、空间两直线高考数学一轮复习基础夯滚天天练(48) 直线与平面的位置关系高考数学一轮复习基础夯滚天天练(49) 平面与平面的位置关系高考数学一轮复习基础夯滚天天练(50) 柱、锥、台、球的表面积与体积高考数学一轮复习基础夯滚天天练(51) 空间线面关系的判断、推证与计算高考数学一轮复习基础夯滚天天练(52) 抽样方法与总体估计高考数学一轮复习基础夯滚天天练(53) 算法的含义与流程图高考数学一轮复习基础夯滚天天练(54) 基本算法语句高考数学一轮复习基础夯滚天天练(55) 随机事件的概率、古典概型高考数学一轮复习基础夯滚天天练(56) 几何概型高考数学一轮复习基础夯滚天天练(57) 合情推理与演绎推理高考数学一轮复习基础夯滚天天练(58) 直接证明与间接证明高考数学一轮复习基础夯滚天天练(59) 热点知识练(1)高考数学一轮复习基础夯滚天天练(60) 热点知识练(2)参考答案121滴水穿石·数学一轮基础夯滚天天练>>>高考数学一轮复习基础夯滚天天练(1)集合的基本运算班级________姓名____________学号______成绩______日期____月____日一、填空题1. 已知集合A={0,1,2,3},B={2,3,4,5},则A∪B中元素的个数为________.2. 设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=________________________________________________________________________.3. 已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩∁U B =________.4. 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则∁U A∩∁U B=________.5. 设集合S={x||x-2|>3},T={x|a<x<a+8},S∪T=R,则实数a的取值范围是________.6. 已知集合A={-1,2,2a+1},B={-4,3},且A∩B={3},则a=________.7. 已知集合A={-3,x2,x+1},B={x-3,2x-1,x2+1},若A∩B={-3},则A∪B =________________.8. 已知集合P={-1,2}与M={x|kx+1=0}满足P∪M=P,则实数k的值所组成的集合是______________.9. 已知集合A ={x|y =log 2(x 2-1)},B =⎩⎨⎧⎭⎬⎫y|y =⎝⎛⎭⎫12x -1,则A ∩B =______________.10. 集合B ={y ∈R |y =2x ,x ∈A },则A ∩B =________.11. 定义集合运算:A*B ={z|z =x·y ,x ∈A ,y ∈B}.设A ={1,2},B ={0,2},则集合A*B 的所有元素之和为________.12. A ,B 是非空集合,定义A ×B =.若A ={x|y =x 2-3x},B ={y|y =3x },则A ×B =________.13. 若x ∈A ,且11-x∈A ,则称集合A 为“和谐集”.已知集合M ={-2,-1,-12,0,1,12,23,2,3},则集合M 的子集中,“和谐集”的个数为________.14. 若集合{a ,b ,c ,d}={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d)的个数是________.二、 解答题15. 已知集合M ={x|2x -4=0},N ={x|x 2+3x +m =0}.(1) 当m =2时,求M ∩N ,M ∪N ;(2) 若M ∩N =M ,求集合N.高考数学一轮复习基础夯滚天天练(2)命题和逻辑联结词班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 命题的否定是____________________________.2. 已知命题“x ∈R ,使得x 2+(a -1)x +1<0”是假命题,则实数a 的取值范围是________.3. 设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则“p ∧q ”为________命题.(填“真”或“假”)4. 给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为________.5. 已知命题p :x ≤0,x 2+2x -3≥0,则命题p 的否定是__________________________.6. 已知命题p :x 2-2x -3<0;命题q :1x -2<0.则x 的取值范围是________.7. 已知命题p :“a =1”是“x>0,x +a x≥2”的充要条件;则下列命题正确的是________.(填序号)8. 命题“存在一个无理数,它的平方是有理数”的否定是________________________________________________________________________.9. 下列四个命题:①若一个命题的逆命题为真,则这个命题的逆否命题一定为真;②“a>b”与“a +c>b +c ”不等价;③“若a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0”; ④若一个命题的否命题为真,则这个命题的逆命题一定为真.其中不正确的是________.(填序号)10. 则a的取值范围是________.11. 则实数a的最小值为________.12. 如果不等式(a-2)x2+2(a-2)x-4<0对于恒成立,那么a的取值范围为________.13. 若命题“,2x2-3ax+9<0”为假命题,则实数a的取值范围为________________________________________________________________________.二、解答题14. 给定两个命题,p:对任意实数x,ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数解.如果p与q中有且仅有一个为真命题,求实数a的取值范围.高考数学一轮复习基础夯滚天天练(3)充分条件和必要条件班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 设x ∈R ,则“x >12”是“2x 2+x -1>0”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)2. “ac 2>bc 2”是“a>b”成立的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)3. “x<-1”是“x 2-1>0”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)4. 已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是________________.5. “M>N”是“log 2M>log 2N”成立的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)6. 若a ,b 为实数,则“0<ab<1”是“b<1a”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)7. 方程x 2k +1+y 2k -5=1表示双曲线的充要条件是____________. 8. 设p ,q 是两个命题,若p 是q 的充分不必要条件,那么非p 是非q 的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)9. “a =1”是“函数f(x)=2x -a 2x +a在其定义域上为奇函数”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)10. “x<2”是“x 2-x -2<0”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)11. 不等式1x -1<1的解集记为p ,关于x 的不等式x 2+(a -1)x -a>0的解集记为q ,已知p 是q 的充分不必要条件,则实数a 的取值范围是________.12. 已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是______________.13. 已知p :12≤x ≤1,q :(x -a)(x -a -1)>0,若p 是的充分不必要条件,则实数a的取值范围是________.14. 下列四个命题:①“,x 2-x +1≤0”的否定; ②“若x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >12”的充分不必要条件; ④“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π(k ∈Z )”.其中真命题的序号是________.二、解答题15. 若f(x)是R上的减函数,且f(0)=3,f(3)=-1,设P={x||f(x+t)-1|<2},Q={x|f(x)<-1}.若“x∈Q”是“x∈P”的必要不充分条件,求实数t的取值范围.高考数学一轮复习基础夯滚天天练(4)函数及其表示方法班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 有以下判断:其中判断正确的序号是________.①f(x)=|x|x 与g(x)=⎩⎪⎨⎪⎧1, x ≥0,-1, x<0表示同一函数; ②函数y =f(x)的图象与直线x =1的交点最多有1个;③f(x)=x 2-2x +1与g(t)=t 2-2t +1是同一函数;④若f(x)=|x -1|-|x|,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0.2. 下列四组中的f(x),g(x)表示同一个函数的是________.(填序号)①f(x)=1,g(x)=x 0; ②f(x)=x -1,g(x)=x 2x-1; ③f(x)=x 2,g(x)=(x)4; ④f(x)=x 3,g(x)=3. 若f(x)=x 2+bx +c ,且f(1)=0,f(3)=0,则f(-1)=________.4. 设函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x, x>1,则f(f(3))=________.5. 已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b =________.6. 函数y =f(x)的图象与直线x =a(a 为常数)交点的个数为________.7. 已知f(x)是定义在R 上的奇函数,当x <0时f (x )=log 2(2-x ),则f (0)+f (2)的值为________.8. 已知函数f(x)=⎩⎪⎨⎪⎧-x 2, x ≥0,x 2+2x , x<0,则不等式f(f(x))≤3的解集为____________.9. 已知函数f(x)的图象如图所示,则它的一个解析式是________________.10. 已知f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,-2x , x<0,若f(m)=10,则m =________. 11. 已知f(2x +1)=x 2-2x ,则f(3)=________.12. 已知下列四组函数:①f(x)=lg x 2,g(x)=2lg x ;②f(x)=x -2,g(x)=x 2-4x +4;③f(x)=1x -1,g(x)=x +1x 2-1; ④f(x)=x ,g(x)=log a a x (a>0且a ≠1).其中表示同一个函数的为________.(填序号)13. 已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是________.二、 解答题14. 在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向点A 运动,设点M 运动的距离为x ,△ABM 的面积为S.(1) 求函数S =f(x)的解析式、定义域和值域;(2) 求f(f(3))的值.高考数学一轮复习基础夯滚天天练(5)函数的解析式和定义域班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 函数y =2x -x 2的定义域是________________.2. 函数y =16-x -x2的定义域是________________.3. 已知实数m ≠0,函数f(x)=⎩⎪⎨⎪⎧3x -m , x ≤2,-x -2m , x>2,若f(2-m)=f(2+m),则实数m 的值为________________.4. 若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为y =2x 2+1,值域为{3,19}的“孪生函数”共有________种.5. 已知f(x)为一次函数,且f(f(x))=4x -1,则函数f(x)的解析式为f(x)=________________________________________________________________________.6. 已知二次函数y =f(x)满足条件f(x +1)-f(x)=2x ,f(0)=1,则f(x)的表达式为f(x)=____________.7. 函数的定义域是________________.8. 函数y =x (x -1)+x 的定义域是________________.9. 若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=________.10. 已知函数y =f(x +1)的定义域是[-2,3],则函数y =f(2x -1)的定义域为________.11. 函数f(x)=lg (2x -3x )的定义域是________.12. 若函数y =f(x)的定义域是[0,8],则函数g(x)=f (2x )ln x的定义域是________________________________________________________________________.13. 若函数f(x)=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.14. 已知二次函数y =f(x)(x ∈R )的图象过点(0,-3),且f (x )>0的解集为(1,3),则f (x )的解析式为f (x )=________________.二、 解答题15. 如图所示,有一块半径为R的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,且上底CD的端点在圆周上,写出梯形周长y关于腰长x的函数关系式,并求出它的定义域.高考数学一轮复习基础夯滚天天练(6)函数的值域和最值班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 函数y =x -x +1的值域为__________.2. 函数y =4-x 2的值域是________.3. 函数y =x 2+3x +1的值域是____________________.4. 函数y =x -x 的值域为________.5. 函数f(x)=2x -12x +1的值域为________.6. 已知函数y =x 2-2x +3⎝⎛⎭⎫0≤x ≤32,则函数的最大值和最小值的积是________.7. 函数f(x)=⎩⎪⎨⎪⎧2x , x ≤0,-x 2+1, x>0的值域为________.8. 函数f(x)=log 2(4-x 2)的值域为________.9. 设函数f(x)=⎩⎨⎧2x +a ,x>2,x +a 2,x ≤2,若函数f(x)的值域为R ,则实数a 的取值范围是__________________.10. 函数f(x)=⎩⎪⎨⎪⎧2x , x ≥0,-2-x, x<0的值域是________________.11. 已知函数y =ax 2+2x +1的值域为[0,+∞),则实数a 的取值范围是________.12. 已知函数f(x)=x 2-1,g(x)=-x ,令φ(x)=max [f(x),g(x)](即f(x)和g(x)中的较大者),则φ(x)的最小值为________.13. 已知函数f(x)=x +p x +1(x>-1,p 为正常数),g(x)=⎝⎛⎭⎫12-x 2+2(x ∈R )有相同值域,则p =________.14. 下列几个命题:①函数f(x)=(x)2与g(x)=x表示的是同一个函数;②若函数f(x)的定义域为[1,2],则函数f(x+1)的定义域为[2,3];③若函数f(x)的值域是[1,2],则函数f(x+1)的值域为[2,3];④若函数f(x)=x2+mx+1是偶函数,则函数f(x)的单调减区间为(-∞,0];⑤函数f(x)=lg(x2+1+x)既不是奇函数,也不是偶函数.其中正确的命题有________个.二、解答题15. 已知f(x)=2+log3x,x∈[1,9],求函数y=[f(x)]2+f(x2)的值域.高考数学一轮复习基础夯滚天天练(7)函数的单调性和奇偶性班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 在函数:①y =cos x ;②y =sin x ;③y =ln x ;④y =x 2+1中,既是偶函数又存在零点的是________.(填序号)2. 已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是________________.3. 函数y =1-x1+x的单调减区间为________________.4. 已知函数f(x)=2x 2-mx +3,当x ∈(-2,+∞)时是增函数,当x ∈(-∞,-2)时是减函数,则f(1)=________.5. 已知函数f(x)是减函数,且f(x)>0,则在函数:①y =1f (x );②y =2f(x);③y =[f(x)]2;中为增函数的是________.(填序号)6. 设函数f(x)是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.7. 若f(x)在区间(0,+∞)上是减函数,则f(x 2+x +1)和f ⎝⎛⎭⎫34的大小关系为______________.8. 已知函数f(x)是奇函数,且x ∈(0,+∞)时的解析式是f(x)=lg (x +1),则x ∈(-∞,0)时,f(x)=________________.9. 已知函数f(x)=⎩⎪⎨⎪⎧e x -k , x ≤0,(1-k )x +k , x>0是R 上的增函数,则实数k 的取值范围是________.10. 已知f(x)=ax 2+bx 是定义在[a -1,2a]上的偶函数,那么a +b 的值是________.11. 函数f(x)=x 5+sin x +1(x ∈R ),若f (a )=2,则f (-a )=________.12. 已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),则f (8)的值为________.13. 已知y =log a (2-ax)在区间[0,1]上是关于x 的减函数,则a 的取值范围是________.14. 若f(x)=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.二、 解答题15. 已知函数f(x)=x 2+ax(x ≠0,a ∈R ).(1) 判断函数f (x )的奇偶性;(2) 若函数f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围.高考数学一轮复习基础夯滚天天练(8)函数的图象班级________姓名____________学号______成绩______日期____月____日一、填空题1. 函数y=x 43的图象大致是________.(填序号)①②③④2. 某班四个同学在同一坐标系中,作了两个函数的图象,其中能够作为函数y=ax2+bx与y=ax+b(a≠0,b≠0)的图象的是________.(填序号)①②③④3. 函数y=a x-a(a>0,a≠1)的图象可能是________.(填序号)①②③④4. 函数y=1-|1-x|的图象与x轴所围成的封闭图形的面积为________.5. 已知a>0且a≠1,函数y=|a x-2|与y=3a的图象有两个交点,则a的取值范围是____________.6. 若函数y=4x+a2x的图象关于原点对称,则实数a的值为________.7. 已知函数y=log a(x+b)的图象如图所示,则a b=________.8. 函数y=log2|x+1|的图象关于直线________对称.9. 函数f(x)=x|x+a|+b是奇函数的充要条件是________.10. 已知0<a<1,则函数f(x)=a x -|log a x|的零点个数为________.11. 设函数f(x)=⎩⎪⎨⎪⎧2x -4, x>0,-x -3, x<0.若f(a)>f(1),则实数a 的取值范围是____________.12. 将函数y =2x 的图象向左平移一个单位长度,得到图象C 1,再将C 1向上平移一个单位长度得到图象C 2,则C 2的解析式为____________.13. 已知函数f(x)=32x -(k +1)·3x +2,当x ∈R 时,函数f (x )恒为正值,则k 的取值范围是________________.二、 解答题14. 分别作出函数f(x),g(x)的图象,并利用图象回答问题.(1) f(x)=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3, x>1,g(x)=log 2x ,求方程f(x)=g(x)的解的个数;(2) f(x)=x +1,g(x)=log 2(-x),求不等式f(x)>g(x)的解集.二次函数班级________姓名____________学号______成绩______日期____月____日一、填空题1. 若a,b,c成等比数列,则函数y=ax2+bx+c的图象与x轴的交点的个数为________.2. 已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,则5a-b=________.3. 若函数y=x2-2x+a在区间[0,3]上的最小值是4,则a=________;若最大值是4,则a=________.4. 若函数y=|x-a-3|+b,x∈[a,b]的图象关于直线x=3对称,则b=________.5. 已知函数f(x)=3(x-2)2+5,且|x1-2|>|x2-2|,则f(x1)________f(x2).(填“>”“<”或“=”)6. 若函数y=mx2+x+5在[-2,+∞)上是增函数,则m的取值范围是________.7. 设x,y是关于m的方程m2-2am+a+6=0的两个实根,则(x-1)2+(y-1)2的最小值是________.8. 已知函数f(x)=x2-4x,x∈[1,5],则函数f(x)的值域是________.9. 已知函数f(x)=x2-2x,x∈[a,b]的值域为[-1,3],则b-a的取值范围是________.10. 若函数f(x)=(a2-2a-3)x2+(a-3)x+1的定义域和值域都为R,则a的取值范围是________.11. 已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]上有一个最大值-5,则a=________.12. 已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3),又f(x)+6a=0有两个相等的根,则f(x)=________________.13. 已知命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为;命题q:函数y=(2a2-a)x为增函数.若命题“p∨q”为真命题,则实数a的取值范围是________________________________________________________________________.二、解答题14. 已知函数f(x)=x2+ax+3.(1) 当x∈R时,f(x)≥a恒成立,求a的取值范围;(2) 当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范围.函数的应用班级________姓名____________学号______成绩______日期____月____日一、填空题1. 某出租车公司规定“打的”收费标准如下:3千米以内为起步价8元(即行程不超过3千米,一律收费8元),若超过3千米,除起步价外,超过部分再按1.5元每千米收费计价,若某乘客与司机约定按四舍五入以元计费不找零钱,该乘客下车时乘车里程数为7.4千米,则乘客应付的车费是________元.2. 已知矩形的周长为1,它的面积S与矩形的长x之间的函数关系中,定义域为________.3. 某商场出售一种商品,每天可卖1 000件,每件可获利4元,据经验,若每件少卖0.1元,则每天可多卖出100件,为获得最好的经济利益每件单价应降低________元.4. 某厂生产中所需的一些配件可以外购,也可以自己生产.如果外购,每个价格是1.10元;如果自己生产,那么每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,那么决定此配件外购还是自产的转折点是________件.(即生产多少件以上自产合算)5. 某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)的最低产量是________台.6. 购买手机的“全球通”卡,使用时须付“基本月租费”(每月需交的固定费用)50元,在市内通话时每分钟另收话费0.40元;购买“神州行”卡,使用时不收“基本月租费”,但在市内通话时每分钟话费为0.60元.若某用户每月手机费预算为120元,则他购买________卡才合算.7. 如图,灌溉渠的横截面是等腰梯形,底宽2m,边坡的倾角为45°,水深h m,则横截面中有水面积S(m2)与水深h(m)的函数关系式为____________.8. 某企业生产的新产品必须先靠广告来打开销路,该产品的广告效益应该是产品的销售额与广告费之间的差.如果销售额与广告费的算术平方根成正比,根据对市场进行抽样调查的结果显示:每付出100元的广告费,所得的销售额是1 000元,那么该企业应该投入________元广告费,才能获得最大的广告效应.9. 某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进________份,才能使每月所获的利润最大.10. 一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为__________________________________,该工厂的年产量为________件时,所得年利润最大.(年利润=年销售总收入-年总投资)二、解答题11. 近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网.这种供电设备的安装费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=k20x +100(x ≥0,k 为常数).记F 为该企业安装这种太阳能供电设备的费用与该企业15年共将消耗的电费之和.(1) 解释C(0)的实际意义,并建立F 关于x 的函数关系式; (2) 当x 为多少平方米时,F 取得最小值?最小值是多少万元?12. 随着机构改革工作的深入进行,各单位要裁员增效.有一家公司现有职员2a 人(140<2a<420,且a 为偶数),每人每年可创利b 万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?高考数学一轮复习基础夯滚天天练(11)指数与对数一、 填空题 1.2. 计算:(log 32+log 92)·(log 43+log 83)=________.3的值为________.4. 计算:lg 25+lg 2·lg 50+(lg 2)2=________.5. 设则a ,b ,c 的大小关系是________.6. 方程log 3(x 2-10)=1+log 3x 的解是________.7. 设f(x)=⎩⎪⎨⎪⎧2e x -1, x<2,lg (x 2-1), x ≥2,则f(f(2))=________.8. 计算:⎝⎛⎭⎫lg 14-lg 25÷=________.9. 方程4x -2x +1-3=0的解是________________.10. 关于x 的不等式的解集为________.11. 已知3a =5b =c ,且1a +1b =2,则c =________.12. 不等式log 2(2x -1)<log 2(-x +5)的解集为________.13. 给出下列结论,其中正确的是________.(填序号)①当a<0时,(a 2)32=a 3;②na n =|a|(n>1,n ∈N *,n 为偶数);③函数f (x )=(x -2)12-(3x -7)0的定义域是⎩⎨⎧⎭⎬⎫x |x ≥2且x ≠73;④若2x=16,3y=127,则x+y=7.14. 已知函数f(x)=2|x|-2,不等式x[f(x)+f(-x)]>0的解集是________________________________________________________________________.二、解答题15. 求值或化简:(1) lg8+lg125-lg2-lg5lg10·lg0.1;(2) ,求的值.16. 已知函数f(x)=log a(a x-1),a>0,a≠1.求证:(1) 函数f(x)的图象在y轴的一侧;(2) 函数f(x)图象上任意两点连线的斜率都大于0.高考数学一轮复习基础夯滚天天练(12)幂函数、指数函数与对数函数班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 如果幂函数f(x)=x a 的图象经过点(2,4),那么函数f(x)的单调增区间为________.2. 函数f(x)=ln x +1-x 的定义域为________.3. 若函数f(x)=log a x(0<a<1)在区间[a ,2a]上的最大值是最小值的3倍,则a =________.4. 要使函数f(x)=3x +1+t 的图象不经过第二象限,则实数t 的取值范围为________.5. 若函数f(x)=a x -1(a>0,a ≠1)的定义域和值域都是[0,2],则实数a =________.6. 已知函数f(x)=x 12,且f(2x -1)<f(3x),则x 的取值范围是________.7. 若函数y =(log 0.5a)x 在R 上为增函数,则a 的取值范围是________.8. 设函数f(x)=⎩⎪⎨⎪⎧-x +a ,x<1,2x , x ≥1的最小值为2,则实数a 的取值范围是________.9. 函数f(x)=的值域为________.10. 若log a 12a -1<1,则a 的取值范围是________.11. 在下列四个图象中,能够表示函数y =a x 与y =-log a x(a>0,a ≠1)在同一个平面直角坐标系的图象的可能是________.(填序号)①②③④12. 若函数f(x)=log a (2x 2+x)(a>0,a ≠1)在区间⎝⎛⎭⎫0,12内恒有f(x)>0,则函数f(x)的单调增区间是________.13. 函数y =a x -2+1(a>0,a ≠1)恒过定点________.14. 若函数f(x)=在[-1,1]上是单调增函数,则实数a 的取值范围是________________.二、 解答题15. 已知函数f(x)=log a (3-ax).(1) 当x ∈[0,2]时,函数f(x)恒有意义,求实数a 的取值范围;(2) 是否存在这样的实数a ,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,求出a 的值;如果不存在,请说明理由.16. 已知函数f(x)=x ⎝⎛⎭⎫13x -1+12.(1) 判断该函数的奇偶性;(2) 求证:该函数在定义域上恒大于0.高考数学一轮复习基础夯滚天天练(13)函数与方程班级________ 姓名____________ 学号______ 成绩______ 日期____月____日 一、 填空题1. 已知函数f(x)的图象是连续不断的,x ,f(x)的对应关系如下表:则函数f(x)一定存在零点的区间有________.(填序号)①区间[1,2];②区间[2,3];③区间[3,4];④区间[4,5];⑤区间[5,6].2. 已知函数f(x)=ax +b 的零点是3,那么函数g(x)=bx 2+ax 的零点是________.3. 已知函数f(x)=2mx +4,若存在x 0∈[-2,1],使f(x 0)=0,则实数m 的取值范围是________________.4. 已知函数f(x)=ln x +x -2的零点所在的区间为(k ,k +1)(其中k 为整数),则k 的值为________.5. 已知函数f(x)=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是________.6. 已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中y =g (x )是一条连续曲线,则方程f (x )=0在区间________范围内必有实数根.(填序号)①(0,1);②(1,2);③(2,3);④(3,4).7. 若函数f(x)=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1, -1<x<2,则函数g(x)=f(x)-x 的零点为________.8. 函数f(x)=2x +x 3-2在区间(0,1)上的零点的个数为________.9. 若对于任意的x ∈[a ,2a],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值的集合为________.10. 已知函数f(x)=log 2x +a 在区间(2,4)上有零点,则实数a 的取值范围是________.11. 若函数y =x +5x -a在(-1,+∞)上单调递减,则实数a 的取值范围是________.12. 若关于x 的方程lg (mx)·lg (mx 2)=4的所有解都大于1,则实数m 的取值范围是________.13. 已知函数f(x)=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)2, x<2, 若关于x 的方程f(x)=k 有三个不同的实数根,则实数k 的取值范围为________.14. 若函数y =⎝⎛⎭⎫12|1-x|+m 的图象与x 轴有公共点,则实数m 的取值范围是________.二、 解答题15. 已知关于x 的二次函数f(x)=x 2+(2t -1)x +1-2t. (1) 求证:对于任意t ∈R ,方程f (x )=1必有实数根;(2) 若12<t <34,求证:方程f (x )=0在区间(-1,0)及⎝⎛⎭⎫0,12上各有一个实数根.16. 已知函数f(x)=log 4(4x +1)+kx(x ∈R )是偶函数. (1) 求k 的值;(2) 若方程f (x )-m =0有解,求m 的取值范围.高考数学一轮复习基础夯滚天天练(14)导数的概念及运算班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 已知函数f(x)=1+1x ,则f(x)在区间[1,2],⎣⎡⎦⎤12,1上的平均变化率分别为________.2. 若f′(x)是函数f(x)=13x 3+2x +1的导函数,则f′(1)=________.3. 函数f(x)=x 2sin x 的导数为f′(x)=________________.4. 函数f(x)=cos x 在点⎝⎛⎭⎫π3,12处的切线方程为____________________.5. 已知曲线y =4x -x 2上两点A(4,0),B(3,3),若曲线上一点P 处的切线恰好与弦AB 平行,则点P 的坐标为________.6. 若直线y =12x +b 是曲线y =ln x(x>0)的一条切线,则实数b 的值为________.7. 函数y =x e x 在其极值点处的切线方程为________________.8. 过点(0,2)且与曲线y =-x 3相切的直线方程是________________.9. 若直线y =kx +1与曲线y =x 3+ax +b 相切于点(1,3),则b 的值为________.10. 设P 是曲线f(x)=13x 3-x 2-3x -3上的一个动点,则过点P 的切线中斜率最小的切线的方程为________________.11. 曲线y =x -cos x 在点⎝⎛⎭⎫π2,π2处的切线方程为________________.12. 若曲线C 1:y 1=ax 3-6x 2+12x 在x =1处的切线与曲线C 2:y 2=e x 在x =1处的切线垂直,则实数a 的值为________.二、 解答题13. 设函数f(x)=ax -bx ,曲线y =f(x)在点(2,f(2))处的切线方程为7x -4y -12=0.(1) 求函数f(x)的解析式;(2) 求证:曲线y =f(x)上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.14. 设直线是曲线C:y=ln xx在点(1,0)处的切线.(1) 求切线的方程;(2) 求证:除切点(1,0)之外,曲线C在直线的下方.。
图2否是结束输出yy=xlog 32+1y=2xx ≥1输入x 开始2020届高三数学天天练作业二学生版填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)图2是一个算法流程图,若输入x 的值为2log 3,则输出的y 的值是 .(14)已知实数,x y 满足约束条件211y x y x y ≤⎧⎪+≤⎨⎪-≤⎩,则3x y +的最大值为 .(15)中心在坐标原点的双曲线的一条渐近线被圆22(2)3x y -+=截得的弦长为2,则该双曲线的离心率为 .(16)已知()sin()cos()66f x x x ππ=,则(1)(2)(2018)f f f +++= .二、填空题题序 13 14 1516答案23232解析:(16)1()sin 23f x x π=,最小正周期6T =,(1)(2)(6)0,f f f +++=(1)(2)(2018)f f f +++=33360(2017)(2018)(1)(2).2f f f f ⨯++=+=三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知数列为公差不为的等差数列,满足,且成等比数列.(Ⅰ) 求的通项公式;(Ⅱ) 若数列满足(),且,求数列的前项和.7、【解析】(Ⅰ) 设等差数列的公差为(),依题意得…2分又,解得,所以. …………………………………………4分{}n a 015a =2930,,a a a {}n a {}n b 1n n n b b a +-=n *∈N 13b =1n b ⎧⎫⎨⎬⎩⎭n n T {}n a d 0d ≠()()()2111298a d a d a d ++=+15a =2d =23n a n =+图3PFCBD AE (Ⅱ)依题意得,即(且) 所以 ………………………6分.…………8分 对上式也成立,所以,即……10分 所以.…12分(18)(本小题满分12分)如图3,在三棱锥P-ABC 中,△ABC 和△PAC 都是正三 角形,2=AC ,E 、F 分别是AC 、BC 的中点,且PD ⊥AB 于D , 平面PAC ⊥平面ABC .(Ⅰ)证明:EF ⊥ED ;(Ⅱ)求点F 到平面PAB 的距离.(18)解:(Ⅰ)证明:∵E 、F 分别是AC 、B C 的中点,∴EF //AB ,--------------------------------------------------------------1分 在正三角形PAC 中,PE ⊥AC ,又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC , ∴PE ⊥平面ABC ,----------------------------------------------3分 ∴PE ⊥AB ,又PD ⊥AB ,PE ∩PD =P ,∴AB ⊥平面PED , ---------------------------------5分 ∴AB ⊥ED ,又EF //AB ,∴EF ⊥ED ;----------------------------------------6分(Ⅱ)设点F 到平面PAB 的距离为d ,∵ABF P PAB F V V --=, ∴PE S d S ABF PAB ⋅=⋅∆∆3131,-----------------------------------------------7分 易知3==BE PE ,由AB ⊥ED ,可知BE AE ED AB ⋅=⋅,得23=ED ,-------------------------8分 123n n b b n +-=+121n n b b n --=+2n ≥n *∈N ()()()112211n n n n n b b b b b b b b ---=-+-+-+()()()2132121532n n n n ++=++-+++=22n n =+13b =()2n b n n =+()11111222n b n n n n ⎛⎫==- ⎪++⎝⎭1111111112324352n T n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦13112212n n ⎛⎫-- ⎪++⎝⎭图3PFCBDA E∴21522=+=ED PE PD ,--------------------9分 ∴21521=⋅=∆PD AB S PAB ,----------------------10分 由EF //AB ,可知2321=⋅=∆ED AB S ABF , ∴51553==⋅=∆∆PAB ABF S PE S d .--------------------------------------12分(19)(12分)某快递公司收取快递费用的标准是:重量不超过1kg 的包裹收费10元;重量超过1kg 的包裹,除收费10元之外,超过1kg 的部分,每超出1kg (不足1kg ,按1kg 计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数; (2)该公司从收取的每件快递的费用中抽取5元作为前 台工作人员的工资和公司利润,剩余的作为其他费用.已知公 司前台有工作人员3人,每人每天工资100元,以样本估计总 体,试估计该公司每天的利润有多少元?(3)小明打算将(0.9),(1.3),(1.8),(2.5)A kg B kg C kg D kg 四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过5kg ,求他支付的快递费为45元的概率.20.解:(1)每天包裹数量的平均数为0.1500.11500.52500.23500.1450260⨯+⨯+⨯+⨯+⨯=; ------------------2分【或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为1(506150625030350124506)26060⨯⨯+⨯+⨯+⨯+⨯=】 设中位数为x ,易知(200,300)x ∈,则0.00110020.005(200)0.5x ⨯⨯+⨯-=,解包裹件数0.0022001004003005000.0010.005频率组距得x =260.所以公司每天包裹的平均数和中位数都为260件. -----------------------------------------4分 (2)由(1)可知平均每天的揽件数为260,利润为260531001000⨯-⨯=(元),所以该公司平均每天的利润有1000元.-------------------------------------------------7分 (3)设四件礼物分为二个包裹E 、F ,因为礼物A 、C 、D 共重0.9 1.8 2.5 5.2++=(千克), 礼物B 、C 、D 共重1.3 1.8 2.5 5.6++=(千克),都超过5千克,------------------8分 故E 和F 的重量数分别有1.8 4.7和,2.5 4.0和,2.2 4.3和,2.7 3.8和,3.1 3.4和共5种, 对应的快递费分别为45、45、50,45,50(单位:元)------------------------------10分 故所求概率为35.----------------------------------------------------------------------------------12分 (20)(本小题满分12分)设A ,B 为曲线C :y x =2上两点,A 与B 的横坐标之积为1-. (Ⅰ)试判断直线AB 是否恒过定点,并说明理由;(Ⅱ)设曲线C 在点A 、B 处的两条切线相交于点M ,求点M 的纵坐标. (20)解:(Ⅰ)直线AB 恒过定点)1,0(,-------------------------------------------1分设A (x 1,y 1),B (x 2,y 2), 显然直线AB 的斜率存在, 设AB 的方程为m kx y +=,联立y x =2,得02=--m kx x , --------------------------------3分 则m x x -=⋅21,又121-=⋅x x ,得m =1,--------------------------5分 故直线AB 的方程为1+=kx y ,直线过定点)1,0(.-----------------------6分(Ⅱ)设),(00y x M ,x y 2'=,则曲线C 在点A 处的切线方程为)(2111x x x y y -=-,又121y x =,得切线为2112x x x y -=,① ---------------------------------7分 同理得曲线C 在点B 处的切线为2222x x x y -=,--------------------------8分 又121-=⋅x x ,即121x x -=, 得切线为21112x x x y --=,即12121--=x x y x ,②----------------------------10分 ①+②,得1)1(2121--=+x y x ,得1-=y ,所以点M 的纵坐标为1-.-----------------------------------------------------------12分(22)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 1的参数方程为⎩⎨⎧=+-=kty t x 24(t 为参数),直线l 2的参数方程为⎪⎩⎪⎨⎧=-=k m y m x 2(m 为参数),当k 变化时,设 l 1与l 2的交点的轨迹为曲线C . (Ⅰ)以原点为极点,x 轴的非负半轴为极轴建立极坐标系,求曲线C 的极坐标方程; (Ⅱ)设曲线C 上的点A 的极角为6π,射线OA 与直线022)sin(:3=-+ϕθρl )20(πϕ<<的交点为B ,且||7||OA OB =,求ϕ的值.选做题:(22)解:(Ⅰ)直线l 1的普通方程为)2(4-=-x k y ,-----------------------------1分直线l 2的普通方程为kx y 2+=,---------------------------------------------2分 联立两方程消去k ,得4422-=-x y ,即曲线C 的普通方程为4422=+y x ,-----------------3分 由⎩⎨⎧==θρθρsin cos y x 得曲线C 的极坐标方程为4)sin 4(cos 222=+θθρ;------------4分化简得22(13sin )4ρθ+=------------------------5分 (Ⅱ)把6πθ=代入22(13sin )4ρθ+=,得4)41443(2=⨯+ρ,∴7162=ρ,得74=A ρ,---------------------------7分 由已知得47==A B ρρ,----------------8分把6πθ=,4=ρ代入方程l 3得22)6sin(=+ϕπ, 又20πϕ<<,∴2663πππϕ<+<-------9分 ∴64ππϕ+=,12πϕ=.---------------------------------------10分。
心尺引州丑巴孔市中潭学校顺河高三数学天天练211.复数z=12i+,那么|z|= . 2.函数()()223f x x m x =+++是偶函数,那么=m.3.从一堆苹果中任取了20只,并得到它们的质量〔单位:克〕数据分布表如下:那么这堆苹果中,质量小于120克的苹果数约占苹果总数的 %. 4.函数f (x )=2x 3-6x 2+7的单调减区间是 .5.假设函数)10(log )(<<=a x x f a 在区间[,2]a a 上的最大值是最小值的3倍,那么a =6.在约束条件:x +2y ≤5 ,2x +y ≤4 ,x ≥0, y ≥0下,z =3x +4y 的最大值是 .7.假设cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,那么cos sin αα+的值为 .8.设等差数列{}n a 的公差d 不为0,19a d =.假设k a 是1a 与2k a 的等比中项,那么k = .9.函数22(1),00,0(1),0x x y x x x ⎧->⎪==⎨⎪+<⎩,右图是计算函数值y的流程图,在空白框中应该填上 . 10①假设m∥β,n∥β,m 、n ⊂α,那么α∥β; ②假设α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,那么m⊥n;③假设m⊥α,α⊥β,m∥n,那么n∥β; ④假设n∥α,n∥β,α∩β=m ,那么m∥n;.11.假设点〔1,1〕到直线x cosα+y sinα=2的距离为d,求d的最大值填空题答案纸:1、______________2、_____________3、______________4、______________5、_____________6、______________7、______________8、_____________9、______________ 10、_____________错误原因及更正:二十一参考答案1.2.-2 3.30 4.[0 2] 5.46 11 7.128.49.x=0 10.②④11.2+ 2。
高三数学天天练习(1)班级 姓名1、若函数f(x+2)=()sin(x),x 02 lg x 4,x 0π⎧+≥⎪⎨⎪--<⎩,则f(3π+2)²f(-102)=2、若f(x)=x 1a 21+-是奇函数,则a=3、若函数f(x)=(x+a)(bx+2a)(a 、b ∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=4、函数f(x)是定义在[0,+∞)上的增函数,且g(x)=-f(x),若g(lgx)>g(1),则实数x 的取值范围是5、已知f(x)=212log (x ax 3a)-+在区间[2,+∞)上是减函数,则实数a 的取值范围是6、若f(x)=2xf ′(1)+x 2,则f ′(0)=7、若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=8、已知函数y=f(x)(x ∈R)的图象如图所示,则不等式xf ′(x)<0的解集为9、已知函数2(),()2ln (x f x g x a x e e==为自然对数的底数,0)a > ⑴求()()()F x f x g x =-的单调区间,若()F x 有最值,请求出最值;⑵当1a =时,求()f x 与()g x 图象的一个公共点坐标,并求它们在该公共点处的切线方程。
10、在∆ABC 中,cos cos AC B AB C =。
(Ⅰ)证明B=C :(Ⅱ)若cos A =-13,求sin 4B 3π⎛⎫+ ⎪⎝⎭的值。
高三数学天天练习(2)班级 姓名1、已知集合A={(x,y)|x-y=2},B={(x,y)|y=1x },则A ∩B 中元素个数为2、命题“∃x ∈R ,2x 2-3ax+9<0”为假命题,则实数a 的取值范围是3、函数()2x 2x 3f x am +-=+ (a >1)恒过点(1,10),则m=4、已知函数f(x)=xlnx.若直线l 过点(0,-1),并且与曲线y=f(x)相切,则直线l 的方程为5.若函数f(x),g(x)分别是R 上的偶函数、奇函数,且满足f(x)-g(x)=e x ,则g(f(0))=6、设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=x 1f ()x 4++的所有x 之和为7、若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC 三角形8、f(x)=()24x 5(x 1)x 4x 3x 1-≤⎧⎪⎨-+>⎪⎩的图象和g(x)=log 2x 的图象的交点个数是9、 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知B =C,2b =3a .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A +π4的值.10、已知函数()()1ln 1,x f x x x a-=+++其中实数1a ≠. (I)若a=-2,求曲线()y f x =在点()()0,0f 处的切线方程;(II)若()f x 在x=1处取得极值,试讨论()f x 的单调性.高三数学天天练习(3)班级 姓名1、有三个命题:(1)“若x+y=0,则x,y 互为相反数”的逆命题;(2)“若a >b ,则a 2>b 2”的逆否命题;(3)“若x ≤-3,则x 2+x-6>0”的否命题.其中真命题的个数为2、已知函数f(x)的图象如图所示,则函数g(x)=的定义域是______.3、在ABC ∆中,a=15,b=10,A=60°,则cos B =4、函数f(x)=ln(-x 2+2x+8)的单调增区间是_______.5、若不等式x 2+ax+1≥0对于一切x ∈(0,12]恒成立,则a 的最小值是______.6、已知函数f(x)=alnx+x 在区间[2,3]上单调递增,则实数a 的取值范围是______.7、在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -=,sin C B =,则A=8、、若函数f(x)=4lnx ,点P(x,y)在曲线y=f ′(x)上运动,作PM ⊥x 轴,垂足为M ,则△POM(O 为坐标原点)的周长的最小值为_______.9、在△ABC 中,角A 、B 、C 所对应的边为c b a ,,(1)若,cos 2)6sin(A A =+π求A 的值; (2)若c b A 3,31cos ==,求C sin 的值.10、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3a y x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ) 求a 的值;(Ⅱ) 若该商品的成品为3元/千克, 试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.高三数学天天练习(4)班级 姓名1、已知a ∈R,则“a>2”是“a 2>2a ”的_______条件.(填“充要”、“充分不必要”、“必要不充分”或“既不充分也不必要”)2、函数f(x)=ax 2+(a-3)x+1在区间[-1,+∞)上是递减的,则实数a 的取值范围是______. 3.(2012²无锡模拟)已知函数f(x)=lnx+2x ,若f(x 2+2)<f(3x),则实数x 的取值范围是_______.4、已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若, A+C=2B,则sinC= .5、在同一平面直角坐标系中,已知函数y=f(x)的图象与y=e x 的图象关于直线y=x 对称,则函数y=f(x)对应的曲线在点(e,f(e))处的切线方程为_______.6、已知实数a ≠0,函数f(x )=2x a,x 1x 2a,x 1+⎧⎨--≥⎩<,若f(1-a)=f(1+a),则a 的值为_______.7、在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.8.(2012²宿迁模拟)已知函数f(x)=2x 1log x 0x 1 1() 1 x 02⎧≥⎪⎪+⎨⎪-⎪⎩<,若f (3-2a 2)>f(a),则实数a 的取值范围是_______.9、已知函数()4cos sin()16f x x x π=+-。
20 单元测试卷二,所以|a-b|=2|a|+2|b|-〉=a-b a+b|a-b|·|a+b|=1CQ →=2CB →,求点P 、Q 和向量PQ →的坐标.解:因为A 、B 、C 三点的坐标分别为(-2,1)、(2,-1)、(0,1),所以CA →=(-2,0),CB→=(2,-2),所以CP →=3CA →=(-6,0),CQ →=2CB →=(4,-4),设P (x ,y ),则有CP →=(x ,y -1),所以⎩⎪⎨⎪⎧ x =-6,y -1=0,解得⎩⎪⎨⎪⎧x =-6,y =1,即P 点的坐标为(-6,1),同理可得Q (4,-3),因此向量PQ →=(10,-4).17.(12分)已知|a |=4,|b |=8,a 与b 的夹角是120°. (1)求a ·b 及|a +b |的值;(2)当k 为何值时,(a +2b )⊥(k a -b )? 解:(1)a ·b =|a ||b |cos120°=-16, |a +b |=a +b 2=a 2+b 2+2a ·b =4 3.(2)由题意,知(a +2b )·(k a -b )=k a 2+(2k -1)a ·b -2b 2=0, 即16k -16(2k -1)-2×64=0,解得k =-7.18.(12分)如图,在△OAB 中,P 为线段AB 上一点,且OP →=xOA →+yOB →.(1)若AP →=PB →,求x ,y 的值;(2)若AP →=3PB →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°,求OP →·AB →的值.解析:(1)若AP →=PB →,则OP →=12OA →+12OB →,故x =y =12.(2)若AP →=3PB →,则OP →=14OA →+34OB →,OP →·AB →=⎝ ⎛⎭⎪⎫14OA →+34OB →·(OB →-OA →)=-14OA →2-12OA →·OB →+34OB →2=-14×42-12×4×2×cos60°+34×22=-3.19.(12分)△ABC 内接于以O 为圆心,1为半径的圆,且3OA →+4OB →+5OC →=0.(1)求数量积OA →·OB →,OB →·OC →,OC →·OA →; (2)求△ABC 的面积.解析:(1)∵3OA →+4OB →+5OC →=0. ∴3OA →+4OB →=0-5OC →,即(3OA →+4OB →)2=(0-5OC →)2.可得9OA →2+24OA →·OB →+16OB →2=25OC →2.又∵|OA |=|OB |=|OC |=1.∴OA →2=OB →2=OC →2=1,∴OA →·OB →=0.-2+∴此人沿北偏西45°方向走了1h时,此人所走的实际距离6s-t 2+t -2=时,|OD →|取得最小值4 2.。
天天练20 平面向量的数量积及其应用一、选择题1.(·课标全国Ⅱ,3,5分)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( )A .-8B .-6C .6D .82.(·课标全国Ⅲ,3,5分)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°3.设向量a ,b 满足a =(1,2),|b |=5,a ·b =5,且a ,b 的夹角为θ,则cos θ=( )A.55B.255C.105D.1554.(·河南适应性测试)已知向量m =(1,cos θ),n =(sin θ,-2),且m ⊥n ,则sin2θ+6cos 2θ的值为( )A.12 B .2 C .2 2 D .-25.(·芜湖一模)若O 为平面内任意一点,且(OB→+OC →-2OA →)·(AB →-AC→)=0,则△ABC 是( ) A .直角三角形或等腰三角形B .等腰直角三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形6.(·北京,4)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(·滨州一模)已知△ABC 的外接圆的圆心为O ,AB =23,AC。
高三数学天天练习题为了帮助高三学生更好地备战数学考试,我们为大家准备了一套高质量的天天练习题。
这些练习题涵盖了高中数学各个知识点,旨在帮助学生夯实基础、巩固概念,并通过大量练习提高解题能力。
以下是部分练习题供大家参考:一、选择题1. 已知函数 f(x) = x^2 + 3x - 2,其中x为实数,求 f(x+h) - f(x) 的值,其中h为任意实数。
A. 2h + 3B. 2h + 6C. h^2 + 3h + 4D. h^2 + 3h + 62. 某试验的结果是事故率 p%。
若进行该试验 n 次,则至少发生一次事故的概率为:A. (1 - p/100)^nB. 1 - (1 - p/100)^nC. (p/100)^nD. 1 -(p/100)^n3. 已知函数 f(x) = 2x^3 - 5x^2 + 3x + 7,其中x为实数,求 f(-1) +f(2) - f(3) 的值。
A. 2B. 20C. -20D. -2二、填空题1. 符号∈表示 "属于",则下列集合中的元素是自然数的是:{ x | x > -3 }答案:0, 1, 2, 3, ...2. 已知集合 A = { -2, 0, 2 },集合 B = { 0, 1, 2 },则 A ∪ B = ?答案:{ -2, 0, 1, 2 }3. 若 log2(x - 3) = 4 ,则 x = ?答案:19三、解答题1. 已知直角三角形 ABC,其中∠C = 90°,AC = 8,BC = 15。
求四边形 ABED 的面积,其中 D、E 分别是 AC、BC 上的两点,且DE∥AB。
解答:首先,根据两条平行线与一组相交的交角相等的性质,可以得到∠C = ∠BDE。
又根据直角三角形中两条直角边的长度比例关系,可以得到 AD = (15/17)*8 = 120/17,BE = (8/17)*15 = 120/17。
- 1 - 高三数学天天练20
姓名 班级
1、[2011·苏州模拟] 已知数列{an}满足a1=2,an +1=5an -133an -7
(n ∈N*),则数列{an}的前100项的和为________.
2、[2011·泰州二模] 数列{an}为正项等比数列,若a2=1,且an +an +1=6an -1(n ∈N , n ≥2),则此数列的前4项和S4=________.
3、等比数列{an}的前n 项和为Sn ,且4a1,2a2,a3成等差数列.若a1=1,则S4=________.
4、如图K39-3所示,正方体ABCD -A1B1C1D1的棱长是1,过A 点作平面A1BD 的垂线,垂足为点H ,有下列三个命题:
①点H 是△A1BD 的中心;
②AH 垂直于平面CB1D1;
③AC1与B1C 所成的角是90°.
其中正确命题的序号是____________.
图K39-3
5、给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中真命题的序号是________.
6、四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°.将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD.则在三棱锥A -BCD 中,下列命题正确的是________(填序号).
①平面ABD ⊥平面ABC ;②平面ADC ⊥平面BDC ;
③平面ABC ⊥平面BDC ;④平面ADC ⊥平面ABC.。