4刍甍、羡除、刍童及楔形四棱台的体积公式
- 格式:docx
- 大小:813.10 KB
- 文档页数:10
四棱台体积公式:①、[S上+S下+√(S上×S下)]*h /3 (可以用于四棱锥)[上面面积+下面面积+根号(上面面积×下面面积)]×高÷2②、(S上+S下)*h/2 (不能用于四棱锥)(上面面积+下面面积)x高÷2第②个最简便的公式,可以把正方体当作四棱台验证。
注意:如果把四棱锥可以看成上面面积为0的四棱台,第①个公式仍然可以用,但是四棱锥不能用第②个公式,切记!!!!!!!!。
拟棱台:对于一个多面体,如果有两个面互相平行,而其余的面均为顶点全在这两个平行面上的三角形、平行四边形或梯形,这样的多面体叫拟棱台。
若上下底面和中截面的面积分别是S1、S2、S0,高为H,则体积V=1/6(s1+s2+4s0)H正四棱台体积V=底面积S×高H圆锥体体积=底×高÷3长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15评论(14) | 80 12012-08-12 16:31 我只是碗馄饨| 四级体积的话叫棱台S1=上面的面积S2=下面的面积H是高V是体积V=(S1+S2+根号(S1×S2))×H ÷3评论(6) | 52 22012-05-08 23:50 绿锦小学| 十三级答:梯形是平面图形,没有体积,只有面积。
四棱台的体积公式V=(1/3)H(S上+S下+√[S上×S下])平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b) S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15海伦公式假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=%√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/2%√表示平方根,右图sqr错误,应该为sqrt,sqr表示平方。
刍甍、羡除、刍童及楔形四棱台的体积公式
甘志国
【期刊名称】《新高考(高二数学)》
【年(卷),期】2017(000)009
【摘要】《九章算术》是中国古代数学的经典著作,里面提及了很多有趣但十分拗口的立体图形的名词,其中最有名气的,莫过于“鳖膈”了(请大家移步常老师的文章《从鳖膈谈起》).除此之外,如阳马、刍甍、羡除、刍童等.
【总页数】4页(P33-36)
【作者】甘志国
【作者单位】北京丰台二中
【正文语种】中文
【相关文献】
1.古巴比伦正四棱台体积公式古证复原
2.《缀术》中的“刍甍,方亭之问”初探
3.刍甍的应用
4.正四棱台体积公式的再探索和教学尝试
5.学生的想法出乎我的意料--《正四棱台体积公式》教学尝试及所得
因版权原因,仅展示原文概要,查看原文内容请购买。
四棱台体积计算公式四棱台是一种特殊的多面体,由一个上下两个平行的多边形底面和连接底面顶点的多个斜棱面所构成。
四棱台的体积计算公式与其他几何体相比稍微复杂一些,因为它不是一个简单的立方体或圆柱体。
首先,让我们定义四棱台的一些重要参数:-底面边长a和b,底面的形状可以是任意多边形,但我们以正多边形为例,所以底面是一个边长为a的正多边形。
-底面边数n,即底面的边的数量。
-上底面边长a'和b',与底面相对应的上面的边长。
四棱台的体积计算公式如下:V=((a+a')*(b+b')+√(a*a'+b*b'-a*a'-b*b')*√(a*a'+b*b'-a*a'-b*b')*√(a*a'+b*b'-a*a'-b*b'))/6下面我将详细解释这个公式的推导过程:步骤1:计算上下底面的面积上底面的面积S1=(a*b')/2下底面的面积S2=(a'*b)/2步骤2:计算四个斜棱面的面积由题意可知,四棱台由连接底面顶点的斜棱面构成,设这些棱面的长度依次为x1,x2,x3,x4则四个斜棱面的面积分别为:S3=(a*x1)/2S4=(a*x2)/2S5=(b*x3)/2S6=(b*x4)/2步骤3:计算四个棱面的高将四个斜棱面的高依次设为h1,h2,h3,h4则四个斜棱面的高分别为:h1=√(x1*x1-((a-a')/2)*((a-a')/2))h2=√(x2*x2-((a-a')/2)*((a-a')/2))h3=√(x3*x3-((b-b')/2)*((b-b')/2))h4=√(x4*x4-((b-b')/2)*((b-b')/2))步骤4:计算四个棱面的体积将四个斜棱面的体积分别设为V3,V4,V5,V6 V3=(S3*h1)/3V4=(S4*h2)/3V5=(S5*h3)/3V6=(S6*h4)/3步骤5:计算四棱台的体积四棱台的体积等于上底面的面积和下底面的面积与四个斜棱面的面积之和,即:V=S1+S2+V3+V4+V5+V6步骤6:代入公式将步骤1到步骤5中的计算结果代入体积计算公式,即得到四棱台的体积:V=((a+a')*(b+b')+√(a*a'+b*b'-a*a'-b*b')*√(a*a'+b*b'-a*a'-b*b')*√(a*a'+b*b'-a*a'-b*b'))/6需要注意的是,这个体积公式的推导和计算比较复杂,并且需要输入多个参数。
刍甍羡除刍童及楔形四棱台的体积公式一、刍甍的体积公式:刍甍是一种用土石建筑而成的燃烧炉,由燃烧室和煤气出口组成。
它的体积公式与燃烧室的形状和尺寸有关。
假设燃烧室的形状为一个长方体,长度为L,宽度为W,高度为H。
刍甍的体积公式可以表示为:V=L×W×H二、羡除的体积公式:羡除是一种类似刍甍的燃烧炉,常用于炼铁过程中。
它的燃烧室呈长方体形状,顶部有一段斜坡。
根据燃烧室的形状和尺寸,羡除的体积公式可以表示为:V=L×W×H+A×h×(L+W)/2其中,A表示斜坡的宽度,h表示斜坡的高度。
三、刍童的体积公式:刍童是一种类似刍甍的燃烧炉,常用于炼钢过程中。
它的燃烧室呈圆柱体形状,顶部有一段斜坡。
根据燃烧室的形状和尺寸,刍童的体积公式可以表示为:V=π×r^2×H+A×h×(2×π×r)/2其中,r表示燃烧室的半径,A表示斜坡的宽度,h表示斜坡的高度。
四、楔形四棱台的体积公式:楔形四棱台是一种几何体,其体积公式的推导需要通过几何性质和计算方法来解释。
假设楔形四棱台的顶面为一个正方形,边长为a;底面为一个矩形,长为b,宽为c;楔形四棱台的高为h。
首先计算楔形四棱台的上底面积和下底面积:上底面积A1=a^2下底面积A2=b×c然后计算楔形四棱台的体积:V=(A1+A2+√(A1×A2))×h/3以上即是楔形四棱台的体积公式的推导过程。
综上所述,刍甍、羡除、刍童以及楔形四棱台的体积公式都与燃烧室的形状和尺寸有关。
通过理解这些公式,我们可以计算出不同形状和尺寸的刍甍、羡除、刍童以及楔形四棱台的体积。
数学中棱台体积公式是什么
体积公式
V=[S1+4S0+S2]*H/6
=h/6×[a1×b1+a2×b2+(a1+a2)×(b1+b2)]
注:上底面积S1,下底面积S2,中截面面积S0,高H,此体积公式多一个参量S0—中截面积,它有“万能公式”的美誉。
扩展资料
正四棱一种特殊台梯形体(好比正方形于长方形),即底面与顶面均为正方形,侧面都是等腰梯形。
正四棱台
V=H/3[S1+S2+√(S1S2)]
注:S1是上底的面积,S2是下底的面积。
正四棱锥
正四棱锥是底面是正方形,侧面为4个全等的等腰三角形且有公共顶点,顶点在底面的投影是底面的中心。
底面是正方形,顶点在地面的摄影是正方形的中心。
三角形的底边就是正方形的.边。
体积公式:1/3*底面积*棱锥的高。
以上是小编整理的四棱台和四棱锥的数学知识,希望对大家有所帮助。
棱台体积计算公式棱台体积计算公式
棱台体积计算公式棱台体积计算公式
V=(1/3) H(S 上+S 下+√[S 上×S 下] )
H 是高, S 上和 S 下分别是上下底面的面积
请问棱台体积的计算公式
棱台体积的计算公式
是这样的。
:
棱台体积的计算公式
棱台体积 V=(上底面积+下底面积+4×中截面面积)÷6×高
V=(上口边长-0.025)(上口边宽-0.025)杯深
=(下口边长+0.025) (下口边宽+0.025)杯深
棱台体积的计算公式
棱台体积 V=(上底面积+下底面积+4×中截面面积)÷6×高
V=(上口边长-0. 025) (上口边宽-0. 025) 杯深
=(下口边长+0. 025) (下口边宽+0. 025) 杯深
这个公式有局限性,它只适用于计算三、四棱台和圆台体积,它的好处就是不用开方和不用考虑物体的摆放形式...棱台体积的计算公式
棱台体积 V=(上底面积+下底面积+4×中截面面积)÷6×高
V=(上口边长‐0.025)(上口边宽‐0.025)杯深
棱台的两底面积分别为 A 与 B,高为 h,则其体积 V 为:
V=h[A+B+sqrt(AB)]/3
这里 sqrt( )是对括号内的结果求算术平方根。
刍童体积公式证明过程体积是空间物体占据的三维空间的大小,它描述了一个物体有多大。
而刍童体积公式是一种计算封闭几何体体积的方法。
在这个公式中,我们使用了切片的方法将一个几何体划分成许多薄片,然后通过对每个薄片的计算得到整个体积。
下面我们将详细阐述这个公式的证明过程。
我们可以看到,每个薄片的面积都是a^2,因为立方体的底面是正方形,边长为a。
而每个薄片的体积为a^2×h。
现在,我们来计算叠放的长方体的体积。
根据长方体的体积公式,我们知道,体积等于底面积乘以高度。
所以,这个叠放的长方体的体积为a^2 × nh。
另一方面,由于这个长方体是由n个薄片叠放而成的,所以它的体积也应该等于每个薄片的体积之和。
即:体积= a^2 × nh现在,我们来考虑一个更一般的情况,一个任意形状的物体。
为了计算这个物体的体积,我们可以将其切割成许多小薄片,并将它们叠放在一起。
类似于前面的例子,每个薄片的面积为S,厚度为h。
将这个物体切割成n个薄片,并叠放在一起,我们得到了一个形状为长方体的结构。
它的长、宽、高分别为a,b,nh。
根据长方体的体积公式,这个叠放的长方体的体积为S × nh。
另一方面,由于这个长方体是由n个薄片叠放而成的,所以它的体积也应该等于每个薄片的体积之和。
即:体积= S × nh由于这个物体是任意形状的,所以我们可以在整个物体上无限细化地切割并叠放小薄片,使得它们的厚度h趋近于零。
那么,当h趋近于零时,上述公式将近似于:体积≈S×h这就是刍童体积公式的核心思想,即将物体切割为无限细小的薄片,并在计算体积时使用这个公式。
总结一下,刍童体积公式的证明过程是从一个简单的立方体开始的,然后将立方体切割为薄片并叠放,得到了一个形状为长方体的结构。
通过比较长方体的体积公式和每个薄片的体积之和,我们证明了刍童体积公式的正确性。
当然,在实际应用中,我们通常使用积分的方法来计算连续的无限小薄片的体积。
四棱台体积公式及推导过程
四棱台一种特殊台梯形体(好比正方形与长方形),即底面与顶面均为相似的四边形,侧面都是梯形,四条棱的延长线能够交汇于一点的一种台体。
它的体积计算公式是V=(S1+4S0+S2)*H/6。
四棱台体积公式及推导过程
1四棱台体积公式
正四棱台
V=H/3[S1+S2+√(S1S2)]
注:非通用公式,(s1是上底的面积,s2是下底的面积)
通用公式
V=[S1+4S0+S2]*H/6
注:上底面积S1,下底面积S2,中截面面积S0,高H,此体积公式多一个参量S0——中截面积,它有“万能公式”的
美誉。
2四棱台体积公式推导
由相似三角形可得b/h1=a/(h1+h2),所以h1=bh2/(a-b).
V台=a^2(h1+h2)/3-b^2*h1/3
=h1(a^2-b^2)/3+h2*a^2/3
=(a+b)*b*h2/3+a^2*h2/3
=(a^2+b^2+ab)*h2/3
3四棱台体积计算公式
①[S上+S下+√(S上×S下)]*h /3 (可以用于四棱锥)专[上面面积+下面面积+根号下(上面面积×属下面面积)]×高÷3 。
②(S上+S下)*h/2 (不能用于四棱锥)(上面面积+下面面积)x 高÷2 。
注意:第②个最简便的公式可以把正方体当作四棱台验证2把四棱锥看成上面面积为0的四棱台适用于第①个公式但
是四棱锥不能用第②个公式。
刍甍、羨除、刍童及楔形四棱台的体积公式题1 (2013年高考湖北卷文科第20题)如图1,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面D E F G 为该多面体的一个中截面,其面积记为S 中.图1(1)证明:中截面D EFG 是梯形;(2)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.笔者关心的是:该题中的1231()3V d d d S =++即)(61321d d d ah V ++=是怎么来的呢?这由下面推导的羨除体积公式立得.题2 (2002年高考北京卷文科第18题)如图2,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为c ,d 与a ,b 且a >c ,b >d ,两底面间的距离为h .. (1)求侧面ABB 1A 1与底面ABCD 所成二面角正切值;(2)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是6hV =(S 上底面+4S 中截面+S 下底面),试判断V 估与V 的大小关系,并加以证明. (注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面.)图2题3 (2002年高考北京卷理科第18题)如图3,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E ,F 两点,上、下底面矩形的长、宽分别为c ,d 与a ,b 且a >c ,b >d ,两底面间的距离为h ..(1)求侧面ABB 1A 1与底面ABCD 所成二面角的大小; (2)证明:EF//面ABCD(3)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是6hV =(S 上底面+4S 中截面+S 下底面),试判断V 估与V 的大小关系,并加以证明. (注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面.)图3笔者关心的是:高考题2,3中的6hV =(S 上底面+4S中截面+S下底面)即[(2)(2)]6hV a c b c a d =+++是怎么来的呢?这由下面推导的刍童体积公式立得.《九章算术·商功》篇有部分题目涉及到刍甍、羨除、刍童及楔形四棱台的体积公式,这些公式秦汉时人都已掌握,下面来推导它们.1.刍甍刍甍是图4所示中的五面体ABCDEF,其中EF DC AB ////,底面ABCD 是平行四边形.设a AB =,直线CD AB 、之间的距离是h ,直线EF 与平面ABCD 之间的距离是H ,则其体积)2(6c a HhV +=.图4证明 如图5所示.设点F E ,在面ABCD 上的射影分别是点F E '',.图5我们把平面ABCD 分成三块区域:区域I 指该平面位于直线AD 左侧的部分(不包括直线AD ),区域II 指该平面夹在直线BC AD 、之间的部分(包括直线这两条直线),区域III 指该平面位于直线BC 右侧的部分(不包括直线BC ).应分六种情形来证明: (1)点F E '',均位于区域I ;(2)点E '位于区域I ,点F '位于区域II ; (3)点E '位于区域I ,点F '位于区域III ;(4)点F E '',均位于区域II ;(5)点E '位于区域II ,点F '位于区域III ;(6)点F E '',均位于区域III .下面只对情形(5)予以证明:过点E '作CD GH ⊥于H ',交AB 于G ;过点F '作CD IJ ⊥于I ,交AB 于J ,得H E E h GH ='=,,所以=-+=-)(BJIC AGHD FJI EGH V V V V 四棱锥四棱锥直三棱柱=-+=-+)(32)(32GJIH ABCD BJIC AGHD S S Hc Hh S S H c Hh )2(6)(32c a Hh ch ah H c Hh +=-+=证毕! 2.羨除羨除是图6所示中的五面体ABCDEF,其中EF DC AB ////,底面ABCD 是梯形.设)(,b a b DC a AB >==,直线CD AB 、之间的距离是h ,直线EF 与平面ABCD 之间的距离是H ,则其体积)(6c b a HhV ++=.图6证明 用补形法可证.图7如图7所示,延长CD 至R ,使RC AB =,得刍甍ABCREF ,由刍甍的体积公式,得)(62)(3)2(6c b a Hh h b a H c a Hh V V V ADRE ABCREF ++=-⋅-+=-=-三棱锥刍甍注 羨除的体积公式是由刍甍的体积公式推得的;当羨除的下底面梯形变成平行四边形时(即图4所示中的b a =时的情形),羨除就变成了刍甍,也得刍甍的体积公式是羨除的体积公式的极限情形.3.刍童刍童是图8所示中的六面体D C B A ABCD ''''-,其中面//ABCD面D C B A '''',底面A B C D 、底面D C B A ''''均是平行四边形.设b B A a AB =''=,,直线CD AB 、之间的距离是h ,D C B A ''''、之间的距离是h ',面D C B A A B C D ''''、之间的距离是H,则其体积])2()2[(6h a a h a a HV '+'+'+=.图8证明 如图9所示,可得面A B AB ''与平行平面D C B A ABCD ''''、的交线B A AB ''、平行,所以CD B A //''.连结C BD A '',.图9由刍甍的体积公式,得])2()2[(6h a a h a a HV V V D C B A CD ABCD A B '+'+'+=+=''''''刍甍刍甍 注 刍童的体积公式是由刍甍的体积公式推得的;当刍童的上底面平行四边形变成线段时(即图4所示中的0='h 时的情形),刍童就变成了刍甍,也得刍甍的体积公式是刍童的体积公式的极限情形. 4.楔形四棱台楔形四棱台是图10所示中的六面体D C B A ABCD ''''-,其中面//ABCD 面D C B A '''',底面A B C D 、底面D C B A ''''均是梯形.设b D C b B A b CD a AB '=''=''==,,,,面CD AB 、之间的距离是h ,D C B A ''''、之间的距离是h ',面D C B A A B C D ''''、之间的距离是H ,则其体积])()[(6h b b a h a b a HV '+'+'+'++=.图10 图11证明 如图11所示,可得CD B A //''.连结C B D A '',.由羨除的体积公式,得])()[(6h b b a h a b a HV V V D C B A CD ABCD A B '+'+'+'++=+=''''''羡除羡除 注 楔形四棱台的体积公式是由羨除的体积公式推得的;当楔形四棱台的上底面的梯形变成线段时(即图4中的0='h 时的情形),楔形四棱台就变成了羨除,也得刍甍的体积公式是楔形四棱台的体积公式的极限情形.由刍甍的体积公式可推得羨除、刍童、楔形四棱台的体积公式,由楔形四棱台的体积公式也可推得刍甍的体积公式.题4 (1999年高考全国卷文科、理科第10题)如图12所示,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,23,//=EF AB EF ,EF 与面ABCD 的距离为2,则该多面体的体积为( )A.29 B.5 C.6 D.215图12解 D.由刍甍的体积公式可得.题5 (2007年全国高中数学联赛江苏赛区复赛第一试第9题)如图13,在多面体ABCDEF 中,已知四边形ABCD 是边长为3的正方形,3//,2EF AB EF =.若该多面体的体积为152,则EF 与AC 的距离为 .图13解 2.设直线EF 与平面AC 的距离为H ,由刍甍的体积公式可得153323262H ⋅⎛⎫=⋅+ ⎪⎝⎭2H =进而可得:异面直线,EF AC 的距离为2H =.题6 (2005年高考全国卷I 理科第4题即文科第5题)如图14,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF //AB ,EF =2,则该多面体的体积为( )A.32 B.33C.34D.23图14解 A.设棱,A D B C的中点分别是,S T ,在等腰梯形EFTS 中可得1,2,S T E F E S ===EF 与平面ABCD 的距离22=H . 所以由刍甍的体积公式可得多面体ABCDEF的体积为12(212)6⋅+=题7 (1983年美国邀请赛题)图15中的多面体的底面是边长为s 的正方形,上面的棱平行于底面,其长为s 2,其余棱长也都为s ,若26=s ,求这个多面体的体积.图15解 288.由刍甍的体积公式可得(先算得s H 22=).在该题中,当1=s 时就是高考题2.。