冲击地压防治(谷风研究)
- 格式:ppt
- 大小:5.61 MB
- 文档页数:76
冲击地压测定监测与防治方法地压是指地层中发生的岩层破裂、变形、滑动等引起的地表活动现象。
地压灾害主要表现为地表下陷、地裂缝、建筑物倾斜、地下管线断裂等。
冲击地压是特指地压灾害中在一瞬间发生的瞬间放能。
冲击地压对人类和社会造成严重危害,因此需要进行地压测定、监测与防治。
下文将介绍冲击地压的相关方法。
1.地层压力测试。
通过在地下进行地层的钻孔与地堰,然后通过测量钻进地下的过程中所遇到的地层水压、岩层强度指标等,得出地层的压力情况。
2.地震勘探。
通过地震波传播的方法,测定地下岩石体的结构和密度,从而得出地压的程度和可能产生的范围。
3.变形探测。
利用高精度的变形仪器对地表进行监测,观察地表的变形情况,从而判断地下是否存在地层压力。
冲击地压监测是指对地下岩石体的地压情况进行实时监测,并根据监测结果做出相应的应对措施。
常见的冲击地压监测方法有:1.监测孔注浆。
在地下建设监测孔,通过注入浆液来填充空隙,增强地层的稳定性,从而减少地压的发生。
2.应变测量。
在地表和地下建筑物中设置应变仪器,通过测量应变的变化情况来判断地压的变化情况。
3.声波监测。
通过在地下设置声波设备,传输声波信号,观察声波反射的情况,来判断地下岩石体的密度和结构情况,从而判断地压的可能性。
冲击地压防治是针对地压灾害的实施具体措施,以减轻冲击地压的危害,保护人类和社会的安全。
常见的冲击地压防治方法有:1.岩体加固。
通过对地下岩体进行加固,如钢筋混凝土浇筑、喷射混凝土等,增强岩体的稳定性,减少冲击地压的发生。
2.地下排水。
通过设置地下排水系统,及时排除地下水,并排除地下溶洞、裂缝等因素,减少地下岩石的变形和滑动,减轻冲击地压的危害。
3.爆破放能。
在地下岩石体中进行控制性的爆破,通过其能量的释放来调整地下岩体的应力分布,减轻地压的危害。
综上所述,冲击地压的测定、监测与防治方法包括地层压力测试、地震勘探、变形探测等测定方法;监测孔注浆、应变测量、声波监测等监测方法;岩体加固、地下排水、爆破放能等防治方法。
冲击地压的防治措施根据发生冲击地压的成因和机理,防治措施的基本原理有两方面:一是降低应力的集中程度;二是改变煤岩体的物理力学性能,以减弱积聚弹性能的能力和释放速率。
1降低应力的集中程度减弱煤层区域内的矿山压力值的方法有:①超前开采保护层;②无煤柱开采,在采区内不留煤柱和煤体突出部分,禁止在邻近层煤柱的影响范围内开采;③合理安排开采顺序,避免形成三面采空状态的回采区段或条带和在回采工作面前方掘进巷道,必要时应在岩石或安全层内掘进巷道,禁止工作面对采和追采。
2改变煤层的物理力学性能改变煤层的物理力学性能主要有:高压注水、放松动炮和孔相卸压等方法。
⑴高压注水是通过注水,人为地在煤岩内部造成一系列的弱面,并使其软化,以降低煤的强度和增加塑性变形量。
注水后,煤的湿度平均增加1%—2.2%时,可使其单向受压的塑性变形量增加13.3%—14.5%。
⑵放松动炮是人为地释放煤体内部集中应力区积聚的能量。
在回采工作面中使用时,一般是在工作面沿走向打4m—6m深的炮眼,进行桧爆破。
它的作用是可以诱发冲击地压和煤壁前方经常保持一个破碎保护带,使最大支承压力转入煤体深处,随后即使发生冲击地压,对采场的威胁也大为降低。
⑶钻孔槽卸压是用大直径钻孔或切割沟槽使煤体松动,达到卸压效果。
卸载钻孔的深度一般应穿过应力增高带。
在掘进石门揭开有冲击危险的煤层时,应距煤层5m—8m处停止掘进,使钻孔穿透煤层,进行卸压。
此外,还可依靠选择最佳采煤方法、回采设备、开采参数和工作制度等方法,局部降低煤层边缘的冲击危险程度。
例如,当开采有冲击危险的单一煤层时,应采用直线式长壁工作面授前进式采煤方法,并在巷道侧不留煤柱。
对有冲击危险的厚煤层,应采用倾斜分层长壁式采煤方法。
上分层的开采厚度应当最小。
开采有冲击危险的煤层时,无论是在回采工作面还是在掘进工作面中,都应采用支撑力大的可缩性金属支架。
综合上述可以认为,在现有技术水平下对冲击地压认真地进行测定和预报工作,并针对具体情况采取有效的防治措施,完全可以消除或大大减少冲击地压事故。
冲击地压防治措施冲击地压是在采掘煤炭过程中可能发生的一种地质灾害。
这种灾害是由于采掘煤炭时,煤层下部支撑不够,在煤层底部形成与煤体表面相平行的断层面,造成上方煤体的向下滑移,压缩和破碎而导致的。
冲击地压不仅会对煤炭生产造成重大损失,还会对矿山工人的生命安全产生威胁。
因此,煤炭工业界需要采取一系列的防治措施,来降低冲击地压的发生率和危害程度。
预测和预防预测和预防是防治冲击地压最重要的手段。
通过地表变形、地应力变化、煤层和岩层振动和声波特征等方面的监测,可以提前预测冲击地压发生的可能性。
在这种情况下,可以采取相应的预防措施来减少冲击地压的危害。
监测冲击地压预测的主要手段是通过实地监控地表的水平和垂直运动,以及地下应力和煤体振动和声波特征等参数。
常用的监测手段包括:•放射性探测技术•微震监测技术•实时安全监测系统在监测参数出现异常或预设阈值时,可以采取预防措施保证矿井和矿工的安全。
预防针对冲击地压可能的危害,需要采取一系列预防措施。
下面是一些常见的措施:•加强垂直矿井和坡道的支护和加固•发现和清理掉煤层裂隙、水脉、煤柱等地质障碍物•通过改变采掘方法来控制煤层的破碎和受力状态•均匀注水来增加覆岩压力,从而增强地层的稳定性救援和恢复在防治冲击地压的过程中,救援和恢复也是非常重要的环节。
一旦冲击地压发生了,我们需要在第一时间做好救援和恢复工作,减少人员伤亡和场地损失。
救援在冲击地压灾害发生后,需要尽快开展救援工作。
这需要借助如下设备和措施:•透光探矿机•双向性瓦斯检测仪•无线二极管通信系统•立体扫描系统在救援过程中,往往需要排除灾害区域内的水或瓦斯,以减少救援难度和风险。
恢复在进行救援工作的同时,还要采取有效的恢复措施,避免同一地方再次发生相似的灾难。
常见的恢复措施包括:•利用支柱或支架来加固地层和采掘工作区•施工加固坚固的地表工程,以减轻地压的影响•配备完善的设备和人员,对恢复工作进行全面、系统、规范化的管理结论为了预防和控制冲击地压这种地质灾害的发生,我们需要挖掘科技和管理手段,并适当提高各个方面的技术水平。
民营科技2018年第8期工程技术冲击地压灾害研究及防治措施钟志路1王璐飞1刘永乐1赵新泉2(1.山东科技大学矿业与安全工程学院,山东青岛266590;2.兖矿集团济宁二号煤矿,山东济宁272000)摘要:具体分析了煤矿开采中冲击地压发生条件及防治措施,认为冲击地压发生条件为煤层冲击倾向性、断层和褶曲、上覆岩层运动,并提出冲击地压的防治措施,为冲击地压检测和防治工作作出了建议。
关键词:深部开采;冲击地压;发生条件;防治措施中图分类号:TD82文献标识码:A文章编号:1673-4033(2018)08-0137-02前言随着我国浅部煤炭资源的日趋枯竭,深部煤炭资源已经成为我国的主要能源保证。
我国多个省份已经逐步进入深部开采阶段。
冲击地压已经成为深部煤矿的的典型动力灾害之一,明确冲击地压发生机制是监测与防治冲击地压的基础。
但目前对冲击地压监测、防治还有所欠缺。
因此,本文针对冲击地压灾害防治现状,阐述了冲击地压发生条件,并从防治冲击地压的角度,对冲击地压矿井针对性地提出具体的防治方法。
1冲击地压发生条件深部煤矿冲击地压的形成与矿井地质特征、演化过程及应力环境等因素密切相关。
研究表明煤岩的冲击倾向性、断层和褶曲赋存状况、上覆岩层赋存条件是诱发冲击地压的主要因素。
1.1煤层冲击倾向性。
大部分发生冲击地压矿井的煤层都具有冲击倾向性,但在一些煤层没有冲击倾向性的矿井也发生了冲击地压。
煤岩的冲击倾向性受煤岩结构、地质异常条件、煤岩受力状态和采动影响等因素影响。
1.2断层和褶曲。
诱发冲击地压发生的另一个主要地质因素为断层和褶曲等地质构造。
煤矿冲击地压的发生受向斜轴部、特别是构造变化区、断层附近、煤层倾角变化带、煤层褶皱、构造应力带等因素的影响。
不同断层类型与冲击地压发生也有关联性,地质构造控制的冲击地压分为增压和减压二种类型,工作面过逆断层时为增压型,容易引发强烈的冲击地压;工作面过正断层时为减压型,不会发生冲击地压。
TECHNOLOGY AND INFORMATION工业与信息化科学与信息化2020年7月中 125关于煤矿冲击地压防治技术的研究与应用李志辉开滦能源化工股份有限公司范各庄矿业分公司 河北 唐山 063108摘 要 社会经济的飞速发展提高了对煤矿资源的需求量,使得煤矿开采的规模与深度不断提升,由此直接导致煤矿冲击地压灾害的发生,这便给煤矿开采过程带来了严重的安全隐患,情节严重的甚至引发煤矿安全事故,造成重大的人员伤亡与经济损失。
所以,对煤矿冲击地压防治技术进行详细的研究分析迫在眉睫。
关键词 煤矿冲击地压;原因;理论;防治技术;应用1 煤矿冲击地压的基本概述冲击地压,其实质就是煤矿开采区周围的煤岩体,在力学平衡状态被破坏的情况下受弹性变形能量瞬间释放的影响,产生的一种具有突发性的剧烈破坏动力现象。
冲击地压也就是矿山压力的特殊体现方式,实际显现情况具有明显的特征性,如冲击力强,弹射面积广,同时具有冲击波,弹性振动等情况,会造成煤岩体的瞬间抛出,同时并伴有巨大声响以及气浪现象等等。
加强煤矿冲击地压防治技术的研究工作具有非常重要的现实意义[1]。
2 引发冲击地压现象的主要原因与相关理论(1)主要原因。
引发煤矿冲击地压地质灾害的原因较多,但是总体上可分为内在原因与外在原因。
内在原因:煤岩体每层之间都具有一定的冲击力,在开采活动中,开采作业面上的岩体会出现活动现象,而煤层原有的应力状态则相对集中;加上煤层本身的物理属性所影响,由此导致冲击地压现象的发生。
外在原因方面:在煤矿开采过程中,作业面的影响较大,使得煤体的应力过于集中;或者煤柱的实际尺寸较大,导致煤岩体内部应力高度集中;以及开采施工的周期压强较大;开采频率过高;工作面推进过快等等原因,都会引发煤矿冲击地压现象的发生。
(2)相关理论。
①强度理论方面:采场的周边如果应力过度集中,则会使得煤岩体实际所承受的压力处于最大值,当岩体被破坏时,则直接引发冲击地压现象的发生。
冲击地压防治措施冲击地压是威胁煤矿安全生产的重大灾害之一。
以下是店铺整理的资料,仅供参考,欢迎阅读。
冲击地压防治措施(一)对上下平巷采取超前卸压处理措施工作面生产后,对上下平巷超前200m实施煤层钻孔卸压工作,始终将打钻卸压范围控制在工作面超前压力影响范围以外。
1、在上巷上帮煤壁距顶板1.5米左右位置每隔10米打一深眼,进行卸压爆破,炮眼与上帮煤壁呈13°打入,眼深15米;在上巷下帮煤壁距顶板1米左右处每隔5米打一深眼,进行卸压爆破,炮眼向下扎角不小于13°打入,眼深15米;在下巷上帮煤壁距顶板1.5米左右位置每隔5米打一深眼,进行卸压爆破,炮眼与上帮煤壁呈13°打入,眼深15米。
打眼前先加固好附近支架,打眼人员相互配合一致,匀速推进,及时排出煤(岩)粉。
2、炮眼打好后,要逐眼装药、连线、放炮,每眼装药量为40节;第一个起爆药卷装在距眼底4米处,第二个起爆药卷装在距眼底7米处,眼内各个药卷必须接压,眼内炮泥封孔长度不少于4米,为了确保炮眼内药包的完全引爆,炮眼采用连续偶合方式装药,采用双雷管引爆,2个雷管采用并联连接,每个眼单独正向起爆。
3、放炮使用MFB-100型起爆器,一次起爆个数为1个。
爆破时警戒线距离至少200m,躲炮时间不得少于30min。
如果煤层钻孔顺利钻进12米则表明卸压效果达到要求,否则应继续爆破卸压。
(二)解危措施当电磁辐射仪监测到冲击危险后,应立即对工作面冲击危险区域实施爆破卸压。
钻孔布置方式: ⑴钻孔布置在上平巷下帮时,钻孔俯角沿煤层倾斜向下布置,孔口距顶板1.0m。
⑵钻孔布置在上或下平巷上帮时,钻孔仰角沿煤层倾斜向上布置,孔口距顶板1.5m;卸压孔深10米,间距5米。
炸药用矿用乳化炸药,每孔装药量为4Kg,用2发毫秒延期电雷管,正向装药起爆,每孔用三只水炮泥,其余用黄泥封实,单孔内并联连炮,孔与孔之间串联连炮。
每次引爆3-5个卸压孔,以提高卸压效果。
冲击地压测定、监测与防治方法
地压是土壤对基础结构的长期作用产生的巨大而持续的应力,它
会对重要的结构设施产生破坏性的影响。
为了进行地压测定,一般使
用压测仪,用来监控这种应力的变化,估计偏心应力对结构的影响,
评估地压的影响,以及进行预防防护。
一般来说,地压测定可以分为两个主要步骤:土地调查、地压测定。
土地调查先要查明需要测定地压的地点,研究其土壤、岩石等性质,分析土地环境情况,以及代表性点处地压值比较,以便正确判断
所在区域地压变化趋势。
地压测定采用深层孔洞测试方法来确定地压,具体步骤是:1、
在测点处饲养探头;2、数据采集;3、数据处理;4、计算地压的大小;
5、结果比较;
6、确定地压负荷的穿透效应;
7、绘制穿透曲线,确定
地压变化趋势。
一旦确定地压,就可以采取相应措施来防护基础设施。
根据地压
的分布情况,可以采用不同的措施,具体有固定地基、调节地基、护
筑固结构等。
此外,还可以进行地压的动态监测,将地压数据(如负
荷和位移)存储在数据库中,定期检查,及时发现地压变化,以便做
出正确的判断和防护措施。
地压测定、监测和管理是保障建筑和结构安全运行的重要环节,
只有恰当采取措施,才能有效防止负荷或应力大小超出设计范围,避
免构筑物受损影响、脆弱起坍或破坏、坍塌等危险情况发生。
冲击地压防治原则冲击地压是指在煤矿等地下工程中,由于采煤工作导致的岩层破裂、沉陷以及地压的瞬时性和局部性变化。
为了预防和控制冲击地压,制定了一系列的防治原则。
以下是一些常见的冲击地压防治原则:综合防治原则:原则:采用多种综合措施,包括技术、管理和法规等手段,综合治理冲击地压。
说明:综合防治强调不仅仅依赖某一项技术手段,而是通过多种手段协同作用,全面提高地压控制水平。
提前预测原则:原则:提前对地压进行预测和评估,采取相应的防治措施。
说明:在采矿前对矿区的地质和地压条件进行详细的预测,有针对性地制定防治方案,减少地压对采矿过程的影响。
强化支护原则:原则:通过加强巷道支护,提高巷道的稳定性,减轻地压对巷道的影响。
说明:采用有效的支护材料和技术,结合地质条件,合理设置支护结构,确保巷道在采煤过程中的稳定性。
分区分段原则:原则:对采煤区域进行合理的分区分段管理,根据地质条件和采煤进度制定相应的防治方案。
说明:根据不同地段的地质条件和采煤进度,有针对性地制定不同的防治措施,保证不同区域的地压控制。
适时适度原则:原则:在采煤过程中,根据地质变化和地压情况,及时调整和改进防治措施。
说明:对于地质条件的变化或者地压反应的变化,需要及时调整防治策略,保持其适时适度。
科学监测原则:原则:建立科学的地压监测体系,通过实时监测数据指导防治工作。
说明:利用地压监测仪器和技术,对巷道、煤柱等进行实时监测,及时获取地压信息,为决策提供科学依据。
预留留采原则:原则:在采矿过程中预留足够的支柱或留煤柱,以减缓地压的传递速度。
说明:针对地质条件,合理设计采矿方案,留取足够的支柱或煤柱,降低地压的传递速度,减轻地压对巷道和设备的冲击。
这些原则为冲击地压的防治提供了指导,结合具体矿井的地质条件和采煤方案,制定相应的防治措施,有助于确保地下工程的安全和稳定进行。
冲击地压防治实施细则冲击地压是指由于地质条件、地表荷载、建筑物开挖或降低地下水位等因素引起的地下岩土体的沉降或变形。
若不及时采取有效的防治措施,冲击地压可能会对周围环境和建筑物造成严重的损害。
为了保障工程施工的安全和稳定性,避免冲击地压对周围环境造成影响,制定冲击地压防治实施细则对于工程管理具有重要意义。
一、冲击地压防治目标1.保障工程施工的安全性,确保施工过程中不会受到冲击地压的影响。
2.保护周围环境的稳定性,防止冲击地压对周围土壤、建筑物等造成损害。
3.提高施工效率,减少冲击地压对施工进度的影响。
二、冲击地压防治措施1.前期调查与分析:在施工前,进行详细的地质勘探,了解地下岩土层情况及有无冲击地压的风险。
同时,对附近的建筑物和地下管线等进行清查,确保施工过程中不会受到影响。
2.合理施工方案设计:根据地质调查结果,制定合理的施工方案。
在设计施工过程中,应考虑到地下岩土层的厚度、稳定性以及施工过程中可能出现的变形情况,避免对地下岩土造成过大的冲击。
3.强化施工监督与管理:在施工过程中,应加强对施工现场的监督与管理。
必要时,设置监测设备,实时监测地下岩土体的变形情况,并及时采取措施进行调整和修正。
4.采用合适的地下支护措施:根据地质条件和施工要求,选择合适的地下支护措施。
常见的地下支护技术包括地下连续墙、钻孔灌注桩等,这些措施可以有效地防止冲击地压对地下岩土体的影响。
5.合理控制地下水位:如果施工过程中需要降低地下水位,应采取适当的措施控制地下水位的变动范围。
避免地下水位下降过快或过深,导致地下岩土体变形。
三、冲击地压防治实施过程1.前期准备:进行地质调查和风险评估,并制定详细的施工方案。
2.施工现场准备:清理施工区域,确保施工现场平整,并设置必要的标志和警示牌。
3.施工过程监督与管理:设立专职监理人员,进行实时监测并记录冲击地压及地下岩土体的变形情况。
4.地下支护措施安装:按照施工方案进行地下支护措施的安装,包括地下连续墙、钻孔灌注桩等。
煤矿冲击地压防治技术研究与应用随着我国煤炭产业的不断发展,煤矿冲击地压问题也愈加突出。
煤矿冲击地压是指煤层和岩层受到强烈挤压,导致煤体爆裂、层理变形、岩体破裂等现象,并对井下人员、设施和设备造成威胁。
因此,煤矿冲击地压防治技术的研究与应用具有极其重要的意义。
煤矿冲击地压的成因有很多,包括自重压实作用、应力聚集作用、煤体膨胀作用、地质构造作用等。
为了有效应对这些问题,我们需要采取多种防治技术。
下面,将具体阐述一些常见的技术。
1. 强化分层措施煤层和岩层的分层结构是造成煤矿冲击地压的重要因素之一。
因此,针对不同的分层特点,需要制定相应的防治对策。
对于易受冲击地压的层位,可以采取强化分层措施,包括预喷浆固壁、做插板、安装支柱等。
2. 压力释放措施压力释放是煤矿冲击地压防治的重要手段之一,可通过井下钻孔、泵浆煤层、注浆排水等方式来实现。
井下钻孔可以有效降低岩层应力,减少压力梯度,达到缓解冲击地压的目的。
泵浆煤层和注浆排水则能够有效改善岩压状态,从而改善矿井环境。
3. 调整开采顺序措施适当调整矿井开采顺序,对于防治冲击地压具有一定的帮助。
对于煤矿冲击地压易发的地段,可采取闷放措施,延迟开采时间。
对于固定煤层,可通过改变煤层开采方式,避免过固的煤层的开采而导致煤层塌陷。
4. 加强监测手段煤矿冲击地压是一个动态过程,需要通过实时监测来了解冲击地压的变化情况。
常见的监测手段包括测变形、测轴向振动、测液位等。
通过这些监测手段,可以及时发现冲击地压的预警信号,采取相应措施防止事故的发生。
综上所述,煤矿冲击地压是一个复杂的问题,需要采取多种防治措施。
在实际应用中,还需要根据具体矿井地质结构、采煤方式、开采周期等因素进行综合考虑。
通过不断创新和优化技术手段,才能更好地解决煤矿冲击地压问题,保障煤矿生产的安全和稳定。
煤矿冲击地压防治技术研究与应用煤矿冲击地压是指煤矿工作面开采过程中,由于岩层破碎,导致一系列地质灾害,如跌落、滑移、爆裂等现象。
这些地质灾害会给矿工的人身安全和设备设施的安全带来严重威胁,煤矿冲击地压防治技术非常重要。
煤矿冲击地压防治技术的研究主要包括:确定地质条件、监测与预测、防治目标、防治措施等方面的内容。
需要对煤矿地质条件进行详细调查和分析,包括煤层、顶板、底板和岩层构造等方面的情况,以便对冲击地压的发生机理和演化规律进行深入的研究。
监测与预测是冲击地压防治的基础工作,通过采取地质勘探、地震监测、应力监测等手段,可以及时发现冲击地压的迹象,进行预警。
根据煤矿冲击地压的特点和影响因素,制定相应的防治目标,如降低地应力、控制断裂围压等。
采取一系列的防治措施,包括注浆、支护、减压排水、减微震等技术手段,来预防和控制煤矿冲击地压的发生。
煤矿冲击地压防治技术的应用,可以有效地减少冲击地压带来的人员伤亡和设备损失。
具体应用方面,可以根据煤层厚度、埋深、煤岩性质等因素,选择合适的支护措施和方法。
在厚煤层矿井中,可以采用煤柱保留的方式来减轻地压,保护矿工的安全。
在煤层破碎较为严重的地段,可以采用注浆技术来加固岩层,提高其稳定性。
在矿井通风系统中,可以通过减压排水来降低地压,改善井下工作环境。
煤矿冲击地压防治技术的研究与应用对于提高煤矿安全生产水平具有重要意义。
虽然目前已经取得了一些成果,但仍然存在一些问题和挑战。
煤矿冲击地压的发生机理还不够清楚,预测与监测手段还不够成熟,防治措施的可行性和效果还需要进一步探索。
需要加强对煤矿冲击地压防治技术的研究和应用,提高其科学性和可行性,为煤矿安全生产提供更好的支撑。
冲击地压预防措施冲击地压是聚集在矿井巷道和采场周围岩体的能量突然释放。
在井巷中发生的爆炸事故。
动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和煤岩体破坏、支架与设备、人员伤亡,部分巷道跨落破坏等。
冲击地压具有突发性、发生条件复杂性的特点。
新城煤矿开采至今无冲击地压现象发生,但根据临矿(城山煤矿)以前25#煤层发生过冲击地压现象及我矿部分采区开采深度已经达到-580水平,矿井开采深度的增加,矿山压力显现日趋明显,为做好矿井冲击地压预测和预防工作,防止冲击地压危害,确保矿井安全生产,依据《煤矿安全规程》和有关规定及法律法规,特制定以下防范措施如下:一、管理机构组长:王连军副组长:杨庆胜谢学文沈广东王杰黄万胜金邵柱成员:生产科机电科地测科安监处供应科运输区通风区调度室二、抢险准备工作1、全矿各单位人员、工种,必须熟知矿井冲击地压灾害基本知识,掌握冲击地压发生的机理、预兆、影响因素及危害,以便及时采取相应的救援措施。
2、根据矿井冲击地压事故的特点,必须提前准备好各类技术装备,以便抢险救灾工作的需要。
(液压起重器、大绳、矿工斧、镐、刀锯、两用锹、担架、检测仪器、苏生器、生命探测仪等)3、生产科负责编制并贯彻落实施工措施,确保抢险施工安全进行。
4、机电科负责抢险期间机电设备及供电系统的安装使用,并在事故发生第一时间,停止矿井生产电源。
5、地测科负责了解事故现场情况,分析判断事故严重程度、波及范围及存在的威胁。
6、安监处负责现场监督抢险过程的安全情况,杜绝二次事故的发生。
7、供应科负责准备抢险期间需要的所有工具并保证其安全质量。
8、运输区负责各类材料、工具、空重车皮的运输,确保各类材料、工具、车皮及时到达作业地点。
9、通风区负责通风系统的巡查、调风、风机安设等工作,确保井下无串联风、微风、无风等现象。
10、调度室负责联系组织各单位抢险工作,并在事故发生的第一时间,通知矿井所有人员进入新鲜风流中躲避。
三、技术管理1、要对各开采煤层进行煤层冲击倾向性鉴定,并认真做好待采区段冲击地压危险性评价。
冲击地压是矿山开采中一种常见的地质灾害,对矿井和工人安全构成严重威胁。
为了有效地防治冲击地压,需要采取一系列的措施。
以下是冲击地压防治措施的十六字方针:
预测预报:通过地质勘察和矿压观测,预测采掘工作面及周边区域可能发生冲击地压的时间、地点和强度,为防治决策提供依据。
合理布局:合理安排采掘工程,避免开采集中于某一区域或开采顺序不合理,以减少冲击地压发生的风险。
强制解危:在采掘工程接近可能发生冲击地压的区域时,采取强制解危措施,如钻孔卸压、爆破卸压等,以降低应力集中程度,避免冲击地压的发生。
强化支护:对可能发生冲击地压的区域采用加强支护措施,如增加支柱密度、使用高强度材料等,以增强巷道的抗冲击能力。
改变地质条件:采取合理的设计方案和施工工艺,如采用分层开采、充填采空区等,以改善采场的地质条件,降低冲击地压发生的风险。
优化开采顺序:合理安排相邻采区的开采顺序,避免采区之间相互影响,以减少冲击地压发生的风险。
监测预警:利用各种监测手段,如应力在线监测、声发射监测等,对可能发生冲击地压的区域进行实时监测预警,以便及时采取防治措施。
制定应急预案:针对可能发生的冲击地压事故,制定完善的应急预案,包括应急组织、救援装备、人员培训等方面,确保在事故发生时能够迅速响应并有效处置。
以上是冲击地压防治措施的十六字方针,旨在通过预测预报、合理布局、强制解危、强化支护、改变地质条件、优化开采顺序、监测预警和制定应急预案等措施,有效地防治冲击地压,保障矿山安全生产。
冲击地压预防技术冲击地压是指在地下工程施工过程中,由于地下水位过高、土层松散或受到震动等因素,导致地下土体失稳、塌陷或产生巨大的压力,对地下工程的施工和运行带来巨大的困扰和危害。
为了预防和控制冲击地压,施工单位需要采取一系列的技术措施,保障工程安全。
本文将从土体力学特性、地下水位控制、支护结构设计以及震动控制四个方面进行阐述,介绍一些常用的冲击地压预防技术。
一、土体力学特性1. 土壤类型分析:在地下工程施工前,需要对施工区域的土壤类型进行详细的调查和分析。
不同土壤类型对地下工程的影响和相应的施工技术措施是不同的。
2. 土壤力学参数测定:通过岩土工程试验和现场观测等手段,测定土壤的力学参数,如土体的内摩擦角、剪切强度等。
这些参数对于地下工程的稳定性分析和支护结构的设计非常重要。
3. 土体排水能力:在地下工程施工中,对于土体的排水能力应进行评估。
高含水量土壤和良好排水能力的土壤对地下工程的稳定性具有重要影响。
通过采取合适的排水措施,降低地下水位,可以减少冲击地压的危害。
二、地下水位控制1. 地下水位监测:在地下工程施工前,应对施工区域的地下水位进行详细的调查和监测。
通过水位监测,可以及时掌握地下水的水平变化,为地下工程施工提供参考。
2. 降低地下水位:对于高地下水位地区的地下工程,需要采取措施降低地下水位,以减少冲击地压的危害。
可以采用井点降水、水泵抽水等方式进行地下水位控制。
3. 地下水环境保护:在地下工程施工过程中,需要合理安排施工排水路线,确保地下水环境的安全和保护。
在排水过程中,还应注意对水质的检测和控制。
三、支护结构设计1. 地下连续墙:地下连续墙是一种常用的地下工程支护结构。
通过设置连续墙,可以有效减少土体的位移和挤压,提高地下工程的稳定性。
2. 地下梁柱:地下梁柱结构也是常用的地下工程支护结构。
通过设置梁柱,可以增加土体的承载能力,提高地下工程的抗震性能。
3. 地下注浆:地下注浆技术可以增加土体的强度和稳定性,减轻冲击地压对地下工程的影响。
冲击地压灾害研究及防治措施摘要:冲击地压的发生是有条件的,研究表明煤岩的冲击倾向性、断层和褶曲赋存状况、上覆岩层赋存条件是诱发冲击地压的主要条件。
不同类型的冲击地压矿井,尽管防治方法存在不同,但防冲的本质是相似的,即改变应力分布形式或应力条件。
关键词:冲击地压;灾害;防治措施1冲击地压的致灾机理自20世纪50年代南非成立世界上第一个冲击地压研究机构以来,业内学者提出了众多理论,仅我国提出的机理便已超过100种,是世界上提出冲击地压机理最多的国家。
此处笔者仅列出经典理论和国内最新成果。
早期主要有强度理论、刚度理论和能量理论、“三准则”理论、冲击倾向性理论、变形失稳理论。
虽然这些理论不能完全解释冲击地压的发生,但构成了冲击地压机理研究过程中的理论基础。
由于不同矿井地质赋存条件的差异,致使煤岩介质与赋存环境的相互作用机制也大不相同,因此尚没有一种具有普适性的冲击地压的致灾机理。
我国现有的冲击地压致灾机理可分为4类:①从研究煤岩体材料的物理力学性质出发,分析煤岩体失稳破坏特点及诱使其失稳的固有因素,同时利用混沌、分叉等非线性理论来研究煤岩失稳过程;②从研究灾害区域所处的地质构造以及变形局部化出发,分析地质弱面和煤岩体几何结构与煤岩冲击失稳之间的相互关系;③工程扰动以及采动影响与冲击失稳之间的关系;④从能量角度出发,通过能量密度、能量释放率等指标或通过构建复合型能量转化为中心的煤岩冲击失稳分类体系,对煤岩冲击失稳的能量积聚和转化特征进行研究。
从冲击地压的致灾机理和典型案例分析,我国煤矿冲击地压灾害与以下条件密切相关。
1)煤岩体介质属性。
冲击倾向性是鉴别煤岩介质本身冲击能力大小、是否具有冲击危险性的力学属性,据相关资料统计我国发生的冲击地压事故中,约有75%煤层具有冲击倾向性。
冲击倾向性已经成为我国冲击地压问题的基础性研究,冲击倾向性鉴定是煤层开采前的必要工作,现已形成了对我国煤矿安全生产一线具有指导意义的鉴定标准。