当前位置:文档之家› 供应链管理外文翻译

供应链管理外文翻译

供应链管理外文翻译
供应链管理外文翻译

毕业论文材料:英文文献及译文

课题名称:电子商务环境下XX公司

供应链管理研究

IIMB Management Review

Volume 23, Issue 4, December 2011, Pages 234–245 Sustainable supply chain management: Review and research opportunities

Sudheer Gupta Omkar D. Palsule-Desai

Abstract

Anthropogenic emissions likely pose serious threat to the stability of our environment; immediate actions are required to change the way the earth’s resources are consumed. Among the many approaches to mitigation of environmental deterioration being considered, the processes for designing, sourcing, producing and distributing products in global markets play a central role. Considerable research effort is being devoted to understanding how organisational initiatives and government policies can be structured to facilitate incorporation of sustainability into design and management of entire supply chain. In this paper, we review the current state of academic research in sustainable supply chain management, and provide a discussion of future direction and research opportunities in this field. We develop an integrative framework summarising the existing literature under four broad categories: (i) strategic considerations; (ii) decisions at functional interfaces; (iii) regulation and government policies; and (iv) integrative models and decision support tools. We aim to provide managers and industry practitioners with a nuanced understanding of issues and trade-offs involved in making decisions related to sustainable supply chain management. We conclude the paper by

discussing environmental initiatives in India and the relevance of sustainability discussions in the context of the Indian economy.

Keywords

?Sustainable supply chain management;

?Green supply chains;

?Closed-loop supply chains;

?Sustainability;

?Extended producer responsibility;

?Emissions trading

Introduction

A broad consensus has by now emerged that anthropogenic emissions pose serious threat to

the stability of our environment, and that the resulting changes will affect our ecosystem by disrupting food and water supplies, submerging coastal wetlands, and causing severe weather patterns and species extinction. The global average temperature has been rising since the early 1900s, and has risen by more than 0.5 °C in the last 50 years alone, with an accompanying rise in global average sea levels and drop in Northern Hemisphere snow cover (IPCC, 2007a). Decades of careful data collection, analysis and projections by groups of scientists and researchers around the world have confirmed that the world faces severe changes with an expected 2–4 °C rise in global average temperature by the year 2100: 30–40% of the species could be extinct, close to a third of global coastal wetlands are in danger of being submerged, millions of people will likely face food and water shortages, and

many densely populated areas of the world, including many parts of Asia, will face higher rates of morbidity and mortality from heat waves, floods and droughts (IPCC, 2007b).

A large part of the blame has been attributed to the six greenhouse gases (GHGs) that are known to trap heat into the earth’s atmosphere and contribute to a rise in global temperature: primary ones being carbon dioxide, methane, and nitrous oxide. As measurements have shown, concentrations of GHGs in the earth’s atmosphere have been relatively stable over the last 10,000 years (at between 250 and 300 parts per million). However, in the last 150 years or so—since the beginning of industrial revolution—concentrations of carbon dioxide in the atmosphere have shot up by more than 30% (from less than 300 ppm to close to 400 ppm), and concentrations of methane have almost doubled (IPCC, 2007a). Several large scale model projections have shown that a business-as-usual scenario, with no changes in our production methods and consumption habits, will lead to an imbalance in the ecosystem and damage the stability of our environment.

There is an obvious need for urgent action to change the way we consume the earth’s resources. Among the many approaches to mitigation and adaptation being considered, the processes for designing, sourcing, producing and distributing products in global markets play a central role, as these activities account for a bulk of the resources consumed and the environmental impact. For example, in the United States, industrial activities account for about a third of fossil fuel related carbon dioxide emissions; another 40% are accounted for by transportation (EPA, 2007). Evidently, design and management of supply chain activities is a primary factor in promoting environmental sustainability.

In this paper, we review the current state of academic research in designing and managing sustainable supply chains, and provide a discussion of future directions and research opportunities in this rapidly evolving field. In Section 2, we provide a definition and description of Sustainable Supply Chain Management. In Section 3, we summarise and discuss existing classifications and reviews of research in this field, and describe how our perspective differs from those in the literature. Section 4 presents the bulk of recent research in this area that fits our integrative perspective, summarised under four broad categories: (i) Strategic considerations; (ii) Decisions at functional interfaces; (iii) Regulation and government policies; and (iv) Integrative models and decision support tools. We conclude in Section 5 with a discussion of some environmental initiatives in India and the relevance of sustainability discussions in the context of the Indian economy.

Sustainable Supply Chain Management (SSCM)

We define Sustainable Supply Chain Management (SSCM) as a set of managerial practices that include all of the following:

●Environmental impact as an imperative;

●Consideration of all stages across the entire value chain for each product; and

● A multi-disciplinary perspective, encompassing the entire product life-cycle.

This definition implies a few broad themes in our perspective on environmental sustainability. First, firms must view environmental impact of their activities as an integral part of decision-making, rather than as a constraint imposed by government regulation or social pressure, or as a fad to exploit by app earing to be “green”. Second, firms must pay attention to environmental impact across the entire value chain, including those of suppliers, distributors, partners and customers. Third, firms’ view of sustainability must transcend a narrow functional

perspective and encompass a broader view that integrates issues, problems and solutions across functional boundaries.

In keeping with this definition, our review of the literature on SSCM adopts a firm perspective, rather than societal or policy-makers’ perspect ive, and focuses on organisational decisions related to the entire product life-cycle that involves design, production, distribution, consumer use, post-use recovery and reuse. We do not limit ourselves to literature in any one academic discipline; rather, we focus on interactions across functional areas including corporate strategy, product design, production and inventory management, marketing and distribution, and, regulatory compliance.

The paper is intended to provide managers and industry practitioners with a nuanced understanding of issues and trade-offs involved in making decisions related to SSCM. The paper is also intended to provide management researchers with a summary of the current state of the art in SSCM research, and a roadmap for future research directions.

SSCM research: reviews and classification

Several excellent reviews have been written over the years that examine various aspects of SSCM-related research. While these reviews adopt different perspectives from ours, readers interested in exploring a particular aspect of SSCM would find them useful. For instance, many of the existing reviews explore the SSCM literature for implications of environmental concerns on firm’s individual functions involving activities such as product design, prod uction planning, or inventory management. On the contrary, we examine the existing studies from a value-chain perspective, and discuss environmental concerns in managerial decisions across

functions. Moreover, most of the existing reviews cover literature that is, in some cases, over a decade old. Our review focuses on more recent research in this fast changing and growing field.

Early research efforts in SSCM were largely devoted to understanding the technical and operational considerations inherent in collecting, testing, sorting, and remanufacturing of returned products. Research in this domain can broadly be classified under the following headings: (i) Production planning, scheduling and control; (ii) Inventory management; and (iii) Reverse logistics. While research in these areas continues, given the availability of excellent reviews covering this domain, we will abstract from these issues in our review, and encourage the readers to consult the papers mentioned below.

In an early review of the literature, Greenberg (1995) surveys the use of mathematical programming models for controlling environmental quality, focussing on air, water, and land. The paper is limited to general equilibrium models with multiple decision making agents, where an equivalent mathematical program can be formulated to compute a fixed point. The review provides an annotated bibliography with more than 300 papers, and identifies many research avenues for studies using mathematical programming in addressing environmental concerns. Fleischmann et al. (1997) focus on quantitative models of reverse logistics, and subdivide the literature in three areas: distribution planning, inventory control, and production planning. For each of these areas, the authors discuss the implications of the product reuse efforts being explored at the time, review the mathematical models proposed in the literature, and point out the areas in need of further research. Carter and Ellram (1998) also focus on reverse logistics, but present a more holistic view that includes the reduction of materials in the

forward system in such a way that fewer materials flow back, reuse of materials is made possible, and recycling is facilitated. The paper develops a broadened view of the role of logistics personnel in reverse logistics, and identifies gaps where future research is needed. In particular, the authors identify important players and influencing factors (internal, external and environmental) involved in reverse logistics and provide a framework to study these issues. Gungor and Gupta (1999) focus on ‘environmentally conscious manufacturing and product recovery’, described as integrating environmental t hinking into new product development including design, material selection, manufacturing processes, product delivery to the consumers, and end-of-life management of the product. The authors review and categorise more than 300 papers based on four stages of product life-cycle analysis: product design, manufacturing, use, and recovery. The paper argues that two key issues involved in ‘environmentally conscious manufacturing’ are: (i) understanding the life-cycle of the product and its impact on the environment at each of its life stages, and (ii) making better decisions during product design and manufacturing so that the environmental attributes of the product and manufacturing process are kept at a desired level. Consistent with bulk of the research efforts a t the time, the review focuses on the product recovery process (divided into ‘recycling’ and ‘remanufacturing’), and provides an analysis of issues relevant in collection, disassembly, inventory control and production planning of used products. Similar issues are tackled in Guide and van Wassenhove (2002) and Guide, Jayaraman, and Srivastava (1999).

In a departure from the narrower focus of articles summarised above, Kleindorfer, Singhal, and van Wassenhove (2005) review various sustainability themes covered in the first 50 issues of Production and Operations Management journal. The authors use the term sustainability

broadly to include environmental management, closed-loop supply chains, and triple-bottom-line thinking that integrates profit, people and the planet into the culture, strategy and operations of companies. The authors suggest that businesses are under an increasing pressure to pay more attention to the environmental and resource consequences of the products and services they offer and the processes they deploy. In turn, operations management (OM) researchers and practitioners face new challenges in integrating sustainability issues within their traditional areas of interest. The paper concludes with some thoughts on future research challenges in sustainable operations management, highlighting three areas—green product and process development, lean-and-green OM, and, remanufacturing and closed-loop supply chains—that integrate essential aspects of sustainable OM.

“Closed loop supply chain management” (CLSC) can be defined as the design, control, and operation of a system to maximise value creation over the life-cycle of a product, with dynamic recovery of value from different types and volumes of returns over time (Guide & van Wassenhove, 2006). This perspective has gained increasing attention among researchers in the last decade. Guide and van Wassenhove (2009) focus on business aspects of closed-loop supply chain research and provide a personal perspective on value-added recovery activities, but do not review the existing literature. The authors summarise evolution of CLSC research through five phases, which is useful in understanding the evolution of a subset of research activities within SSCM. The paper claims that Phase 1 consisted of early research that focused almost exclusively on technical problems and individual activities of reverse logistics. Phase 2 has expanded research problems to include inventory control, reverse logistics networks, and

remanufacturing/shop line design issues. Phase 3 involves coordinating reverse supply chains using an economic perspective and game theoretic models, understanding strategic implications of product recovery, contracting issues, incentive alignment, and channel design. Phase 4 involves ‘Global system design for profitability’, that primarily incl udes issues such as time value of product returns and maximising value over entire product life-cycle. Phase 5 involves a focus on marketing issues such as pricing of product returns, cannibalisation, and understanding consumer behaviour.

While these reviews and classifications provide different perspectives on sustainability research in supply chain management, none of them provides an integrative, comprehensive overview of the field from a firm’s perspective, adopting a strategic decision-based approach. We seek to integrate these perspectives in our review below.

Integrative SSCM

Following our discussion in Section 2, we consider a broad range of managerial decisions, categorised along the following dimensions:

I. Strategic considerations:

a. Organisational strategy

b. Supply chain strategy and structure

c. Marketing strategy

II. Decisions at functional interfaces:

d. Product design and product life-cycle

e. Pricing and valuation of returns

f. Forecasting, information provision, and value of information

III. Regulation and government policies:

g. Extended producer responsibility

h. Cap and trade programs

IV. Integrative models and decision support tools

In the following sections, we briefly summarise the major issues and concerns in each of these categories, review and summarise some of the academic efforts that have addressed these issues, and outline promising avenues for future research in these areas.

Strategic considerations

Organisational strategy

From a strategic perspective, organisational decisions on sustainability revolve around the following questions: (i) How does the organisation view sustainability? (ii) What options does the organisation have to incorporate environmental considerations into strategic decisions? (iii) How do these considerations affect theories of the firm that provide an economic rationale to firm’s existence, behaviour, structure and relationship to markets? While there are broad debates in literature on corporate social responsibility (of which sustainability discussions could be seen as a subset), we limit ourselves here to a value chain perspective and summarise the major issues via three papers that discuss, respectively, the strategic value of pollution prevention and resulting productivity gains, compare specific methods and techniques for controlling greenhouse gas emissions on their estimated costs, and outline the strategic importance of reverse value chain activities. These themes recur throughout this article and we will expand on them, and their impact on supply chain related decisions, in the following sections.

In an influential article, Porter and van der Linde (1995) view pollution from the perspective of resource inefficiency, and discuss green initiatives in terms of their implications on firm’s competitiveness. In particular, they view the inherent trade-off between environmental

regulations and competitiveness as ecology versus economy: the regulations provide social benefits via strict environmental standards, however, higher private costs for prevention and cleanup increase prices and hence reduce competitiveness. The authors argue that policy makers, business leaders, and environmentalists have focussed on the static cost impact of environmental regulations and have ignored the more important offsetting productivity benefits from innovation. Moreover, the authors claim that pollution prevention through product and process design is superior and economical to pollution control through waste management. In this regard, they propose a resource productivity framework based on innovation and improvements in operational efficiency.

While Porter and van der Linde (1995) argue for the benefits of pollution prevention over pollution control,Enkvist, Naucler, and Rosander (2007) focus on GHG emissions and provide detailed cost curves that enable a deeper understanding of the significance and cost of each possible method of reducing emissions. The cost curves show estimates of the prospective annual abatement cost in Euros per ton of avoided emissions of GHGs, as well as the abatement potential of these approaches in gigatons of emissions. The study covers six sectors (power generation, manufacturing with a focus on steel and cement, transportation, residential and commercial buildings, forestry, and agriculture and waste disposal) in six regions (North America, Western Europe, Eastern Europe including Russia, other developed countries, China, and other developing nations) spanning three time horizons (2010, 2020 and 2030). For the most part, at the low end of the curve are measures that improve energy efficiency, whereas at the higher end are approaches for adopting more greenhouse gas-efficient technologies and for shifting to cleaner industrial processes.

In contrast to the papers discussed above, Jayaraman and Luo (2007) focus on reverse value chain activities (reuse, repair, refurbishing, recycling, remanufacturing, or redesign of returned products from the end-user), and present a redefined value chain strategy that entails a closed-loop system for industries in which such activities may create additional competitive advantages for the firm. The analysis presented in this paper is relevant from a strategic management perspective for the following three reasons: (i) through reverse logistics, the value chain is no longer portrayed as unidirectional, but as a closed-loop system in which additional values are generated from the existing resources; (ii) the competitive advantage paradigm can be further enlightened by a new source of competitive edge—tangible values from the physical side and intangible values from the information side of reverse logistics; (iii) the reverse logistics framework has implications for the resource-based view of the firm. Supply chain strategy and structure

The next level of organisational decisions involves the structure of the supply chain and strategic choices the firms must make in order to incorporate sustainability considerations. Research effort here has largely focused on designing the reverse supply chain to collect and re-use end-of-life products returned by customers, structuring supply chain incentives to properly motivate partners, and managing competition between remanufactured and new products. The following summary provides the major issues and findings in the literature. Savaskan, Bhattacharya, and van Wassenhove (2004) address the problem of choosing appropriate reverse channel structure for the collection of used products from customers for remanufacturing. In particular, a manufacturer in the supply chain has three options for

collecting used products: (i) collect directly from the customers, (ii) incentivise the existing retailer to induce collection, or (iii) subcontract the collection activity to a third party. The proposed noncooperative game theoretic model has decentralised decision-making system with the manufacturer as the Stackelberg leader. The authors show that simple coordination mechanisms can be designed such that the collection effort of the retailer and the supply chain profits are attained at the same level as in a centrally coordinated system.

Savaskan and van Wassenhove (2006) extend the above model to a multiple retailers setting. The authors focus on the interaction between a manufacturer’s reverse channel choice to collect post-consumer goods and the strategic product pricing decisions in the forward channel when retailing is competitive. They first examine how the allocation of product collection to retailers impacts their strategic behaviour in the product market, and later discuss the economic trade-offs the manufacturer faces while choosing an optimal reverse channel structure. The authors show that when a direct collection system is used, channel profits are driven by the level of returns, whereas in the indirect reverse channel, supply chain profits are driven by the competitive interaction between the retailers. Moreover, from the supply chain coordination perspective, they show that the buy-back payments transferred to the retailers for post-consumer goods provide a wholesale pricing flexibility that can be used to price discriminate between retailers.

The effect of competition from remanufactured products is a primary concern for a manufacturer. This competition can be from products the manufacturer introduces himself, or from another remanufacturer who enters the market, intercepts used products from consumers and sells remanufactured products that compete with new products from the manufacturer.

Several papers have examined this issue. Majumder and Groenevelt (2001) present a two-period model to explore the effect of competition in remanufacturing. In the first period, only an OEM manufactures and sells new products. In the second period, a fraction of these items are returned for remanufacturing. However, the OEM doesn’t get all these returned products, some are used up by a local remanufacturer who competes with the OEM in the consumer market to sell remanufactured products. In this case, the critical trade-offs for the OEM are between the lower cost of remanufacturing in the second period against the threat of higher competition from the remanufacturer. The authors show that competition causes the OEM to manufacture less in the first period and attempt to increase local remanufacturer’s cost of remanufacturing. On the contrary, the remanufacturer helps OEM reduce his manufacturing cost. The authors also extend the model to examine the role of a social planner who wants to increase remanufacturing. They show that the social planner can give incentives to the OEM to increase the fraction available for remanufacturing, or reduce his remanufacturing costs. Ferguson and Toktay (2006) develop models to support a manufacturer’s recovery strategy in the face of a competitive threat on the remanufactured product market. They first analyse the competition between new and remanufactured products produced by a monopolist manufacturer and identify conditions under which the firm would choose not to remanufacture its products. They then characterise the potential profit loss due to external remanufacturing competition and analyse two entry-deterring strategies: remanufacturing and preemptive collection. A major finding is that a firm may choose to remanufacture or preemptively collect its used products to deter entry, even when the firm would not have chosen to do so under a pure monopoly environment.

Ferrer and Swaminathan (2006) analyse a two-period model, that is later extended to a multi-period setting, in which a firm produces new products in the first period and uses returned cores to offer remanufactured products, along with new products, in the second period. They extend their focus to the duopoly environment where an independent operator sells remanufactured products in future periods. The authors find that if remanufacturing is very profitable, the original-equipment manufacturer may forgo some of the first-period margin by lowering the price and selling additional units to increase the number of cores available for remanufacturing in future periods. Further, as the threat of competition increases, the OEM is more likely to completely utilise all available cores, offering the remanufactured products at a lower price.

SSCM and marketing strategy

While a large part of the SSCM literature focuses on operational decisions, a small but significant research stream has explored sustainability decisions in a supply chain from a marketing perspective. Two major issues have been examined: (i) How do market characteristics affect remanufacturing incentives? (ii) How do classical marketing decisions such as pricing and segmentation, interface with technology selection and remanufacturing decisions? The following papers provide some answers.

Atasu, Sarvary, and van Wassenhove (2008) examine the remanufacturing environment from a marketing perspective with an emphasis on important characteristics of a remanufactured product such as low-cost, lower valuation, cannibalisation and supply constraints. In addition to analysing the profitability of remanufacturing systems for different cost, technology, and

logistics structures, the authors provide an alternative and somewhat complementary approach that considers demand-related issues, such as the existence of `green’ segments, original-equipment manufacturer competition, and product life-cycle effects. For a monopolist, they show that there exist thresholds on the remanufacturing cost savings, the green segment size, market growth rate, and consumer valuations for the remanufactured products, above which remanufacturing is profitable. They also show that under competition, remanufacturing can become an effective marketing strategy, which allows the manufacturer to defend its market share via price discrimination.

Debo, Toktay, and van Wassenhove (2005) visualise remanufacturing as an interplay between pricing, market segmentation and technology selection. In particular, the authors solve the joint pricing and production technology selection problem faced by a manufacturer that considers introducing a remanufacturable product in a market that consists of heterogeneous consumers. The objective is to understand the market and technology drivers of product remanufacturability. They show that high production costs of the single-use product, low remanufacturing costs, and low incremental costs to make a single-use product remanufacturable are the key technology drivers. The more consumers are concentrated on the lower end of the market, the lower the remanufacturing potential.

While these papers provide a much-needed impetus to research in this domain, many issues remain to be examined. First, we need to identify and critically examine the firm’s incentives to invest in product durability in relation to the life-cycle environmental impact of products. Second, more research is needed in designing, pricing and promoting products with specific environmental attributes—such as lowering emissions, reducing amount of waste

generated/disposed, and increasing energy efficiency—in much the same way as marketing literature has studied other attributes. Consumer valuation of environmental attributes of products, willingness to pay for new versus remanufactured products, advertising and promotion strategies for ‘green’ products, sales force compensation and incentives, integration of forward and reverse channels, product line design decisions are all issues that can have tremendous implications on theory and practice of SSCM. Further research into these areas is likely to be influential in shaping our understanding of, as well as guiding managerial decisions in, SSCM.

Decisions at functional interfaces

The discussion above summarises strategic aspects of sustainable supply chain management. We now turn to describing specific managerial decisions and trade-offs firms need to understand in order to incorporate sustainability as an integral part of management practice. In keeping with our integrative perspective, we focus primarily on decisions that cross disciplinary boundaries and span the entire value chain.

For SSCM, managing post-use products along with new products has been a primary focus of researchers and practitioners alike. There are several interesting and challenging issues that the literature has tried to address when considering new and remanufactured products over their entire life-cycles. New products diffuse through markets at different rates, different consumers use the products for various lengths of time before discarding or returning the products, and the rate of product use over a certain length of time varies across individuals. All these characteristics make the timing, quality and quantity of returned product streams

variable and unpredictable. This in turn poses challenges for manufacturers in deciding on the pricing of returned products, determining how much to invest in getting better information on returns, and deciding on the type and level of investments to make at the design stage, to make the products more durable or remanufacturable.

Thus, the literature here can broadly be summarised along the following three categories: (i) product design and product life-cycle; (ii) pricing and valuation of returns; and (iii) forecasting, information provision and value of information. We discuss each of these categories below. Product design and product life-cycle

The crucial design decisions firms face include deciding on the durability of products and/or components, and the level of remanufacturability of products, while accounting for the challenges of an unpredictable return stream, consumer preferences between new and remanufactured products, and supply constraints. The following papers investigate some of these issues.

Debo, Toktay, and van Wassenhove (2006) build a model based on the Bass diffusion model to examine the integrated dynamic management of a portfolio of new and remanufactured products that penetrate a market over the product life-cycle. The authors address the issues of cannibalisation, timing of used product returns, volume of product returns, remanufacturability, diffusion rate, and repeat purchase. The timing of product return is modelled using a residence time construct, which is defined as the duration of one use of the product by a customer; residence time is uncertain and exogenously given. Primarily, the paper contributes to the SSCM literature a way to analyse life-cycle dynamics of new and remanufactured products

and investigates the impact of various managerial levers (remanufacturability level, capacity structure and reverse channel responsiveness) on profitability. It also contributes to the diffusion literature by extending the Bass diffusion model to accommodate repeat purchases, substitution behaviour, and an endogenous supply constraint.

Geyer, van Wassenhove, and Atasu (2007) focus on products that have reached the end-of-use phase but still contain significant amounts of value added, such as components that can be reused for manufacturing products with original functionality. In this regard, the authors model the cost-savings potential of production systems that collect, remanufacture and remarket end-of-use products as perfect substitutes while facing the constraints of limited component durability and finite product life-cycles. The product characteristics considered in the model are the lifetime of the product, used product collection rates, and the length of end-of-use period. Moreover, they model the limited durability of reusable components by quantifying the characteristic number of times a component can be used for the same kind of product. The results demonstrate the need to carefully coordinate production cost structure, collection rate, product life-cycle, and component durability to create or maximise production cost savings from remanufacturing. The paper contributes to the SSCM literature by investigating the profitability of product remanufacturing under basic supply-loop constraints such as accessibility of end-of-use products (collection rate), technical feasibility of remanufacturing (durability), and market demand for remanufactured products (life-cycle). Pricing and valuation of returns

The second set of issues in managing an unpredictable stream of returned products involves decisions related to valuation and pricing of post-use product returns. Some of the many

供应链管理系统双语英文判断和选择翻译

1) A supply chain includes only the organizations directly involved in supplying components needed for manufacturing.一个供应链仅包括直接参与提供所需的元件制造业的组织。Answer: FALSE 2) A supply chain consists of all parties involved, directly or indirectly, in fulfilling a customer request.Answer: TRUE 供应链由所有各方,直接或间接参与,满足客户要求。 3) A supply chain could be more accurately described as a supply network or supply web. Answer: TRUE 供应链可以更准确地描述为供应网络。 4) The objective of every supply chain is to maximize the overall value generated. TRUE 每一个供应链的目的是生成的整体价值最大化。 5) The objective of every supply chain is to maximize the value generated for the manufacturing component of the supply chain.Answer: FALSE 每一个供应链的目标是最大化为供应链的制造组件生成价值。 6) Every supply chain must include all 5 stages.Answer: FALSE 每个供应链必须包括所有5 个阶段。 7) The cycle view of a supply chain holds that the processes in a supply chain are divided into a series of activities performed at the interface between successive stages.Answer: TRUE 供应链周期认为供应链流程分为一系列的活动上演在连续阶段之间的接口。 8) The cycle view of a supply chain holds that the processes in a supply chain are divided into 2 categories depending on whether they are initiated in response to or in anticipation of customer orders.Answer: FALSE 供应链周期观点认为,在供应链过程可以分为2 个类别,具体取决于他们是否发起回应或预期客户订单。 9) The push/pull view of a supply chain holds that the processes in a supply chain are divided into 2 categories depending on whether they are initiated in response to or in anticipation of customer orders.Answer: TRUE 供应链推/拉认为,在供应链过程可以分为2 个类别,具体取决于他们是否发起回应或预期客户订单。 10) The push/pull view of a supply chain holds that the processes in a supply chain are divided into a series of activities performed at the interface between successive stages. FALSE 供应链推/拉认为在供应链流程分为一系列的活动上演在连续阶段之间的接口。 11) The objective of the customer arrival process is to maximize the conversion of customer arrivals to customer orders.Answer: TRUE 客户到达过程的目标是最大化客户来港定居人士对客户订单的转换。 12) The objective of the customer arrival process is to ensure that orders are quickly and accurately

变速器论文中英文对照资料外文翻译文献

中英文对照外文翻译 汽车变速器设计 我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。因此,我们希望发动机总是在最好的状态下工作。但是,汽车在使用的时候需要有不同的速度,这样就产生了矛盾。这个矛盾要通过变速器来解决。 汽车变速器的作用用一句话概括,就叫做变速变扭,即增速减扭或减速增扭。为什么减速可以增扭,而增速又要减扭呢?设发动机输出的功率不变,功率可以表示为 N = w T,其中w是转动的角速度,T 是扭距。当N固定的时候,w与T是成反比的。所以增速必减扭,减速必增扭。汽车变速器齿轮传动就根据变速变扭的原理,分成各个档位对应不同的传动比,以适应不同的运行状况。 一般的手动变速器内设置输入轴、中间轴和输出轴,又称三轴式,另外还有倒档轴。三轴式是变速器的主体结构,输入轴的转速也就是发动机的转速,输出轴转速则是中间轴与输出轴之间不同齿轮啮合所产生的转速。不同的齿轮啮合就有不同的传动比,也就有了不同的转速。例如郑州日产ZN6481W2G型SUV车手动变速器,它的传动比分别是:1档3.704:1;2档2.202:1;3档1.414:1;4档1:1;5档(超速档)0.802:1。 当汽车启动司机选择1档时,拨叉将1/2档同步器向后接合1档

齿轮并将它锁定输出轴上,动力经输入轴、中间轴和输出轴上的1档齿轮,1档齿轮带动输出轴,输出轴将动力传递到传动轴上(红色箭头)。典型1档变速齿轮传动比是3:1,也就是说输入轴转3圈,输出轴转1圈。 当汽车增速司机选择2档时,拨叉将1/2档同步器与1档分离后接合2档齿轮并锁定输出轴上,动力传递路线相似,所不同的是输出轴上的1档齿轮换成2档齿轮带动输出轴。典型2档变速齿轮传动比是2.2:1,输入轴转2.2圈,输出轴转1圈,比1档转速增加,扭矩降低。 当汽车加油增速司机选择3档时,拨叉使1/2档同步器回到空档位置,又使3/4档同步器移动直至将3档齿轮锁定在输出轴上,使动力可以从轴入轴—中间轴—输出轴上的3档变速齿轮,通过3档变速齿轮带动输出轴。典型3档传动比是1.7:1,输入轴转1.7圈,输出轴转1圈,是进一步的增速。 当汽车加油增速司机选择4档时,拨叉将3/4档同步器脱离3档齿轮直接与输入轴主动齿轮接合,动力直接从输入轴传递到输出轴,此时传动比1:1,即输出轴与输入轴转速一样。由于动力不经中间轴,又称直接档,该档传动比的传动效率最高。汽车多数运行时间都用直接档以达到最好的燃油经济性。 换档时要先进入空档,变速器处于空档时变速齿轮没有锁定在输出轴上,它们不能带动输出轴转动,没有动力输出。 一般汽车手动变速器传动比主要分上述1-4档,通常设计者首先确定最低(1档)与最高(4档)传动比后,中间各档传动比一

(完整版)酒精浓度测试仪设计详解.doc

酒精浓度测试仪设计报告

目录 酒精浓度测试仪设计报告 (1) 一、设计意义 (3) 二、硬件设计 (3) 1、设计框图 (3) 2、乙醇信号检测及调理电路 (4) 3、单片机电路 (7) 4、显示电路 (8) 5、供电及程序下载电路 (9) 三、Protel 硬件开发软件 (10) 1. Protel 软件组成 (10) 2. PCB 板设计 (11) 四、软件编程 (13) 1、软件流程图 (13) 2、主程序 (14) 五、下载与调试 (20) 1、 USB 转串口驱动安装 (20) 2、下载程序 (21) 参考文献 (22) 程序 (22)

一、设计意义 自《刑法修正案 ( 八) 》和修改后的《道路交通安全法》正式实施,“醉酒驾驶”正式入刑。不仅交警部门,而且很多车主都期盼能够有便携仪器方便地测量气体酒精浓度,为安全驾驶提供保障,有效减少重大交通事故的发生。 本研究设计的酒精浓度测试仪是一款实用性强、安全可靠的气体乙醇浓度检测工具,采用高精度 MQ-3乙醇气体传感器对空气中的乙醇浓度进行检测,利用宏晶公司高性能低成本单片机 STC89C52对检测信号进行 A/D 转换和处理,最后通过液晶屏显示输出。本研究设计的酒精浓度测试仪还具有醉酒阈值设定功能,可以根据法律法规或用户需要设定修改醉酒阈值,并进行保存。 二、硬件设计 1、设计框图 本研究设计的酒精浓度测试仪框图如图1 所示。MQ-3 乙醇气体传感器输出信号经信号调理电路处理,输出随乙醇浓度变化的电压信号,该电压信号送入单片机系统,经 AD 转换,与设定的醉酒阈值进行比较,并显示或报警。

计算机网络新技术外文翻译文献

计算机网络新技术外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 计算机网络新技术 摘要 21世纪是一个信息时代的经济,计算机网络技术是这个时期的代表技术,以非常快的、具创造性得不断地发展,并将深入到人民群众的工作,生活和学习中。因此,控制这种技术看起来似乎具有很重要的意义。现在,我主要是采用新技术的几种网络技术在现实生活的应用。 关键字 因特网数字证书数字银包网格存储 3G

1.前言 互联网满36岁,仍然是一个进展中的工作。36年后在加州大学洛杉矶分校的计算机科学家使用15英尺的灰色电缆连接两台笨重的电脑,测试了一种在网络上新的数据交换的方式,这将最终成为互联网依然是一个在取得进展的工作。 大学的研究人员正在试验如何提高网络容量和速度。编程人员正在设法为网页注入更多的智能。并正在进行重新设计网络以减少垃圾邮件(垃圾邮件)和安全麻烦的工作。 与此同时威胁织机:批评人士警告说,商业,法律和政治压力可能会阻碍一些使互联网发展到今天的创新的类型。 斯蒂芬克罗克和温顿瑟夫属于1969年9月2日研究生加入的加州大学洛杉矶分校斯莱昂兰罗克教授工程实验室的团体,作为位无意义的测试数据两台计算机之间默默流动。到第二年的1月,其他三个“节点”加入到了这个网络。 然后是电子邮箱,几年之后,在七十年代后期一个所谓的核心通信协议即TCP / IP 协议,在80年代域名系统和在1990年万维网-现在的第二个最流行的应用背后电子邮件出现了。互联网的扩大,超出其最初的军事和教育领域延伸到了企业和全球的家庭中。 今天,克罗克仍然为互联网工作,为协作设计更好的工具。作为互联网管理机构的安全委员会主席,他正试图保卫系统的核心处理免受来自外部的威胁。 他认识到,他帮助建立的互联网工作远未完成,而这些改变是在商店,以满足多媒体日益增长的需求。网络供应商现唯一的“最佳努力”是在提供的数据包上。克罗克说,需要有更好的保障,以防止跳过和过滤现在常见的视频。 瑟夫,现在在MCI公司说,他希望他建立了有内置安全的互联网。微软,雅虎和美国在线公司,和其他的一些,目前正在努力改进网络,使邮件发送者可以验证的方式发送以降低使用虚假地址发送垃圾邮件。 瑟夫说,现在正在制定许多功能,是不可能立即解决计算速度慢和互联网管道窄,或

供应商质量管理文献翻译(外文翻译-中英对照)

互利共赢的供应商质量控制 前言 近年来,随着对供应链的重视,供应商管理正逐渐成为企业和学术界的关注对象,IS09000族标准以及QS 9000标准都对供应商的管理提出了相应的要求,与供应商管理有关的研究成果正逐渐增多,一些软件巨头也推出了供应商关系管理的软件,但是在这些研究成果和应用软件中,涉及到的供应商质量控制的内容只是一些最基本的要求,而供应商质量控制恰恰是供应商管理的最基本、最重要的内容。另一方而,质量管理界对质量控制的研究取得了大量的成果,遗憾的是这些成果大多依然局限于企业的内部控制,仅仅研究从企业内部各环节如何改善产品的质量,而基于供应链的角度来研究质量控制的成果尚不多见。因此,系统地研究经济全球化形势下供应商质量控制的理论与方法,将有助于推动我国企业产品质量的快速提高和供应链竞争优势的形成与巩固。 1、质量与企业共存 质量一直是一个随着时代的变化而不断变化的概念,人们对质量的认识也往往因关注点不同而有所不同。如,早在1908年,通用汽车公司的工程师们在皇家汽车俱乐部会员们的面前拆解了3辆凯迪拉克轿车,并把这些零件混在一起,而后从中选择零件重新组装成车,然后驾车绝尘而去。这令在场的会员极为震惊,认为凯迪拉克车质量之高令人惊叹。显然在当时,汽车零件具有互换性是一种了不起的质量特性,这也是福特公司的N型车和T型车取得辉煌成功的重要原因.时至今日,即使农用三轮车的零部件也具有极高的互换性,零部件的标准化和互换性已经是理所当然的事情,不再是吸引顾客的重要质量特性.可见质量的内涵是不断变化的.那么究竟什么是质量呢? (1)市场竟争就是企业间对“顾客”的争夺,在日益激烈的“顾客"争夺战中,质量、价格、交付(交付日期、方式和手段)和服务是企业常用的四个法宝,其中质量是根本,离开质量其他三项将变得毫无意义,因此可以说质量己成为市场竞争的焦点.它反映了产品是否能够反映顾客需求、能否满足顾客需求,从面决定了产品的市场前途。有鉴于此,质量己成为一项全球性运动,世界上所有优秀企业无一不把质量作为企业战略的关键内容,从战略的角度来规划质量。 (2)对于企业经营者来说,认识到质量对企业的重要意义只是经营企业的第一步,重要的是如何利用科学的方法来保证产品和服务的质量,使顾客满意,来保证过程和工作的质量来获互利共炭的供应商质量控制得良好的业绩。 众所周知,企业管理是社会生产力发展到一定程度的历史产物,质量管理作为企业管理的组成部分,同样也是社会发展的客观要求,特别是顾客处于主导地位的今天,要使顾客满意,就必须有过硬的产品质量和服务质量,这就要求企业积极推行先进的质量管理理论与方法,不断进行质量管理创新. 2、企业与供应商质量控制 随着生产社会化的不断发展,企业的生产活动分工越来越细,专业化程度越来越强,促使生产技术水平越来越高,产品质量得到大幅度改善。通常,某一产品不可能由一个企业从最初的原材料开始加工直至形成顾客最终使用的产品,往往是通过多个企业分工协作来完成.另外,先进生产方式的广泛应用,如准时生产、敏捷制造、零库存等,使企业与供应商的关系愈加紧密,企业与供应商的关系也由单纯的买卖关系向互利共底的合作关系演变。 ISO 9000族标准自1987年诞生以来受到了世界各国的一致追捧,全球约50多万家企业通过ISO9001质量管理体系认证足以说明这套管理标准在引领国际管理潮流方面的巨大成功。在备受企业欢迎的新版标准ISO9000:2000中,互利的供应商关系被作为八项质量管理原则之一,充分体现了供应商关系管理在企业经营实践中的作用和价值。企业要贯彻这一原则,就必须

机械毕业设计英文外文翻译436手动变速器 (2)

附录 附录A. Manual Transmission It’s no secret that cars with manual transmissions are usually more fun to drive than the automatic-equipped counterparts. If you have even a passing interest in the act of driving, then chances are you also appreciate a fine-shifting manual gearbox. But how does a manual transmission actually work? A history hows that manual transmissions preceded automatics by several decades. In fact,up until General Motors offered an automatic in 1938, all cars were of the shift-it-yourself variety. While it’s logical for many types of today’s vehicles to be equipped with an automatic――such as a full-size sedan, SUV or pickup――the fact remains that nothing is more of a thrill to drive than a tautly suspended sport sedan, snort coupe or two-sealer equipped with a precise-shifting five-or six-speed gearbox. We know whicn types or cars have manual trannies. Now let’s take a look at how they work. From the most basic four-speed manual in a car from the’60s to the most high-tech six-speed one in a car of today, the principles of a manual gearbox are the same. The driver must shift from gear to gear. Normally, a manual transmission bolts to a clutch housing (or bell housing), in turn, bolts to the back of the engine. If the vehicle has front-wheel drive,

酒精测试仪使用说明

班级:电气12-1班 撰写人:汪常斌组别:2 小组成员:吴建州、汪常斌、张曦、 肖春华、鲍学峰、庄洋洋、 陈建中、高赞、常宇辉

目录 1、概述 2、产品实物图及模块介绍 3、主要技术指标 4、产品特色 5、操作使用说明 6、使用注意事项

1、概述 此酒精测试仪是专用于测试人体呼出气体中酒精含量的仪器。本机敏感元件采用表面电阻控制型气敏传感器MQ-3,该气体传感器的敏感材料是活性很高的金属氧化物半导体,最常用的如SnO2。金属氧化物半导体在空气中被加热到一定温度时,氧原子被吸附在带负电荷的半导体表面,半导体表面的电子会被转移到吸附氧上,氧原子就变成了氧负离子,同时在半导体表面形成一个正的空间电荷层,导致表面势垒升高,从而阻碍电子流动,电阻较大。当N型半导体的表面在高温下遇到离解能力较小(易失去电子)的还原性气体时,气体分子中的电子将向气敏电阻表面转移,使气敏电阻中的自由电子浓度增加,电阻率降低,电阻减小。其应用于家庭、工厂、商业场所的气体泄漏监测装置、防火/安全探测系统、气体泄漏报警器、气体检漏仪。 2、产品实物图及模块介绍

3、主要技术指标 4、产品特色 ⑴本产品安装的MQ-3传感器对抽烟、饮料等不反应。 ⑵本产品误差率小,对比试验中充分体现了高浓度测量时的稳定性和正确性。 ⑶本产品操作简单,体积小巧轻便,方便携带和使用,适用于不同的工作场合。 ⑷响应、恢复迅速,检测快捷方便。 ⑸预热时间短,基本可达到即插即用的效果。 ⑹价格便宜,易被接受。 ⑺现象明显,一目了然 ⑻报警浓度可调,适合各种场合 5、操作使用说明 插上电源后,通过调整电位器调节报警浓度,经过1~2分钟的预热后,对这仪器的吹气口吹气,观察现象,当浓度逐渐增高时,LED

计算机网络体系结构外文翻译

附录A With the new network technology and application of the continuous rapid development of the computer network should. Use of becoming increasingly widespread, the role played by the increasingly important computer networks and human. More inseparable from the lives of the community's reliance on them will keep growing. In order for computers to communicate, they must speak the same language or protocol. In the early days of networking, networks were disorganized in many ways. Companies developed proprietary network technologies that had great difficulties in exchanging information with other or existing technologies; so network interconnections were very hard to build. To solve this problem, the International Organization for Standardization(ISO)created a network model that helps vendors to create networks compatible with each other. Finding the best software is not easy. A better understanding of what you need and asking the right questions makes it easier. The software should be capable of handling challenges specific to your company. If you operate multiple distribution centers, it may be beneficial to create routes with product originating from more than one depot. Few software providers though, are capable of optimizing routes using multiple depots. The provider should be able to support installation of its product. Make sure to clearly understand what training and software maintenance is offered. Obviously, selecting the right routing/scheduling software is critically important. Unfortunately, some companies are using software that may not be best suited to their operation. Logistics actives with responsibility for approving the software ought to be comfortable they've made the right decision. It is important to realize that not all routing/scheduling software is alike! There questions to ask are:Which operating system is used?How easy is the software to use?Here is a good way to tell. Ask if its graphical user interface(GUI)is flexible. Find out about installation speed - how long does it take?Is the software able to route third party customers with your core business?When was the software originally released and when was it last upgraded? In 1984, ISO released the Open Systems Interconnection(OSI)reference model,

农产品供应链管理-外文翻译

外文翻译 原文 Supply chain management for agricultural products Resource: MBA (IT), IIIT Allahabad Pulastya Roy Agriculture is a significant sector of most of the economy of world. Agriculture derives its importance from the fact that it provides any a country self reliance in terms of food for their people, providing huge direct and indirect employment and more over huge revenue by export of surplus food grain. Agriculture is backbone of the economy and infrastructure for many countries like India, Brazil and others. Due to technical advancement, improved irrigation system and several other reasons production in agriculture has increased several folds. To meet this increased production and business in agriculture sector an equally reliable supply chain support is imperative. Supply chain is basically-“a set of processes functioning synergistically to satisfy a customer’s demand”. Any supply chain trades off between two main attributes of supply chain, “Efficiency and Responsiveness”. Any supply chain is adopted or designed keeping only this two attributes in mind because it defines about which kind of customer the supply chain wants to cater and what is the scale of “return on investment” is being planned for. Agricultural industry uses bo th kind of supply chain as per the need. Designing supply chain for agricultural products: Most of the produce in agriculture can not be sold directly; as per their mode of consumption they can be categorized as follows.There are some products which are not highly perishable like cereals but needed to be processed like- rice is polished, and wheat has to be husked.Some products are highly perishable so they must be sent to market very fast or otherwise needed to be processed and packaged well. For designing a supply chain for any Agriculture product, it’s important to know which kind of agriculture products is that, and accordingly a responsive or efficient supply chain is designed. Supply chain for non perishable items: Most all the cereals like Wheat, Rice, Maize etc. and some vegetables like

二轴式手动变速器外文翻译

外文翻译 文章出处《Tribology International》, 2009, 42(5):714-723 译文: 有限元热分析的陶瓷离合器 1 引言 磨料空转车辆离合器是力封闭联轴器。扭矩和高速传输被压紧表面之间产生的摩擦力所保证。应用陶瓷是因为它作为摩擦介质具有好耐热和耐磨损性能,提供了机会以驱动更高的压力,以及一个低的密度。因此,一个提功率密度启用了一个平行的最小化建筑空间。 测量使用陶瓷饰面离合器盘的第一个原型在卡尔斯鲁厄大学的一个实验室专门从事客车驱动系统进行了测试执行。在分析过程中的有限元(FE)模型是将与测量数据和测量条件的知识所构成。计算的目的是要确定在离合器盘上温度的分布以及环境中的在每一时刻的及时测量目。至关重要的是熟悉的温度范围,为了检验该系统的耐磨特性。因此,重要信息从测量数据中得出。在临界负载的情况下,预计最高温度必须在时间和空间上进行预测,为保护接近发热体的位置测量工具的。 本研究的目的是分析和修改该离合器系统通过改进,以提供更好的工作条件热传导和系统或增加转化成摩擦热的能量的对流。此外,人们希望找到更有效的更好的离合器系统设计方案。 计算是由宇宙星空的设计的软件进行的。在模型开发阶段,非常谨慎,必须采取几何元素,选择适当的简化尺寸,并且由于正确调整的时间步长大量的硬件要求瞬态计算。热物性参数的改变,如表面热对流化系数和热负荷,必须考虑到到在一个持续的基础上在时间和地点方面。离合器系统的分析测试这两方面,只能通过加热隔板连接的两个独立的模型来管理,根据该假说认为,接触温度必须是在两个相同的双方,同时他们要有适当接触,其价值需通过迭代来进行调整。计算显示,该热分区按周期变化,它沿不同的内,外接触环。在不同的冷却特性下,在陶瓷和钢之间的结果是不同的,热流从陶瓷侧面向钢侧流动。此热流也通过迭代确定;它的价值也改变了周期和不同沿着所述内和外接触环。 2 采用工程陶瓷作为摩擦材料的第一个原型机 这款检查过的离合器盘是根据“特定的陶瓷”产品而开发的,此材料的研发过程在流程在卡尔斯鲁厄大学的Institute for Product Development (IPEK)杂志上发表过。此开发过程已经具有的可能性,用于连接到一个真实的传动轴;甚至,它为面板有一个好的初始行为起到一个很好的缓冲作用。磨料配件必须符合以下基本要求:

计算机网络外文翻译

附录 一、英文原文: The NetWorks Birth of the Net The Internet has had a relatively brief, but explosive history so far. It grew out of an experiment begun in the 1960's by the U.S. Department of Defense. The DoD wanted to create a computer network that would continue to function in the event of a disaster, such as a nuclear war. If part of the network were damaged or destroyed, the rest of the system still had to work. That network was ARPANET, which linked U.S. scientific and academic researchers. It was the forerunner of today's Internet. In 1985, the National Science Foundation (NSF) created NSFNET, a series of networks for research and education communication. Based on ARPANET protocols, the NSFNET created a national backbone service, provided free to any U.S. research and educational institution. At the same time, regional networks were created to link individual institutions with the national backbone service. NSFNET grew rapidly as people discovered its potential, and as new software applications were created to make access easier. Corporations such as Sprint and MCI began to build their own networks, which they linked to NSFNET. As commercial firms and other regional network providers have taken over the operation of the major Internet arteries, NSF has withdrawn from the backbone business. NSF also coordinated a service called InterNIC, which registered all addresses on the Internet so that data could be routed to the right system. This service has now been taken over by Network Solutions, Inc., in cooperation with NSF. How the Web Works The World Wide Web, the graphical portion of the Internet, is the most popular part of the Internet by far. Once you spend time on the Web,you will begin to feel like there is no limit to what you can discover. The Web allows rich and diverse communication by displaying text, graphics, animation, photos, sound and video. So just what is this miraculous creation? The Web physically consists of your personal computer, web browser software, a connection to an Internet service provider, computers called servers that host digital data and routers and switches to direct the flow of information. The Web is known as a client-server system. Your computer is the client; the remote computers that store electronic files are the servers. Here's how it works: Let's say you want to pay a visit to the the Louvre museum website. First you enter the address or URL of the website in your web browser (more about this shortly). Then your browser requests the web page from the web server that hosts the Louvre's site. The Louvre's server sends the data over the Internet to your computer. Your web

供应链管理文献综述

文献综述 供应链管理环境下家电企业第三方物流模式初探 中国目前正在成为世界家电的制造中心,在2000年前后,家电企业的规模效应就已经充分显现,国内市场处于供过于求的状态,企业承受着原材料涨价和价格战的双重压力,生产领域可挖掘的降低企业成本的潜力已不太大而在产品流通环节的竞争中却出现了最后一公里不能到位的情况,严重影响了企业的形象。高磊在《供应链一体化条件下我国家电企业物流管理的研究》一书中认为,随着家电行业价格战愈演愈烈,以及我国加入WTO国内家电生产企业遇到外来产品的冲击,家电业的利润空间持续萎缩。物流管理作为家电企业的第三利润源泉,如何降低其物流成本提高物流服务成为众多企业关注的焦点。 供应链目前尚未形成统一的定义,许多学者从不同的角度出发给出了许多不同的定义。早期的观点认为供应链是制造企业中的一个内部过程,它是指把从企业外部采购的原材料和零部件,通过生产转换和销售等活动,再传递到零售商和用户的一个过程。传统的供应链概念局限于企业的内部操作层上,注重企业自身的资源利用。哈理森(Harrison)将供应链定义为:“供应链是执行采购原材料、将它们转换为中间产品和成品、并且将成品销售到用户的功能网”。“供应链”作为一个引发行业热潮的词出现在1993 年左右, 吴清一在《现代物流概论》书中将供应链定义为:产品生产和流通过程中所涉及的原材料供应商、生产商、批发商、零售商以及最终消费者组成的供需网络,即由物料获取、物料加工、并将成品送到用户手中这一过程所涉及的企业和企业部门组成的一个网络。 “供应链管理”产生于20世纪80年代晚期,20世纪90年代得以广泛传播。Lambert,James Stock,Lisa Ellram在《Fundamentals of Logistics Management》将供应链定义为供应链是那些把产品或服务提供给市场的公司排列。供应链是一个设备和分销选择的网络,它的功能是获取原材料,把这些原材料转变成中间产品和最终产品,并把最终产品传递到顾客手中。 Douglas Lambert,James Stock,Lisa Ellram,在其著作《物流管理》中将供应链管理定义为:从终端用户到提供产品、服务和信息的初始供应商的业务过程的整合,综合考虑了供应链中物资、服务和商品的输入流和输出流,代表一种较新的业务运作方法和对所涉及的业务流程的不同观点,是一种高度互动而且复杂的系统方法,需要同时进行许多权衡。供应链管理是在供应链参与者中进行生产、存货、选址和运输的协调,从而在所服务的市场达到响应和效率的最佳组合,不仅包括传统的物流还包括诸如市场营销、新产品开发、金融和顾客服务等行为。 第三方物流一词是从国外引进的,其英文表达为Thrid Party Logistics,简称3TPL,是20世纪80年代中后期才在欧美发达国家出现的概念,源自业务外包。将业务外包引入物流管理领域就产生了第三方物流的概念。Robert C.Lieb认为,第三方物流指的是用外部公司去完成传统上由组织内部完成的物流功能,这些功能包括全部物流功能或所选择的部分物流功能。David Simchi—Levi等认为,第三方物流就是利用一家外部的公司完成企业全部或部分物料管理和产品配送职能。 美国物流管理协会于2002年10月1日公布的《物流术语词条2002升级版》的解释是:第三方物流是将企业的全部或部分物流运作任务外包给专业公司管理经营,

汽车变速器外文翻译

外文翻译 Auto Transmission First, an overview of automotive transmission and the development trend Automobile available more than a century, especially from the mass production of motor vehicles and the automotive industry since the development of large, Car has been the economic development of the world for mankind to enter the modern life and have had a tremendous impact on the immeasurable, The progress of human society has made indelible contributions to the great, epoch-making set off arevolution. From From the vehicle as a power plant using internal combustion engine to start, auto transmission has become an important component. Is Generation is widely used in automotive reciprocating piston internal combustion engine with a small size, light weight, reliable operation and the use of The advantages of convenience, but its torque and speed range of smaller changes, and complex condition requires the use of motor vehicles Traction and the speed can be considerable changes in the scope. Therefore, its performance and vehicle dynamics and economy of There are large inter-contradictions, which contradictions of modern automotive internal combustion engine by itself is insoluble. Because Here, in the automotive power train set up the transmission and main reducer in order to achieve the purpose of deceleration by moment. Speed The main function of performance: ⑴ change gear ratio of motor vehicles, and expand the wheel drive torque and rotational speed of the Fan Wai, in order to adapt to constantly changing driving cycle, while the engine in the most favorable conditions within the scope of work; ⑵no change in the direction of engine rotation, under the premise of the realization of cars driving back; ⑶the realization of the free, temporary Interruption of power transmission, in order to be able to start the engine, idling, etc.. V ariable-speed drive transmission by the manipulation of institutions and agencies. Change the transmission ratio by way of transmission is divided into There are class-type, non-stage and multi-purpose three. Have class most widely used transmission. It uses gear drive, with a number of transmission ratio setting. Stepless transmission Continuously V ariable Transmission (CVT) transmission ratio of a certain The framework of multi-level changes may be unlimited, there is a common type of power and torque (dynamic fluid-type) and so on. Continuously V ariable Transmission Transmission development is the ultimate goal, because only it can make the most economical engine in working condition Can provide the best vehicle fuel economy and optimal power in order to provide the most comfortable By the feeling. Today's CVT is a typical representative of the CVT

相关主题
文本预览
相关文档 最新文档