第十一章 薄膜生长的成核长大热力学与动力学
- 格式:ppt
- 大小:5.69 MB
- 文档页数:128
第六章薄膜的生长过程射向基板及薄膜表面的原子、分子与表面相碰撞,其中一部分被反射,另一部分在表面上停留。
停留于表面的原子、分子,在自身所带能量及基板温度所对应的能量作用下,发生表面扩散(surface diffusion)及表面迁移(surface migration),一部分再蒸发,脱离表面,一部分落入势能谷底,被表面吸附,即发生凝结过程。
凝结伴随着晶核形成与生长过程,岛形成、合并与生长过程,最后形成连续的膜层。
在真空中制造薄膜时,真空蒸镀需要进行数百摄氏度以上的加热蒸发。
在溅射镀膜时,从靶表面飞出的原子或分子所带的能量,与蒸发原子的相比,还要更高些。
这些气化的原子或分子,一旦到达基板表面,在极短的时间内就会凝结为固体。
也就是说,薄膜沉积伴随着从气相到固相的急冷过程,从结构上看,薄膜中必然会保留大量的缺陷。
此外,薄膜的形态也不是块体的,其厚度与表面尺寸相比相差甚远,可近似为二维结构。
一、薄膜的生长过程:新相的成核与薄膜的生长两个阶段1、成核阶段在薄膜形成的最初阶段,一些气态的原子或分子开始凝聚到衬底上,从而开始了所谓的形核阶段。
由于热涨落的作用,原子到达衬底表面的最初阶段,在衬底上成了均匀细小、而且可以运动的原子团(岛或核)。
当这些岛或核小于临界成核尺寸时,可能会消失也可能长大;而当它大于临界成核尺寸时,就可能接受新的原子而逐渐长大。
2、薄膜生长阶段一旦大于临界核心尺寸的小岛形成,它接受新的原子而逐渐长大,而岛的数目则很快达到饱和。
小岛像液珠一样互相合并而扩大,而空出的衬底表面上又形成了新的岛。
形成与合并的过程不断进行,直到孤立的小岛之间相互连接成片,一些孤立的孔洞也逐渐被后沉积的原子所填充,最后形成薄膜。
二、薄膜生长的三种模式-岛状、层状和层状-岛状生长模式1、岛状生长(V olmer-Weber)模式 :被沉积物质的原子或分子更倾向于自己相互键合起来,而避免与衬底原子键合,即被沉积物质与衬底之间的浸润性较差;金属在非金属衬底上生长大都采取这种模式。
第23卷 第1期物 理 学 进 展Vol.23,No.1 2003年3月PRO GRESS IN PHYSICS Mar.,2003文章编号:1000Ο0542(2003)01Ο0001Ο61薄膜生长中的表面动力学(Ⅰ)王恩哥(中国科学院物理研究所国际量子结构中心,北京 100080)摘 要: 本文较全面地从理论上研究了薄膜生长过程中原子在表面上的各种动力学表现,涉及的内容包括亚单层生长时,原子在表面上的扩散,粘接,成核,以及已经形成的原子岛之间的相互作用,兼并,失稳,退化等一系列过程。
作为研究的基础,在本文的第一部分(即0~6章)中,我们首先介绍了目前这方面理论研究中所主要使用的各种方法。
例如,第一性原理计算,分子动力学模拟,蒙特卡罗模拟,速率方程和过渡态(TST)理论等。
基于这些研究,我们介绍给读者为什么原子成岛时在低温下选择分形状,而在高温时则选择紧致状。
这一过Diffusion-Limited Aggregation,DLA)。
然而当有表面活性剂存在时形核的规律完全相反,(Reaction-LimitedAggregation,RLA)。
这两个理论目前可以很好地解释亚单层生长时的一般形核规律。
接下来我们讨论了长程相互作用对生长初期原子形核的影响,并进一步得出了相应的标度理论。
在第6章我们系统地研究了分了吸附对二维原子岛形状的控制性,从而提出了边Ο角原子扩散的对称破缺模型。
关键词: 表面动力学;薄膜生长;纳米结构;形核理论;原子扩散中图分类号: O48411 文献标识码: A0 引 言随着现代微电子及光电子工业向着集成化和微型化发展的趋势,探索满足特殊需求的材料和器件结构并研究其制备过程、控制条件以及相关的特异量子效应,已经成为当今众多学科交叉研究的热点之一。
特别是为了满足市场需求,器件的尺寸将越做越小。
40年代的真空器件尺寸是几cm大小,60年代的固体器件尺寸是mm大小,80年代超大规模集成电路中的器件尺寸是μm大小,预计二十一世纪的分子/电子器件尺寸将是在nm 量级的。
薄膜生长与制备技术简介一薄膜生长薄膜的生长过程直接影响薄膜的结构以及它的最终性能。
像其他材料的相变一样,薄膜的生长过程也可以划分为两个不同的阶段,即新相的成核与薄膜的生长过程。
1 薄膜气相成核1.1 成核的毛细作用理论这个理论模型是基于热力学概念,利用宏观物理量来讨论成核问题。
这个模型的优点是比较直观,一些物理量容易测量,理论计算和实验结构能直接进行比较。
由于采用宏观物理量,所以对原子数量较多的例子是适用的,而对原子团所含有原子数量少的情况,一些宏观物理参量的含义是不明确的。
1.1.1 自发形核理论自发成核,指的是整个成核过程完全是原子由气相转变为固相或液相的相变自由能推动下形成,也称为均匀成核。
在薄膜与衬底之间浸润性较差的情况下,薄膜的形核过程可以近似地认为是一个自发形核过程。
单位体积的固相在凝结过程中的相变自由能之差:(1)式中,P V和P分别是固相的平衡蒸气压和气相实际的过饱和蒸气压, Ω是原子体积,S是气相的过饱和度;M V和M分别是凝结相的蒸发通量和气相的沉积通量。
当气相存在过饱和现象时,∆G v<0,它就是新相形核的驱动力。
图1 自发形核过程示意图1.1.2非自发形核理论自发成核一般只发生在一些精心控制的过程之中。
在大多数相变过程中,成核的过程除了有相变自由能作推动力之外,还有其他的因素起着帮助新相核心生成的作用,即所谓成核的过程是非自发的。
新相的核心将首先出现在哪些能量比较有利的位置上。
假设在成核过程中,衬底表面的原子可以进行充分的扩散,即其扩散距离远大于原子的间距。
这时形成一个原子团时的自由能变化为:(2)式中,∆G v是单位体积的相变自由能,是薄膜成核的驱动力;γvf、γfs、γsv分别是气相(v)、衬底(s)与薄膜(f)三者之间的界面能。
而a1、a2、a3是与核心具体形状有关的三个常数。
图2 薄膜非自发形核核心的示意图1.1.3 薄膜的成核速率成核速率强烈地依赖与过饱和度。