第九章 地球化学分析方法
- 格式:ppt
- 大小:1.62 MB
- 文档页数:132
地球化学在地质年代学中的应用利用同位素定年方法地球化学在地质年代学中的应用——利用同位素定年方法地质年代学是研究地球历史和地质事件发生的时间顺序的学科。
在过去的几十年里,地球化学已经成为地质年代学中不可或缺的重要工具之一。
地球化学通过分析地球上不同元素的同位素比例,利用同位素定年方法帮助我们理解地质事件的发生时间和持续时间。
本文将介绍地球化学在地质年代学中的应用,并讨论同位素定年方法的原理和几个典型案例。
一、同位素定年方法的原理同位素即具有相同原子序数但不同质量数的元素。
同位素的存在使得我们能够利用其不稳定性进行年代测定。
同位素定年方法基于同位素的衰变速率,通过测量样品中稳定同位素与不稳定同位素的比例,推断样品的年龄。
最常用的同位素定年方法包括放射性同位素衰变法、稳定同位素比例法和同位素年龄比对法。
二、放射性同位素衰变法放射性同位素衰变法利用放射性同位素(例如铀、钾、碳)在时间上的稳定衰变来测定岩石和矿物的年龄。
通过测量样品中稳定同位素与不稳定同位素的比例,计算衰变时间,推算样品的年龄。
这种方法主要适用于岩石、矿物和有机物的年龄确定。
三、稳定同位素比例法稳定同位素比例法使用地球上不同元素的稳定同位素比例来确定地质事件的时间序列。
常用的稳定同位素包括氢、氧、碳和硫。
通过比较不同沉积岩样本中同位素的比例变化,可以确定岩石形成的时间,从而推测地质事件的年代。
该方法适用于古气候研究、古环境变化等领域。
四、同位素年龄比对法同位素年龄比对法是通过将同位素定年方法和地质年代学的基本原理相结合来确定地质事件的时间序列。
该方法基于不同地质事件中形成的岩石或矿物所含同位素的比例差异,通过与已知地质历史事件进行对比,推断地质事件的年代。
这种方法对于比较复杂的地质事件序列的年龄确定非常有用。
五、地球化学在地质年代学中的应用地球化学在地质年代学中发挥着重要的作用。
通过同位素定年方法,我们可以确定各种地质事件的年代,例如地壳运动、火山喷发和陨石撞击等。
地球化学背景值及异常下限确定方法地球化学背景值是指地球表层物质的普遍背景含量或分布特征,它代表了地球自然状态下的正常水平。
异常下限是指地球化学异常的边界或基线,用于识别具有异常地球化学特征的物质。
确定地球化学背景值及异常下限的方法可以分为以下几种。
第一种方法是统计方法。
这种方法通过大量的样品分析数据来确定地球化学背景值及异常下限。
首先需要收集大量的样品数据,包括地球表层物质的各种元素含量数据。
然后对这些数据进行统计分析,例如计算平均值、标准差、分位数等。
通过统计分析可以确定地球化学背景值,它通常是根据样品数据的分布特征来确定的,例如取所有样品数据的中间值作为地球化学背景值。
异常下限可以根据统计分析的结果和专家经验来确定,例如确定一个范围,低于这个范围的数据可以被认为是异常值。
第二种方法是地表地质特征方法。
这种方法通过研究地球表层的地质特征,例如地貌、岩石类型、土壤类型等,来确定地球化学背景值及异常下限。
地球表层的地质特征通常与地球化学特征有一定的关联性,例如其中一种地貌环境下可能富含其中一种元素。
通过研究这些地质特征可以得出地球化学背景值及异常下限的范围,例如其中一种地貌环境下的元素含量可以被认为是正常的,低于或高于这个范围的元素含量可以被认为是异常的。
第三种方法是参照国内外标准方法。
许多国家和地区都有地球化学调查和研究的标准方法,例如美国地质调查局的“地球化学参考样品和数据计划”(Geochemical Reference Samples and Data)和欧洲的“Geochemical Atlas of Europe”等。
这些标准方法提供了丰富的样品数据和分析结果,可以作为确定地球化学背景值及异常下限的参考。
通过比对本地区样品数据和国际标准数据,可以确定地球化学背景值及异常下限的范围。
确定地球化学背景值及异常下限是地球化学调查和研究的基础工作,它对于判别地球化学异常、环境污染、资源勘查等方面具有重要意义。
勘查地球化学
勘查地球化学是指通过对矿床、岩石以及水土样品进行化学分析
和测试,发现其中的矿物元素、有机物、无机盐等成分,从而为资源
勘查提供重要的数据与参考。
下面针对勘查地球化学的几个步骤进行
分析。
1、采样:采样是勘查地球化学的关键步骤。
采样必须在严格的
质量控制下进行,在采样过程中应当对样品的来源、位置、深度、外形、色泽、纹理进行记录,以保证采集的样品符合要求。
采样后应当
进行标记,并尽快送到实验室进行分析。
2、制样:制样也是勘查地球化学的一个重要步骤。
制样的方法
多种多样,一般需要将样品打碎、研磨、均化,以获得适当的试样。
制样过程中要谨防样品中的有机物和水分的损失,避免其对结果的影响。
3、检验:检验是勘查地球化学的核心步骤,有选择地测定关键
元素或组分,并采用准确、稳定、灵敏的分析方法进行测定。
常用的
检验方法有火焰原子吸收光谱、电感耦合等离子体质谱、离子色谱等。
对于复杂的样品,还需采用电子显微镜、X射线衍射等检验手段进行分析。
4、评估:评估是勘查地球化学的最终目的,通过分析结果评估
矿产资源的含量、品位、分布规律等特点,为后续的勘探、开发提供
科学依据。
评估过程中应当考虑样品的地质背景和成因,以避免对勘
探和开发产生不利影响。
总之,勘查地球化学是非常重要的一项工作,有利于推动矿产资
源的科学开发和利用。
在勘查地球化学的整个过程中,采样、制样、
检验、评估都十分重要,需要在严格的质量控制下进行,以获得准确、可靠的结果。
地球化学的定义:地球化学是研究地球及其他自然作用体系的化学组成化学作用和化学演化科学. 地球化学研究的基本问题:1.研究地球和地质体中元素及其同位素的组成。
(1)丰度问题:元素在地球及各层圈(壳、幔、核)中平均含量(2)元素的分布和分配问题:元素及其同位素含量在不同地质构造单元、岩石、矿物和矿床中的变化2.研究元素共生组合和赋存形式3.研究元素的迁移4.元素迁移历史与地球演化地球化学的学科特点:是地球科学的分支,是地质学和化学相结合的一门学科:研究地球及其他自然体系作用最后得出自然作用的认识:化学组成,化学科学和化学演化的科学。
地球化学研究方法:采用类比和反序方法:先野外(样品采集,结构观察)后室内(实验模拟自然条件,元素测定):地球化学数据分析。
行星分为两类:接近太阳的较小内行星-水星,金星,地球,火星-类地行星;远离太阳大的外行星-木星,土星,天王星,海王星-类木行星。
!太阳系中元素的丰度特征是什么?1.最丰富的元素H和He,H/He比值为12.5。
2.原子序数较低(Z<50)的轻元素,随原子序数增加丰度呈指数递,较重元素(Z>50)不仅丰度低,且丰度值几乎不变,即丰度曲线近乎水平.3.原子序数为偶数元素的丰度值大大高于原子序数为奇数的相邻元素。
4.与H e相邻L i,B e,B丰度很低,按轻元素的丰度水平它们是非常亏损的元素。
O,F e呈现明显峰值,它们是过剩元素。
5.T c和P m没有稳定同位素,在太阳系中不存在。
Z>83(B i)的元素也没有稳定同位素,它们都是T h和U的长寿命放射成因同位素。
质量数为4倍数的核素或同位素有较高丰度.如4He,16O,40Ca,56Fe,140Ce等。
!解释CL型球粒陨石常用做标准化的原因:CL型碳质球类陨石是其中最原始的,的非挥发性元素的丰度几乎与太阳中观察到的元素丰度完全一致。
!一般根据其中的金属含量,先将陨石划分为四种主要类型:球粒陨石约含10%金属;无球粒陨石约含1%金属;铁陨石金属含量>90%;石铁陨石约含50%金属。
用计算法确定地球化学背景值及异常下限值的一些认识地球化学背景值和异常下限值是确定地球化学数据(如元素、同位素、矿物成分等)在特定地区或区域中的参考水平和异常程度的重要依据。
通过准确、科学地确定这些值,可以更好地了解地质体的特征和演化过程,为地质勘探、矿产资源开发、环境保护等提供科学依据。
一、地球化学背景值的确定地球化学背景值是指在其中一地区或区域内,特定物质的浓度或含量的平均水平。
确定地球化学背景值的步骤通常包括以下几个方面:1.收集样品:收集具有代表性的地球化学样品,例如土壤、水体、岩矿、植物等。
样品的选择应该根据所研究的地质背景、地貌类型、地球化学特征等因素进行科学确定。
2.分析样品:对采集的地球化学样品进行实验室分析,测量样品中感兴趣元素或化合物的浓度或含量。
常用的分析方法包括原子吸收光谱法、质谱法、电感耦合等离子体发射光谱法等。
3.数据处理:对得到的分析数据进行标准化处理,比如排除明显异常值、进行数据加权、样品稀释等。
可以使用地质统计学的方法,如均值、中位值、方差、协方差等进行数据处理。
4.制定地球化学背景值:根据所得到的标准化数据,结合地质特征、地貌分布、岩石类型和地球化学异常的特点,确定具体的地球化学背景值。
这个过程需要综合考虑样品的数量、采集方法、标准化处理等多个因素,确保背景值的可靠性和科学性。
二、地球化学异常下限值的确定地球化学异常下限值是在地球化学背景值的基础上确定的最低异常值,用于评价地球化学数据是否存在异常现象。
确定地球化学异常下限值的步骤如下:1.选择异常处理方法:根据所研究的地质背景、地貌类型、地球化学特征等因素,选择适合的异常处理方法。
常用的异常处理方法包括等级判别法、离群值分析法、空间统计法等。
2.处理异常值:对采集的地球化学样品中的异常值进行排除或修正。
排除异常值的方法通常包括删除异常值数据样本、使用替代值代替异常数据等。
3.确定异常下限值:根据排除或修正之后的数据样本,再次进行数据处理,得到修正后的数据分布。
FHZDZDQHX0001 地球化学调查样品分析F-HZ-DZ-DQHX-0001地球化学调查样品分析地球化学是研究化学元素在矿物、岩石、土壤、水和大气圈中的分布和含量以及这些元素在自然界的转移规律。
勘查地球化学是地球化学在地质找矿工作中的具体运用,目前地球化学调查已成为地质勘查的重要组成部分。
地球化学调查主要采用岩石、土壤、水系沉积物、水化学、生物(植被)、气体等地球化学调查方法,当前广泛应用的是岩石、土壤和水系沉积物三种地球化学调查方法。
我国属于发展中国家,除内地和沿海地区外,地质工作程度较低。
内地和沿海地区除冲积平原和黄土覆盖区外,一般水系较发育,因此采用水系沉积物调查方法,可以低成本、高效率地扫视大面积范围内元素地球化学分布情况,从而发现潜在的矿化异常,取得区域地球化学填图和地质勘查效果。
边远地区由于地质条件较复杂,常根据不同地球化学景观,综合应用相适应的地球化学调查方法。
结合我国的实际情况,为便于资料对比和元素地球化学拼图,常使用水系沉积物为主,岩石和土壤为辅的地球化学调查方法。
我国勘查地球化学调查工作,五十年代开始以土壤的1/20万金属量测量方式开展,由于剖面间距大(2km),对矿床的遥测能力差,而且元素受雨淋流失严重,再加上当时分析技术水平不高,因此难以取得良好效果。
1978年地质矿产部确定在全国开展水系沉积物的1/20万区域地球化学调查(区域化探扫面),由于水系沉积物采样点的均匀布置及其形成特征,调查方式较能适应地质和表生环境条件的变化,可反映上游汇水盆地中元素的平均含量,再加上分析化学技术的进步,元素分析方法的检出限、精密度和准确度有较大提高,因此地质效果较显著,特别是包含潜水的运移,对寻找隐伏矿体有明显效果。
在1/20万区域地球化学调查基础上,全国发现了大量的元素地球化学异常,通过筛选,选择有利地段开展1/5万区域地球化学调查(普查化探),缩小靶区,对异常进行验证和检查,直接取得地质找矿效果。
环境地球化学中的微量元素分析方法在环境地球化学研究领域,微量元素的分析方法是非常重要的,因为微量元素的存在与分布直接影响着环境的地球化学过程和生态系统的健康状况。
为了准确测量和理解微量元素的含量和行为,科学家们开发了各种分析方法。
本文将介绍几种常用的微量元素分析方法。
一、光谱分析法光谱分析法是一种常见且广泛应用的微量元素分析方法。
它利用物质吸收或发射特定波长的光来测量元素的含量。
常用的光谱分析方法包括原子吸收光谱法(AAS)、原子荧光光谱法(AFS)、电感耦合等离子体发射光谱法(ICP-OES)和电感耦合等离子体质谱法(ICP-MS)等。
这些方法具有快速、灵敏和准确的特点,能够同时测定多种元素。
二、电化学分析法电化学分析法是一种通过测量电流、电位和电荷等物理化学性质来确定微量元素含量的分析方法。
常用的电化学分析方法有极谱法、电导法、电解沉积法和电感耦合等离子体质谱法(ICP-MS)等。
这些方法对于测定微量元素的含量和形态非常有效,尤其在环境样品中存在着极低浓度的元素时更为重要。
三、分离富集分析法分离富集分析法是一种通过样品前处理将微量元素与其他成分分离并富集后再进行测定的分析方法。
常用的分离富集方法包括离子交换、固相萃取和气相色谱等。
这些方法对于含有较高浓度的干扰物的样品进行微量元素分析非常有用,能够提高分析的准确性和灵敏度。
四、同位素分析法同位素分析法是一种通过测量元素同位素的相对含量来研究微量元素在环境中的循环和变化的方法。
同位素分析法常用的技术包括同位素质谱法(IRMS)和同位素稀释法等。
这些方法能够区分不同来源的微量元素,并揭示其地球化学过程和生物地球化学循环的机制。
五、分子生物学技术随着生物技术的发展,分子生物学技术在环境地球化学研究中也得到了广泛应用。
例如,基于DNA、RNA或蛋白质的分子生物学技术能够检测和定量特定微生物和植物物种对微量元素的吸收和转化。
这些技术可以提供微生物和植物在环境地球化学中的作用和响应机制。
地球化学与地球表层过程研究地表的化学风化和土壤成因地球化学与地球表层过程研究是地球科学领域的一个重要分支,它主要关注地球表层的化学过程和地球化学循环。
其中,地表的化学风化和土壤成因是地球化学与地球表层过程研究的重点内容之一。
一、化学风化的概念和机制化学风化是指岩石和土壤中矿物质与水和大气中的化学物质发生反应而产生的变化过程。
它是地球表层中最主要的岩石破坏方式之一,具有不可忽视的地质意义。
化学风化的机制主要包括以下几种:1. 溶解作用:在地球化学循环中,水是至关重要的因素之一。
当水中溶解了大量溶解性的化学物质时,它们会与矿物质反应形成新的化合物,从而导致岩石的分解和溶解。
2. 氧化还原作用:氧化还原反应是指物质在电子转移的过程中发生的化学反应。
在地球表层环境中,氧化还原反应被广泛应用于矿物质的变化和矿物成因的研究中。
3. 酸碱作用:土壤和水中的酸碱性物质可以对矿物质产生明显的溶解和交换作用。
这种酸碱反应会导致矿物质的溶解、沉淀和转化。
二、土壤成因的研究方法和意义土壤成因是指土壤形成的过程和机制。
通过研究土壤成因,可以深入了解土壤发育的规律和土壤的特性。
土壤成因的研究方法主要有以下几种:1. 土壤剖面观测:通过对土壤剖面的观测和采样,可以得到土壤的层次结构、成分和性质等信息。
这些信息对于揭示土壤的形成机制和过程具有重要意义。
2. 土壤样品分析:通过对土壤样品进行化学分析和物理性质测试,可以得到土壤的化学组成、物理特性和养分含量等信息。
这些数据对于研究土壤成因和土壤质量评价具有重要作用。
3. 土壤模型模拟:利用现代数学和计算机技术,可以建立土壤模型对土壤成因进行模拟和预测。
这种方法可以在一定程度上弥补实地观测的不足,对于理解土壤形成的机制和过程有着重要的帮助。
土壤成因的研究对于农业、生态环境和自然资源的管理具有重要意义。
通过深入了解土壤成因,可以提高农田土壤的肥力和生产力,改善生态环境的质量,优化土地资源的利用。
地球科学研究的方法和技术地球科学研究的方法和技术地球科学是一门研究地球上各种自然现象和地球内外相互联系的学科。
为了深入了解地球的构造、气候、地质等各个方面,科学家们利用多种方法和技术展开研究。
本文将介绍地球科学研究中常用的几种方法和技术。
一、地质勘探技术地质勘探技术是地球科学研究中的基础。
通过对地球表层和地下结构进行勘探,科学家可以了解地球的地质特征和地貌变化。
地质勘探技术包括测量地球表面的地形和地貌,探测地下水域、矿产资源等。
常用的地质勘探技术有地震勘探、电磁勘探和重力勘探等。
地震勘探利用地震波在地球内部传播的特性,通过观测地震波在地壳中的传播速度、衰减程度等信息,推断地壳的内部结构和岩石类型。
这种方法在勘探石油、天然气等地下资源方面有很大应用。
电磁勘探利用电磁波在地下介质中的传播规律,测量介质对电磁波的响应,从而推断出地下的物质性质和构造情况。
这种方法在勘探地下水资源和矿产资源方面有广泛应用。
重力勘探是利用物体之间的引力作用,在地表或近地表测量重力场的变化,从而推断出地下不同密度物质的分布情况。
这种方法通常用于研究地下岩石构造和地球内部密度分布。
二、遥感技术遥感技术是一种通过对地球表面进行远距离观测和测量的方法。
科学家利用卫星、飞机等载体携带遥感设备,对地球表面的物理特性进行探测和记录。
这种方法可以获取大量的地理信息和图像数据,用于研究气候、地貌、植被覆盖等信息。
遥感技术常用的设备包括多光谱传感器和雷达传感器。
多光谱传感器可以记录地表不同波段的反射和辐射信息,从而获取地表特征和物质成分。
雷达传感器则利用雷达波在地表和地下的反射和散射特性,获取地表地下信息。
三、地球化学分析技术地球化学分析技术是通过对地球样品中的物质成分进行定量分析,了解地球的矿物成分、物质循环等信息。
常用的地球化学分析技术有原子吸收光谱、质谱分析和同位素分析等。
原子吸收光谱是通过测量材料中原子在吸收特定波长的光时产生的吸光度,推断出物质中特定元素的含量。