单相正弦波逆变电源
- 格式:doc
- 大小:1.64 MB
- 文档页数:43
单相逆变电路工作原理单相逆变电路是一种将直流电转换为交流电的电子设备,它具有广泛的应用领域,包括变频调速、UPS(不间断电源)、电力电子变换器等。
本文将详细介绍单相逆变电路的工作原理、结构组成、应用领域和未来发展趋势。
一、单相逆变电路的工作原理单相逆变电路通过对直流电进行逆变,将其转换为一定频率和幅值的交流电输出。
其工作原理可以简单概括为:首先通过整流电路将输入的直流电转换为脉冲电流,然后再通过滤波电路将脉冲电流转换为近似正弦波交流电。
为了更好地理解单相逆变电路的工作原理,下面将详细介绍其结构组成和工作步骤。
1. 结构组成单相逆变电路通常包括以下组成部分:- 输入电源:提供直流电源输入,可以是电池、整流器等;- 整流电路:将输入的直流电转换为脉冲电流;- 滤波电路:将脉冲电流滤波成近似正弦波的交流电;- 控制电路:根据需要对工作状态进行控制,如PWM控制、开关控制等。
2. 工作步骤单相逆变电路的工作步骤如下:Step 1:输入直流电源:输入直流电源通过输入电源端口进入逆变电路。
Step 2:整流电路:直流电源经过整流电路,被转换为脉冲电流。
Step 3:滤波电路:脉冲电流经过滤波电路,被平滑成近似正弦波的交流电。
Step 4:输出交流电源:最终,近似正弦波的交流电被输出到负载端,完成了直流到交流的逆变转换。
这就是单相逆变电路的基本工作原理,通过整流和滤波的过程,实现了从直流到交流电源的转换。
下面将介绍单相逆变电路的应用领域和未来发展趋势。
二、单相逆变电路的应用领域单相逆变电路具有广泛的应用领域,主要包括以下几个方面:1. 变频调速:单相逆变电路可将直流电源转换为可变频率的交流电源,用于驱动异步电动机实现变频调速,如在风力发电机、泵和风扇等设备中得到广泛应用。
2. 不间断电源(UPS):单相逆变电路可以将电池的直流电源逆变成交流电源,用于提供停电或电网故障时的应急电力供应,保障负载设备的正常运行。
关于制作单相正弦波变频稳压电源的方案
设计并制作一个单相正弦波变频稳压电源。
电源框图如图所示。
1.基本要求
(1)输出电压波形应尽量接近正弦波,用示波器观察无明显失真;
(2)输出频率范围为20~100Hz,电压有效值为10~18V的正弦交流电;
(3)当输入电压为198~242V,负载电流有效值为0.5~1A时,输出电压有效值应保持在15V,误差小于5%:
(4)具有过流保护,输出电流有效值达2A时动作(5)DC—AC逆变器效率.n≥70%。
2.发挥部分
(1)当输入电压为198—242V,负载电流有效值为0.5~1A时,输出电压有效值应保持在15V,误差小于1%;
(2)设计制作具有测量、显示该变频稳压电源输出电压、电流、频率和功率的电路,测量误差小于5%。
3.说明
(1)不能使用产生SPWM(正弦波脉宽调制)波形的专用芯片;(2)输出功率可通过电流、电压的测量值计算。
经过论证,在多种方案可供选择的情况下,我们选择了如下方案:
①隔离变压器:选择功率为200W、二次侧可提供50V、15V、15V三组交流电压。
②单相整流电路:选用单相半控整流电路如下图所示。
该电路控制灵活,输出电压大小在一定范围内可调节,因此成为被选方案。
但我们做完这部分电路时发现.这个电路的触发电路还是有一定难度的。
在设计指标中没对整流器做出硬性指标规定的情况下,我们完全可以采用单相不可控整流电路,从而减少两个晶闸管的触发电路的设计。
本设计采用的RC过电压抑制电路R9、C5并联在变压器次级(元件侧),以吸收变压器铁心磁场释放的能量。
并把它转换为电容器的电场能而储存起来,串联电阻是为了在能量转。
单相正弦波逆变电源设计原理逆变拓扑结构主要有全桥逆变拓扑、半桥逆变拓扑和H桥逆变拓扑等。
其中,全桥逆变拓扑是应用最广泛的一种结构。
其基本原理是通过四个功率开关器件(IGBT、MOSFET等)将直流电源分别与交流负载的两端相连,通过对这四个开关器件进行不同的控制,实现正负半周期交替地对交流负载端进行开关切换,从而输出正弦波形的交流电信号。
控制策略是逆变电源设计中的关键,其主要目标是根据输入直流电源电压的大小和方向,调整开关器件的通断时间,使输出交流电信号能够呈现出正弦波形。
常见的控制策略包括PWM控制策略和SPWM控制策略。
其中,PWM(脉宽调制)控制策略通过对比输入直流电压与参考正弦波形的大小关系,调整开关器件的通断时间比例,以保证输出电压信号的波形准确度。
SPWM(正弦PWM)控制策略则通过比较输入直流电压与参考正弦波形的大小关系,调整开关器件的通断时间点,以保证输出电压信号的谐波失真程度较小。
滤波电路是为了进一步提高逆变电源输出电压信号的波形质量,减小谐波失真。
其主要由电感、电容等元件组成。
一般而言,设计中采用LC滤波器结构来实现对输出正弦波形谐波成分的滤除。
滤波器的参数选择与设计是设计过程中的关键环节,通过合理选择滤波器的参数可以实现输出电压稳定,谐波失真小的效果。
此外,逆变电源设计中还需要考虑过温保护、过压保护、过流保护等安全措施,以保证电源的稳定性和可靠性。
这些保护功能通过在逆变电源系统中加入温度传感器、电流传感器以及相应的控制电路来实现。
总之,单相正弦波逆变电源的设计基于逆变拓扑结构、控制策略和滤波电路的原理,通过合理的参数选择和安全措施的设计,可实现稳定、可靠、高质量的正弦波形交流电信号输出。
单相正弦波逆变电源设计简易报告一、任务设计并制作输出电压为36V AC 的单相正弦波逆变电源,输入为12VDC 电源,负载为阻性。
结构框图如下图所示。
DC/AC 变换滤波器U iU oI i I o R L二、要求:2.1 基本要求(1)在额定输入电压U i =10~14.5V 下,输出电压U ORMS =36±0.5V ,频率0.5Hz 50±=O f ,额定满载输出功率50W ;(2)输出正弦波电压,THD ≤3%; (3)满载情况下,逆变效率η≥83%;(4)具有输入过压、欠压保护功能,欠压保护点9±0.5V ,过压保护点16±0.5V 。
当满足过压、欠压条件时,关闭输出;(5)输出过流保护功能,动作电流I o =1.6±0.1A 。
2.2 发挥部分(1)进一步提高逆变器效率,η≥95%; (2)输出正弦波电压THD ≤1%; (3)输出频率可调20~100Hz ;(4)具有输出短路保护功能,可自恢复,具有工作及保护指示; (5)其他。
三、说明1. 输入电源可来自直流稳压电源,或者采用调压器+隔离变压器+整流+滤波得到;2. 系统供电全部采用U i 供给,不得另外提供其他电源。
3. 不得使用电源类产品改制,不得采用各种电源和逆变模块,不得采用各类集成功率放大电路。
4. 不得采用SPWM 专用芯片。
5. 注意作品制作工艺,留出测试端口。
6. 尽可能降低制作成本。
7. 测试开始后,不允许对电路进行任何调整。
四、评分标准项目评分报告1. 方案论证2.关键技术指标的设计保证措施及关键技术分析等。
3.单元电路的工作原理,必要的理论计算等。
4. 测试方法及测试数据分析等。
5. 报告的完整性和规范性30分基本部分完成(1)21分完成(2)10分完成(3)10分完成(4)6分完成(5)3分发挥部分完成(1)12分完成(2)12分完成(3)12分完成(4)9分完成(5)5分。
单相逆变器工作原理
单相逆变器是一种将直流电转换为交流电的电力转换设备。
其工作原理如下:
1. 输入电源:单相逆变器通常由直流电源供电,例如电池、太阳能电池板等。
直流电源的电压通常比较稳定。
2. 逆变器拓扑:单相逆变器采用不同的拓扑结构,例如全桥、半桥等。
拓扑结构决定了逆变器的性能指标。
3. PWM 控制:逆变器通过脉冲宽度调制(PWM)技术来实现将
直流电转换为交流电。
PWM 控制通过调节开关管的导通时间
和断开时间来控制输出交流电的幅值、频率和相位。
4. 滤波电路:PWM 输出的交流电是由频率较高的脉冲组成的
方波信号。
为了将其转化为纯净的正弦波交流电,逆变器配备了滤波电路,通常包括电感和电容。
5. 输出电路:滤波后的正弦波交流电经过输出电路传输到负载中。
输出电路的设计要考虑负载的容量,以避免过载和短路等问题。
6. 控制保护:逆变器通常还配备了电流、电压、温度以及过载和短路保护等控制和保护电路,以保证逆变器的安全可靠运行,并防止损坏负载设备。
通过以上几个步骤,单相逆变器可以将直流电源转换为交流电,
用于供应各种家用电器、电子设备以及工业设备等需要交流电的场合。
逆变器的工作原理关键是通过PWM控制实现直流电到交流电的高效转换。
单相正弦波脉宽调制(SPWM)逆变电路实验结果(1)控制信号的观测①观察正弦调制波信号U r的波形,测试其频率可调范围;U r频率最小时波形图,由图可知最小频率小于10HzU r频率最大波形图,由图可知最大频率等于62Hz②观察三角载波U c的波形,测试其频率,由图可知最大频率等于178.9Hz③改变正弦调制波信号U r的频率,再测量三角载波U c的频率改变正弦调制波信号U r的频率三角载波U c的频率是同步变化④比较“PWM+”,“PWM-”和“SPWM1”,“SPWM2”的区别PWM+”,“PWM-的区别:同一相上下两管驱动信号之间无死区SPWM1”,“SPWM2的区别:同一相上下两管驱动信号之间死区延迟时间是30ms(2)带电阻及电阻电感性负载①输出接灯泡负载,然后将主电路接通由控制屏左下侧的直流电源(通过调节单相交流自藕调压器,使整流后输出直流电压保持为200V)接入主电路,由小到大调节正弦调制波U r 的频率,观测负载电压的波形,记录其波形参数(幅值、频率)。
U O(V) 82.2 82.4 82.5 波形F(Hz) 13.56 28.23 29.59 U O(V) 82 82 82波形F(Hz) 34.63 42.73 55.81U O(V) 82 82 82波形②接入DJK06给定及实验器件和DJK02上的100mH电感串联组成的电阻电感性负载,然后将主电路接通由DJK09提供的直流电源,由小到大调节正弦调制波信号U r的频率观测负载电压的波形,记录其波形参数(幅值、频率)。
F(Hz) 17.67 20.53 22.67U O(V) 83 83 83波形U O(V) 83 83 83 波形F(Hz) 49.61 53.78 161.15 U O(V) 83 83 83波形。
实验七单相正弦波(SPWM)逆变电源研究(老实验台)一.实验目的1.掌握单相正弦波(SPWM)逆变电源的组成、工作原理、特点、波形分析与使用场合。
2.熟悉正弦波发生电路、PWM专用集成电路SG3525的工作原理与使用方法。
二.实验内容1.正弦波发生电路调试。
2.PWM专用集成电路SG3525性能测试。
3.带与不带滤波环节时的负载两端,MOS管两端以及变压器原边两端电压波形测试。
4.滤波环节性能测试。
5.不同调制度M时的负载端电压测试。
三.实验系统组成及工作原理能把直流电能转换为交流电能的电路称为逆变电路,或称逆变器。
单相逆变器的结构可分为半桥逆变器、全桥逆变器和推挽逆变器等形式。
本实验系统对单相推挽逆变电路进行研究。
推挽逆变器的主要优点是在任何时刻导通的开关不会多于一个,对于输出相同的功率,开关损耗比较小,因此,特别适用于由低直流电压(如电池)供电的场合。
另外,两个开关管的驱动信号是共地的,可简化驱动电路,其不足是变压器原边绕组利用率低,当变压器原边两个绕组不完全对称时或者两开关器件特性不对称时,还可能出现直流磁化饱和现象。
逆变器主电路开关管采用功率MOSFET管,具有开关频率高、驱动电路简单、系统效率较高的特点。
当开关其间VT1、VT2轮流导通,再经推挽变压器升压后,即可在负载端得到所需频率与幅值的交流电源。
脉宽调制信号由专用集成芯片SG3525产生。
SG3525芯片不仅能产生频率灵活可变的方波,而且可输出正弦PWM(SPWM)信号,以提高后接变压器的工作频率。
为了使SG3525产生一个SPWM信号,可在芯片的9脚处加入一个幅度可变的50Hz正弦波(我们这里仅需得到频率固定的50Hz可变电源,若需获得频率也可变的交变电源,则只需在9脚处加入一个幅值与频率均可变的正弦波即可),与5脚处的锯齿波信号进行比较,从而获得SPWM 控制信号,改变正弦波的幅值,即改变调制度M(调制度定义为正弦波调制波峰U rm与锯齿波载波峰值U tm之比,即M=U rm/U tm)就可以改变输出电压的幅值,正常M≤1。
课程名称:电力电子技术指导老师:马皓成绩:__________________ 实验名称:单相正弦波(SPWM)逆变电路实验类型:____________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的与要求熟悉单相桥式SPWM逆变电路的工作原理,对工作情况及其波形作全面的分析,并研究正弦波的频率和幅值及三角波载波频率的关系。
二、实验内容1. 测量SPWM波形产生过程中各点波形;2. 测量逻辑延时电路的延时时间;3. 观察不同负载时变频电路的输出波形。
三、实验仪器与设备1. MPE-I电力电子探究性实验平台2. NMCL-10B单相SPWM逆变实验箱3. NMCL-03D可调电阻4. NMCL-31B交直流仪表5. 万用表6. 示波器四、实验方法及操作步骤1.SPWM波形的观察(1) 观察“SPWM波形发生电路”输出的正弦波波形,改变正弦波频率调节电位器,测试其频率可调范围,改变正弦波幅值调节电位器,测试其幅值变化范围。
(2) 观察“SPWM波形发生电路”输出的三角形载波波形,改变三角波频率调节电位器,测试其频率可调范围,并观察三角波与正弦波波形的对应关系。
(3) 观察“SPWM波形发生电路”经过三角波和正弦波比较后得到的SPWM波形。
2. 逻辑延迟时间的测试将“SPWM波形发生电路”的输出SPWM波与“DLD逻辑延时”的输入端相连(以下实验均需保持连接),用双踪示波器同时观察“DLD逻辑延迟”的“1”和“2”与“SPWM波形发生电路”接地端之间电压波形,并记录延迟时间T d。
3. 同一桥臂上下开关管驱动信号死区时间测试分别将IGBT驱动芯片IR2110输出E1和E2,E3与E4相连,用双踪是比起分别测量G1、E1和G2、E2,G3、E3和G4、E4两端的波形,并测量死区时间。
输出为115V、400Hz 的单相逆变电源1 引言直流27V 变为交流115V、400Hz 的逆变电源在部队和船舶上应用广泛,有较大需求。
针对这一情况,我们研制了800VA 的单相静态逆变电源,该电源采用直流27V 输入,可以输出115V、400Hz 的正弦波电压。
并且用3 台同样的电源经适当联接,在外围电路控制下,可以作为一台三相逆变电源使用。
目前,新技术不断出现,构成DC/AC 逆变的方法有很多。
但考虑到具体的使用条件以及成本与可靠性,该电源采用了比较典型的两级变换的方式,即第一级运用DC/DC 变换,将27V 变换为约±130V的直流高压,第二级运用DC/AC 变换, 将直流高压变换为交流输出,通过反馈调节±130V的高压直流电来保证稳定的交流115V 输出。
这样,既简化了电路调试和生产过程,质量也容易控制,便于产业化。
2 主电路设计2.1 利用DC/DC 变换器实现稳压该变换器采用了推挽工作方式,具有效率高、工作可靠的优点。
如图1 所示, 该变换器的作用是将低压直流电变换为高压直流电。
主变压器T1 初级接成推挽形式,次级因为电压较高,用全桥方式进行整流,开关管S1、S2 分别用4 只IRF3710 并联,有效地降低了导通损耗。
功率MOSFET 的共生二极管同时可作为开关管关断时的交流通路,抑制开关管两端的关断过电压。
R2、C3、R3、C4 为阻容吸收电路,可以进一步降低MOSFET 关断时的尖峰电压。
吸收电阻选择的原则,是在最小导通时间时,仍能使电容上的电压放电完毕,而吸收电容在吸收电阻功耗许可范围内尽量取大。
经过实验,本电路的吸收电阻为5Ω、5W,吸收电容为0.1μF、250VDC。
单相3.5KW逆变电源使用说明书HS2.938.268SS南京华士电子科技有限公司Nanjing Huashi Electronic Scientific co.,Ltd3.5KW逆变电源使用说明书一. 简介本电源使用电池供电方式,为负载提供220V交流电。
控制上采用了SPWM调制,载频高,输出近似正弦波。
同时还采用了多种抗干扰技术,电磁兼容性好,可靠性高。
二.主要技术参数1.额定容量:3.5KV A2.输入电压:额定DC 110V最高DC 137.5V最低DC 77V3.输出电压:输出电压频率:基波50HZ±1%输出电压基波有效值: AC220V±5%谐波含量: 小于10%4.控制方式:采用SPWM调制方式5.启动方式:采用了软启动方式,启动时间为3秒6.冷却方式:自然风冷7.保护功能:出过流,过载.IGBT过流,输入过压、欠压及散热器过热等保护8.效率:额定负载时,效率大于75%9逆变器工作时,噪声不大于70dB(1m处)三. 工作流程确认外部接线正确后方可将此产品投入运行。
当合上QF1后,外DC110V(范围DC77~DC137.5V)输入逆变器,逆变器通过R1给电容充电,同时延时继电器线包得电,延时3秒后(电容电压此刻已建立)逆变器开始检测输入电压是否正常,如果不正常,即电压不在DC77~DC137.5V之间时,则控制板指示灯显示欠压或过压故障信号,电压若正常,则开始检测逆变器是否过热,若温度超过规定的85度则由控制板上的指示灯报过热故障,同时外部故障指示灯亮,等待温度低于85度时开始重新启动,3秒后输出电压稳定值A V220V,此时逆变器进入正常工作状态。
外部逆变器工作指示灯显绿;若逆变器出现故障时,外部逆变工作指示灯显红。
四. 故障处理当外部指示灯显示逆变器工作故障时,可参照主控制板(CZ1)上指示灯的相应提示信号确定是什么故障,指示信号如下:正常工作:LED1散热器过热:LED4输入欠压:LED3输入过压:LED2、LED3同时亮输出过流,过载及IGBT短路:LED2本逆变器具有故障自动恢复功能:当逆变器发生输入欠压、过压、过热、过载故障后,逆变器报故障,(IGBTG过流故障不能自恢复)当输入电压、散热器温度、负载恢复正常后,逆变器又可以重新正常运行,当故障累积达到6次后,逆变器自动停机,提醒用户排除故障。
单相正弦波逆变电源设计原理+电路+程序目录1.系统设计 (4)1.1设计要求 (4)1.2总体设计方案 (4)1.2.1设计思路 (4)1.2.2方案论证与比较 (5)1.2.3系统组成 (8)2.主要单元硬件电路设计 (9)2.1DC-DC变换器控制电路的设计 (9)2.2DC-AC电路的设计 (10)2.3 SPWM波的实现 (10)2.4 真有效值转换电路的设计 (11)2.5 保护电路的设计 (12)2.5.1 过流保护电路的设计 (12)2.5.2 空载保护电路的设计 (13)2.5.3 浪涌短路保护电路的设计 (14)2.5.4 电流检测电路的设计 (15)2.6 死区时间控制电路的设计 (15)2.7 辅助电源一的设计 (15)2.8 辅助电源二的设计 (15)2.9 高频变压器的绕制 (17)2.10 低通滤波器的设计 (18)3.软件设计 (18)3.1 AD转换电路的设计 (18)3.2液晶显示电路的设计 (19)4.系统测试 (20)14.1测试使用的仪器 (20)4.2指标测试和测试结果 (21)4.3结果分析 (24)5.结论 (25)参考文献 (25)附录1 使用说明 (25)附录2 主要元器件清单 (25)附录3 电路原理图及印制板图 (28)附录4 程序清单 (39)21.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。
满载时输出功率大于100W,效率不小于80%,具备过流保护和负载短路保护等功能。
1.2总体设计方案1.2.1设计思路题目要求设计一个车载通信设备用单相正弦波逆变电源,输出电压波形为正弦波。
设计中主电路采用电气隔离、DC-DC-AC的技术,控制部分采用SPWM(正弦脉宽调制)技术,利用对逆变原件电力MOSFET的驱动脉冲控制,使输出获得交流正弦波的稳压电源。
1.2.2方案论证与比较⑴ DC-DC变换器的方案论证与选择方案一:推挽式DC-DC变换器。
单相pwm逆变电路工作原理
单相PWM逆变电路是一种将直流电转换为交流电的电路,其工作原理主要基于脉宽调制(PWM)技术。
在单相PWM逆变电路中,主要包含整流电路、逆变桥和控制电路等部分。
其中,整流电路用于将交流电转换为直流电,逆变桥则由多个功率开关器件(如IGBT、MOSFET等)组成,控制电路则负责生成PWM波形并控制功率开关器件的通断。
当控制电路输出PWM波形时,会控制逆变桥中的功率开关器件按照一定规律进行通断。
这样,就可以在逆变桥的输出端得到一系列幅值相等但宽度不同的脉冲电压。
这些脉冲电压经过滤波电路后,就可以得到平滑的正弦波或所需波形的交流电压。
具体来说,单相PWM逆变电路的工作过程可以分为以下几个步骤:
整流:将交流电源经过整流电路转换为直流电源。
逆变:通过控制逆变桥中功率开关器件的通断,将直流电源逆变为交流电源。
在这个过程中,控制电路会根据所需输出的交流电压的波形和频率,生成相应的PWM波形并控制功率开关器件的通断。
滤波:经过逆变后得到的交流电压是一系列脉冲电压,需要通过滤波电路进行平滑处理,以得到正弦波或所需波形的交流电压。
总之,单相PWM逆变电路是一种基于PWM技术的电力电子变换器,它可以将直流电转换为交流电,并具有输出电压稳定、波形好、效率高等优点。
电力电子技术实验报告共页第页一、实验目的(1)熟悉单相交直交变频电路原理及电路组成。
(2)掌握SPWM波产生的基理。
(3)分析交直交变频电路在不同负载时的工作情况和波形,并研究工作频率对电路工作波形的影响。
二、实验内容1.熟悉 SPWM 电路组成,掌握该电路的实验及调试方法。
2.测定与分析 SPWM 电路控制信号的各观测点输出电压波形。
3.分析电路在电阻负载时的电压与电流波形的分析,并研究工作频率对电路工作波形的影响。
4.按照 SPWM 电路实验要求搭建电路,按照实验安全要求规范操作,准确获取实验数据。
利用实验课以外的时间,借助仿真软件搭建 SPWM 电路模型,并比较实验数据与仿真结果的异同,对实验数据结果进行分析和解释。
5.掌握 SPWM 电路工作原理,学会分析和处理实验中出现的问题,提高工程实践能力。
三、实验仪器、设备和工具TKDD-2 型电源控制屏该控制屏包含“三相电源输出”等几个模块,DX08 单相交直交变频原理,双踪示波器,万用表四、实验原理采用 SPWM 正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。
实验电路图如图 3-1 所示,由三部分组成:即主电路, 驱动电路和控制电路。
是由两片集成函数信号发生器ICL8038 为核心组成,其中一片ICL8038 产生正弦调制波 Ur,另一片用以产生三角载波 Uc,将此两路信号经比较电路 LM311 异步调制后,产生一系列等幅,不等宽的矩形波 Um,即 SPWM 波。
Um经反相器后,生成两路相位相差180 度的±PWM 波,再经触发器 CD4528延时后,得到两路相位相差 180 度并带一定死区范围的两路 SPWM1 和 SPWM2波,作为主电路中两对开关管 IGBT 的控制信号。
五、实验步骤1.控制信号的观测在主电路不接直流电源时,打开控制电源开关,并将 DX08 挂箱左侧的钮子开关拨到“测试”位置。
①观察正弦调制波信号 Ur的波形,测试其频率可调范围;②观察三角载波 Uc的波形,测试其频率;③改变正弦调制波信号 Ur的频率,再测量三角载波 Uc的频率,判断是同步调制还是异步调制;④比较“PWM+”,“PWM-” 和“SPWM1”,“SPWM2”的区别,仔细观测同一相上下两管驱动信号之间的死区延迟时间。
—科教导刊(电子版)·2018年第06期/2月(下)—256基于STM32单相正弦波逆变电源的设计唐涛杨冰李稳国兰岳旺吴航(湖南城市学院信息与电子工程学院湖南·益阳413000)摘要针对传统线性电源输出功率低、稳定性差、带负载能力不强等问题,设计并制作了一种效率高、稳定性强的开关稳压式电源。
该开关电源系统主要是由STM32单片机、驱动模块、DC-DC 升压模块、DC-AC 逆变模块、采样调频模块等组成。
以DC-DC 升压模块和DC-AC 逆变模块为电路主拓扑,由STM32单片机产生的信号经过驱动模块放大增幅后进行控制调节,采样调频模块进行采样反馈和频率调节。
测试结果表明,该开关电源系统具有过压欠压保护功能,输出交流电压的幅值频率可调,且效率达到86%以上。
关键词STM32单片机DC-DC DC-AC 中图分类号:G632.3文献标识码:A 0引言随着电子技术的飞速发展,各种电子装置对电源功率的要求越来越大,对电源效率和稳定性的要求也越来越高。
因此,开关电源技术得以飞速发展。
传统线性稳压电源虽然电路结构简单、工作可靠,但它存在效率低(40%-50%)、体积大、工作温度高及调整范围小等缺点,而开关式稳压电源效率可达85%以上,且稳压范围宽。
相比传统线性稳压电源,开关电源所具有的电能转换效率高、体积小、重量轻、控制精度高和快速性好等优点,为它在小功率范围内取代线性电源奠定了良好基础,并且还迅速地向中大功率范围推进。
文献[2]提出的开关电源稳定性好,但电源转换效率不高。
针对上述问题,本文提出了单相正弦波逆变电源的设计。
该设计主拓扑电路由DC-DC 升压模块和DC-AC 逆变模块构成。
其中,DC-DC 升压模块采用两路B00ST 并联结构,提高了输入电流,有利于电流分配调节。
而DC-AC 逆变模块采用全桥逆变结构。
与半桥逆变结构相比,全桥逆变的开关电流减小了一半,在大功率场合得到了广泛应用,且稳定性更好。
单相正弦脉宽调制逆变器的设计摘要论述了单相正弦波逆变器的工作原理,介绍了3524的功能及产生波的方法,对逆变器的控制及保护电路作了详细的介绍,给出了输出电压波形的实验结果。
关键词逆变器;正弦波脉宽调制;场效应管引言当铁路、冶金等行业的一些大功率非线性用电设备运行时,将给电网注入大量的谐波,导致电网电压波形畸变。
根据我们的实验观察,在发生严重畸变时,电压会出现正负半波不对称,频率也会发生变化。
这样的供电电压波形,即使是一般的电力用户,也难以接受,更无法用其作为检修、测试的电源。
同时,在这种情况下,一般的稳压电源也难以达到满意的稳压效果。
为此,我们设计了该逆变电源。
其控制电路采用了2片集成脉宽调制电路芯片3524,一片用来产生波,另一片与正弦函数发生芯片8038做适当的连接来产生波。
集成芯片比分立元器件控制电路具有更简单、更可靠的特点和易于调试的优点。
图1系统主电路和控制电路框图1系统结构及框图图1示出了系统主电路和控制电路框图。
交流输入电压经过共模抑制环节后,再经工频变压器降压,然后整流得到一个直流电压,此电压经过电路进行升压,在直流环上得到一个符合要求的直流电压35050220交流输出时。
变换采用全桥变换电路。
为保证系统可靠运行,防止主电路对控制电路的干扰,采用主、控电路完全隔离的方法,即驱动信号用光耦隔离,反馈信号用变压器隔离,辅助电源用变压器隔离。
过流保护电路采用电流互感器作为电流检测元件,其具有足够快的响应速度,能够在管允许的过流时间内将其关断。
2控制及保护电路为了降低成本,使用两块集成脉冲产生芯片3524和一块函数芯片8038,使得控制电路简洁,易于调试。
213524的功能及引脚图2所示为3524的结构框图和引脚图。
3524工作过程是这样的直流电源从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5基准电压。
+5再送到内部或外部电路的其他元器件作为电源。
单相正弦波逆变电源摘要:本单相正弦波逆变电源的设计,以12V蓄电池作为输入,输出为36V、50Hz的标准正弦波交流电。
该电源采用推挽升压和全桥逆变两级变换,在控制电路上,前级推挽升压电路采用SG3525芯片控制,闭环反馈;逆变部分采用驱动芯片IR2110进行全桥逆变,采用U3990F6完成SPWM的调制,后级输出采用电流互感器进行采样反馈,形成双重反馈环节,增加了电源的稳定性;在保护上,具有输出过载、短路保护、过流保护、空载保护等多重保护功能电路,增强了该电源的可靠性和安全性;输出交流电压通过AD637的真有效值转换后,再由STC89C52单片机的控制进行模数转换,最终将电压值显示到液晶12864上,形成了良好的人机界面。
该电源很好的完成了各项指标,输入功率为46.9W,输出功率为43.6W,效率达到了93%,输出标准的50Hz正弦波。
关键词:单相正弦波逆变DC-DC DC-AC SPWMAbstract: The single-phase sine wave inverter power supply design, battery as a 12V input and output for the 36V, 50Hz standard AC sine wave. The use of push-pull power booster and two full-bridge inverter transform,in the control circuit, the pre-boost push-pull circuit using SG3525 chip control,closed-loop feedback;inverter driver IC IR2110 in part to the use of full-bridge inverter using SPWM modulation U3990F6 completed,level after the use of current transformer output sampling feedback. The feedback link in the formation of a double and increase the stability of power. In protection, with output overload, short circuit protection, over current protection, the protection of multiple no-load protection circuit, which enhancing the reliability of the power supply and safety.AC voltage output of the AD637 True RMS through conversion, and then from the control of single-chip STC89C52 analog-digital conversion, the final value of the voltage to the liquid crystal display 12864 on the formation of a good man-machine interface. The completion of the power good indicators, input power to 46.9W, output power of 43.6W, the efficiency reached 93%, 50Hz sine wave output standards.Key words: Single-phase sine wave inverter DC-DC DC-AC SPWM1目录1.系统设计 (4)1.1设计要求 (4)1.2总体设计方案 (4)1.2.1设计思路 (4)1.2.2方案论证与比较 (5)1.2.3系统组成 (8)2.主要单元硬件电路设计 (9)2.1DC-DC变换器控制电路的设计 (9)2.2DC-AC电路的设计 (10)2.3 SPWM波的实现 (10)2.4 真有效值转换电路的设计 (11)2.5 保护电路的设计 (12)2.5.1 过流保护电路的设计 (12)2.5.2 空载保护电路的设计 (13)2.5.3 浪涌短路保护电路的设计 (14)2.5.4 电流检测电路的设计 (15)2.6 死区时间控制电路的设计 (15)2.7 辅助电源一的设计 (15)2.8 辅助电源二的设计 (15)2.9 高频变压器的绕制 (17)2.10 低通滤波器的设计 (18)3.软件设计 (18)3.1 AD转换电路的设计 (18)3.2液晶显示电路的设计 (19)4.系统测试 (20)4.1测试使用的仪器 (20)4.2指标测试和测试结果 (21)4.3结果分析 (24)25.结论 (25)参考文献 (25)附录1 使用说明 (25)附录2 主要元器件清单 (25)附录3 电路原理图及印制板图 (28)附录4 程序清单 (39)31.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。
满载时输出功率大于100W,效率不小于80%,具备过流保护和负载短路保护等功能。
1.2总体设计方案1.2.1设计思路题目要求设计一个车载通信设备用单相正弦波逆变电源,输出电压波形为正弦波。
设计中主电路采用电气隔离、DC-DC-AC的技术,控制部分采用SPWM(正弦脉宽调制)技术,利用对逆变原件电力MOSFET的驱动脉冲控制,使输出获得交流正弦波的稳压电源。
1.2.2方案论证与比较⑴ DC-DC变换器的方案论证与选择方案一:推挽式DC-DC变换器。
推挽电路是两不同极性晶体管输出电路无输出变压器(有OTL、OCL等)。
是两个参数相同的功率BJT 管或MOSFET管,以推挽方式存在于电路中,各负责正负半周的波形放大任务。
电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率高。
推挽输出既可以向负载灌电流,也可以从负载抽取电流。
推挽式拓扑结构原理图如图1.2.1所示。
CCND图1.2.1 推挽式拓扑结构图方案二:Boost升压式DC-DC变换器。
拓扑结构如图1.2.2 所示。
开关的开通和关断C受外部PWM信号控制,电感L将交替地存储和释放能量,电感储能后使电压泵升,而电容out 可将输出电压保持平稳,通过改变PWM控制信号的占空比可以相应实现输出电压的变化。
4该电路采取直接直流升压,电路结构较为简单,损耗较小,效率较高。
V in + -+-图1.2.2 Boost电路方案比较:方案一和方案二都适用于升压电路,推挽式DC-DC变换器可由高频变压器将电压升至任何值。
Boost升压式DC-DC变换器不使用高频变压器,由12V升压至312V,PWM 信号的占空比较低,会使得Boost升压式DC-DC变化器的损耗比较大。
所以采用方案一。
(2)DC-AC变换器的方案论证与选择方案一:半桥式DC-AC变换器。
在驱动电压的轮流开关作用下,半桥电路两只晶体管交替导通和截止,它们在变压器T原边产生高压开关脉冲,从而在副边感应出交变的方波脉冲,实现功率转换。
半桥电路输入电压只有一半加在变压器一次侧,这导致电流峰值增加,因此半桥电路只在500W或更低输出功率场合下使用,同时它具有抗不平衡能力,从而得到广泛应用。
半桥式拓扑结构原理图如图1.2.3所示。
图1.2.3 半桥式拓扑结构图56方案二:全桥DC-AC 变换器。
全桥电路中互为对角的两个开关同时导通,而同一侧半桥上下两开关交替导通,将直流电压成幅值为in V 的交流电压,加在变压器一次侧。
改变开关的占空比,也就改变了输出电压out V 。
全桥式电路如图1.2.4所示。
LoV t图1.2.4 全桥式电路方案比较:方案一和方案二都可以作为DC-AC 变换器的逆变桥,由两者的工作原理可知,半桥需要两个开关管,全桥需要四个开关管。
半桥和全桥的开关管的耐压都为DC V ,而半桥输出的电压峰值是DC V 21,全桥输出电压的峰值是DC V ,所以在获得同样的输出电压的时候,全桥的供电电压可以比半桥的供电电压低一半。
出于这点的考虑,决定采用方案二。
(3)辅助电源的方案论证与选择方案一:采用线性稳压器7805。
方案二:采用Buck 降压式DC-DC 变换器。
方案比较:方案一的优点在于可以使用很少的元器件构成辅助电源一,但是效率较低。
方案二的优点在于效率高达90%,缺点是需要的元器件多,且成本较高。
由于辅助电源一会影响到整个系统的效率,所以采用方案二。
图1.2.5 直接数据处理框图方案二:使用电流传感器加真有效值转化器以及ADC 对电流进行采样读数。
利用电流传感器和电阻将电流转换成电压输出,经AD637进行真有效值转换后,由ADC0832进行读数,1.2.3 系统组成系统方框图如图1.2.7所示,先采用DC-DC变换器把12V蓄电池的电压升至312V,保证输出真有效值为36V的正弦波不出现截止失真和饱和失真。
输出电压反馈采用调节SPWM 信号脉宽的方式。
该系统采用两组相互隔离的辅助电源供电,一组供给SPWM信号控制器使用,另外一组供给输出电压、电流测量电路使用,这样避免了交流输出的浮地和蓄电池的地不能共地问题。
因为SPWM控制器输出的SPWM信号不含死区时间,所以增加了死区时间控制电路和逆变桥驱动电路。
空载检测电路使得当没有负载接入时,让系统进入待机模式,当有负载接入时,才进行逆变工作模式。
同时,空载检测电路也作为过流保护的采样点。
输出电流检测使用电流互感器和真有效值转换芯片AD637实现。
输出电压也使用AD637进行RMS-DC 转换后,由ADC采样后分析,在液晶屏幕上显示。
图1.2.7 系统组成图2. 单元硬件电路设计782.1 DC-DC 变换器控制电路的设计DC-DC 变换器控制电路如图2.1.1所示。
SG3525是电流控制型PWM 控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。
可以补充一些SG3525芯片资料(内部结构、封装、引脚端功能)在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。