舰用新型低噪声水润滑轴承材料硬度与摩擦性能
- 格式:pdf
- 大小:293.19 KB
- 文档页数:4
碳纤维增强复合材料的研究开发以热固性树脂制成的轴承在市场上出现以来,在轴承领域里,各种聚合物和聚合物为主的各种混合物的应用已不断增加。
可以用作轴承材料的塑料品种很多,如聚四氟乙烯、尼龙、聚酰亚胺、聚甲醛、低压聚乙烯等,它们都有很好的自润滑性,摩擦系数小,功率损耗比金属轴承约小15 %。
聚四氟乙烯为目前氟塑料中综合性能最突出、应用最广、产量最大的一个品种,它有高度的化学稳定性,耐强腐蚀,极好的自润滑性,摩擦系数极小等特点。
但纯聚四氟乙烯尺寸稳定性差,耐磨性差,而加入填充剂可以改善其摩擦性能,提高其硬度和强度。
经过反复试验,我公司开发出新型热固型钨-碳纤维轴承,相比传统轴承,钨-碳纤维轴承具有更好的性能和性价比。
2 W-CFRP 轴承的工作机理与摩擦特性2.1 W-CFRP 轴承的工作原理W-CFRP 轴承一般与金属轴形成一对旋转摩擦副。
在跑合阶段,由于旋转轴表面有一定的粗糙度,具有不同的“凸峰”和“凹谷”,夸大来讲就好像钢锉一样对W-CFRP 轴承内表面产生磨削作用,磨削下来的W-CFRP 大部分填充到凹谷中。
随着转轴运动的持续进行,磨削下来的W-CFRP 粉末累积量不断增加,填充更多的凹谷。
“磨削一填充”过程持续进行,导致转轴表面上所有凹谷均填满了W-CFRP 微屑。
在转子重力作用下,凹谷内W-CFRP 微屑被压实,使轴外表面紧密粘附一层W-CFRP 膜层,且形成连续光滑面。
这全过程完成了轴承内表面W-CFRP 的部分“转移”,转移的结果是:由金属与W-CFRP 两种材料变为W-CFRP 一种材料之间的相互摩擦。
由于CFRP 良好的自润滑性能,因此在跑合以后的工作阶段,轴承表面的磨损量随之下降到一个极低的水平,从而使摩擦副表面得到保护,大大减轻了转轴与轴承表面的磨损,延长了工作寿命。
2.2 W-CFRP 轴承的摩擦磨损特性自润滑轴承属于干摩擦,因此可根据古典摩擦理论的基本公式求出其摩擦力,进而求出轴承的耗功量。
PA材料尼龙6与尼龙66结构尼龙6为聚己内酰胺,而尼龙66为聚己二酸己二胺。
尼龙66比尼龙6要硬12%,而理论上说,尼龙硬度越高,纤维的脆性越大,从而越容易断裂。
但在地毯使用中这点微小的差别是无法分别的。
熔点及弹性尼龙6的熔点为220C而尼龙66的熔点为260C。
但对地毯的使用温度条件而言,这并不是一个差别。
而较低的熔点使得尼龙6与尼龙66相比具有更好的回弹性,抗疲劳性及热稳定性。
色牢度色牢度并不是尼龙的一个特性,是尼龙中的染料而不是尼龙本身在光照下褪色。
耐磨性及抗尘性美国Clemson大学曾在Tampa国际机场分别用巴斯夫 Zeftron500尼龙6地毯和杜邦Antron XL尼龙66地毯进行了一个长达两年半的实验。
地毯处于人流量极高的状态下,结果表明:巴斯夫Zeftron500尼龙在颜色保持性及绒头耐磨性方面要稍好于杜邦 Antron XL。
两种纱线的抗尘性能没有差别。
尼龙的属性由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。
随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。
特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。
尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。
因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。
由于PA强极性的特点,吸湿性强,尺寸稳定性差,但可以通过改性来改善。
玻璃纤维增强PA在PA 加入30% 的玻璃纤维,PA 的力学性能、尺寸稳定性、耐热性、耐老化性能有明显提高,耐疲劳尼龙强度是未增强的2.5 倍。
玻璃纤维增强PA 的成型工艺与未增强时大致相同,但因流动较增强前差,所以注射压力和注射速度要适当提高,机筒温度提高10-40℃。
‘滑动轴承’检测标准滑动轴承(sliding bearing),在滑动摩擦下工作的轴承。
滑动轴承工作平稳、可靠、无噪声。
在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。
但起动摩擦阻力较大。
轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。
为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。
轴瓦和轴承衬的材料统称为滑动轴承材料。
滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。
‘滑动轴承’的国内外标准较多,所以只列了80个国内的国标及行业标准和地台湾地方标准。
CNS 5694-1980 滚动轴承组成零附件及球面滑动轴承总则CNS 8210-1982 连座滑动轴承CNS 8213-1982 滑动轴承用卷制轴承衬(尺度)CNS 8214-1983 滑动轴承用卷制轴承衬检验法(外径及内径)CNS 8468-1982 径向滑动轴承运转试验通则CNS 8556-1982 滑动轴承中耐摩擦金属摩擦状态之特性CNS 8769-1982 滑动轴承用卷制轴衬之润滑孔、润滑槽、润滑坑CNS 8770-1982 滑动轴承用卷制轴衬之材料CNS 8922-1982 滑动轴承用轴衬(驱动组件)CNS 8923-1982 滑动轴承用抗摩合金衬料CNS 9062-1982 托架滑动轴承?总成及外壳CNS 9063-1982 托架滑动轴承?轴承衬CNS 9064-1982 托架滑动轴承?润滑环CNS 9065-1982 托架滑动轴承?轴承油封、轴承盖片及组合尺寸CNS 9066-1982 止推滑动轴承?轴衬式止推轴承之组合尺寸CNS 9067-1982 止推滑动轴承?止推轴承环之组合尺寸CNS 9068-1982 滑动轴承之配合CNS 9348-1982 滑动轴承轴衬?烧结材料制CNS 9349-1982 滑动轴承轴衬?铜合金制整件CNS 9350-1982 滑动轴承轴衬?有润滑孔及润滑槽CNS 9351-1982 滑动轴承轴衬?碳精制CNS 9352-1982 滑动轴承轴衬?热硬性树脂制CNS 9353-1982 热硬性树脂制滑动轴承轴衬检验法CNS 9354-1982 滑动轴承轴衬?热塑性塑料制CNS 11203-1985 铁路车辆滑动轴承之轴箱用防尘板CNS 11204-1985 铁路车辆用滑动轴承GB/T 2688-1981 滑动轴承粉末冶金轴承技术条件GB/T 2889.1-2008 滑动轴承术语、定义和分类第1部分:设计、轴承材料及其性能GB/T 7308-2008 滑动轴承有法兰或无法兰薄壁轴瓦公差、结构要素和检验方法GB/T 10445-1989 滑动轴承整体轴套的轴径GB/T 10446-2008 滑动轴承整圆止推垫圈尺寸和公差GB/T 10447-2008 滑动轴承半圆止推垫圈要素和公差GB/T 12613.1-2002 滑动轴承卷制轴套第1部分;尺寸GB/T 12613.2-2002 滑动轴承卷制轴套第2部分;外径和内径的检测数据GB/T 12613.3-2002 滑动轴承卷制轴套第3部分;润滑油孔、润滑油槽和润滑油穴GB/T 12613.4-2002 滑动轴承卷制轴套第4部分;材料GB/T 12948-1991 滑动轴承双金属结合强度破坏性试验方法GB/T 12949-1991 滑动轴承覆有减摩塑料层的双金属轴套GB/T 14910-1994 滑动轴承厚壁多层轴承衬背技术要求GB/T 16748-1997 滑动轴承金属轴承材料的压缩试验GB/T 18323-2001 滑动轴承烧结轴套的尺寸和公差GB/T 18324-2001 滑动轴承铜合金轴套GB/T 18325.1-200 滑动轴承流体动压润滑条件下试验机内和实际应用的滑动轴承疲劳强度GB/T 18326-2001 滑动轴承薄壁滑动轴承用金属多层材料GB/T 18327.1-2001 滑动轴承基本符号GB/T 18327.2-2001 滑动轴承应用符号GB/T 18329.1-2001 滑动轴承多层金属滑动轴承结合强度的超声波无损检验GB/T 18330-2001 滑动轴承薄壁轴瓦和薄壁轴套的壁厚测量GB/T 18331.1-2001 滑动轴承卷制轴套外径的检测GB/T 18844-2002 滑动轴承损坏和外观变化的术语、特征及原因GB/T 21466.1-2008 稳态条件下流体动压径向滑动轴承.圆柱滑动轴承.第1部分:计算过程GB/T 21466.2-2008 稳态条件下流体动压径向滑动轴承圆形滑动轴承第2部分:计算过程中所用函数GB/T 21466.3-2008 稳态条件下流体动压径向滑动轴承.圆形滑动轴承.第3部分:许用的运行参数HG/T 2121-1991 可倾瓦径向滑动轴承技术条件JB/T 743-2000 电机用Z系列座式滑动轴承JB/T 2560-2007 整体有衬正滑动轴承座型式与尺寸JB/T 2561-2007 对开式二螺柱正滑动轴承座型式与尺寸JB/T 2562-2007 对开式四螺柱正滑动轴承座型式与尺寸JB/T 2563-2007 对开式四螺柱斜滑动轴承座型式与尺寸JB/T 2564-2007 滑动轴承座技术条件JB/T 5888.1-2000 电机用DQ系列端盖式滑动轴承.技术条件JB/T 5888-2005 电机用DQ系列滑动轴承结构与尺寸JB/T 5985-1992 滑动轴承.水润滑热固性塑料轴承JB/T 7920-1995 滑动轴承薄壁轴瓦周长的检验方法JB/T 7921-1995 滑动轴承单层和多层轴承用铸造铜合金JB/T 7922-1995 滑动轴承单层轴承用锻造铜合金JB/T 7923-1995 滑动轴承单层轴承用铝基合金JB/T 7925.1-1995 滑动轴承单层轴承减摩合金硬度检验方法JB/T 7925.2-1995 滑动轴承多层轴承减摩合金硬度检验方法JJG(机械) 86-1992 滑动轴承薄壁轴承互校准模检定规程LY/T 1501-1999 森林铁路车辆无导框滑动轴承铸钢轴箱体技术条件MT/T 643-1996 滚筒采煤机用三层复合材料滑动轴承TB/T 2875-1998 滑动轴承几何特性和材料质量特性的质量控制技术和检验TB/T 2876-1998 滑动轴承.薄壁轴瓦和薄壁筒形轴承的壁厚测量TB/T 2958-1999 滑动轴承. 薄壁轴瓦周长检验TB/T 2959-1999 滑动轴承. 金属多层滑动轴承粘结层的超声波无损检验TB/T 2984-2000 滑动轴承.金属多层滑动轴承渗透无损检测TB/T 3020-2001 滑动轴承.薄壁轴承用多层材料TB/T 3033-2002 滑动轴承损坏和外观变化的术语、特征及原因YB/T 5364-2006 滑动轴承用铝锡合金-钢复合带。
论水润滑赛龙轴承间隙配合工艺1. 引言1.1 背景介绍水润滑赛龙轴承是一种新型的轴承技术,具有在高温高速运转下具有良好的润滑性能和稳定性的优点。
随着工业制造技术的不断进步,对轴承的性能和工艺要求也越来越高。
传统的润滑方法已经无法满足新型轴承的要求,因此研究水润滑赛龙轴承间隙配合工艺显得尤为重要。
近年来,随着水润滑赛龙轴承技术的不断发展,已经在一些领域取得了良好的应用效果。
对于轴承间隙配合工艺的研究仍然存在许多问题亟需解决。
本研究旨在通过深入探讨水润滑赛龙轴承概述、轴承间隙配合原理以及工艺流程分析等内容,提出优化方法探讨,实验验证工艺参数,并最终总结研究成果,为水润滑赛龙轴承的工业应用提供理论依据和技术支持。
1.2 研究意义水润滑赛龙轴承是一种新型的轴承技术,具有良好的抗磨损、高速高负荷承载能力和长寿命等优点,对于提高机械设备的性能和可靠性具有重要意义。
研究水润滑赛龙轴承间隙配合工艺的意义在于深入探究该技术的工艺特点及优化方法,为水润滑赛龙轴承的设计和制造提供科学依据和指导。
通过研究水润滑赛龙轴承间隙配合工艺,可以优化轴承的运行效率和使用寿命,提高机械设备的工作性能和生产效率,降低维护成本和故障率,具有重要的经济和社会效益。
研究水润滑赛龙轴承间隙配合工艺的意义不仅在于发展新型轴承技术,还在于推动机械制造业的技术升级和产业发展,具有重要的理论和实践意义。
1.3 研究目的研究目的:本文旨在探讨水润滑赛龙轴承间隙配合工艺,通过研究水润滑赛龙轴承概述、轴承间隙配合原理、工艺流程分析、优化方法探讨以及工艺参数实验,以期达到以下几个目的:1. 确定水润滑赛龙轴承间隙配合的关键工艺参数,为提高轴承性能提供理论依据。
2. 探究水润滑赛龙轴承工艺的优化方法,提高生产效率和质量。
3. 验证研究成果的可行性和可靠性,为工业应用提供技术支持。
4. 为未来进一步深入研究提供基础和思路,不断完善水润滑赛龙轴承间隙配合工艺,推动相关领域的发展和进步。
水润滑尾轴承振鸣音研究进展秦红玲;周新聪;闫志敏;刘正林【摘要】Bearing noise or abnormal vibration sometimes originates in water-lubricated rubber stern bearings in marine propeller shaft systems due to operation at low-speed, overloading and poor lubrication conditions. It will affect the comfort of ships, and especially destruct the hidden nature and viability of submarines. Currently, the bearing noise can be neither predicted nor eliminated effectively. Therefore studying the mechanism of stern bearing noise has important theoretical and practical significance. In this paper, research advances of noise generation mechanism, influencing factors and vibration beep suppression technique were reviewed. It is pointed out that a comprehensive study, considering various influencing factors and combining advanced analysis means and testing methods, is necessary. On this basis, detailed design, manufacture, and installation specifications can be developed, bearing performance can be improved and bearing vibration and noise can be reduced.% 水润滑橡胶尾轴承在低速、重载、润滑不良状况下,会出现异常振动与鸣音,影响舰船的隐蔽性与生存能力以及乘员的舒适性。
自润滑滑动轴承的工作原理与技术现状轴承可分为滚动轴承和滑动轴承两大类;滚动轴承工作时发生的是滚动摩擦,滑动轴承工作时发生的是面与面之间的滑动摩擦;这是两种不同的运动方式;目前国内外滚动轴承材料与制造技术都已经很成熟,而滑动轴承材料与制造技术随着设计与使用要求的不断提高也在逐步革新发展。
滑动轴承的作用是起支撑轴运转将其与轴承座间隔开来起到保护轴和轴承座的作用,其一个重要的功能就是减小摩擦系数和磨损;滑动轴承根据材料以及性能可以分为自润滑滑动轴承和一般滑动轴承,自润滑滑动轴承在工作过程中可以实现不加油或少加油,而一般滑动轴承本身不具备良好的润滑功能所以运转过程中必须加油;由于轴与滑动轴承内表面在工作过程中发生的是面对面的滑动摩擦副,运用过程中要求摩擦系数和磨损量尽可能小,这就对两个摩擦面的材料提出了较高的要求;由于轴在运转过程中要传递一定的扭矩和运动,所以对轴材料侧重点还是硬度和强度等;这就把减小摩擦的要求集中在了滑动轴承工作面材料上,滑动轴承工作面材料通常分为金属和非金属两大类,金属类有轴承合金、陶瓷质金属、铝合金--双金属、铸铁、青铜、巴氏合金等;非金属主要分为工程塑料、橡胶等;随着滑动轴承材料技术和制造技术的不断革新和进步自润滑滑动轴承成为其主流产品。
本文主要阐述的是自润滑滑动轴承的工作原理与技术现状。
滑动轴承润滑机理与极限PV值滑动轴承工作时在滑动轴承表面能形成润滑膜将运动副表面分开,滑动摩擦力可大大降低,由于运动副表面不直接接触,因此也避免了磨损。
滑动轴承的承载能力大,回转精度高,润滑膜具有抗冲击作用,因此,在工程上获得广泛的应用。
润滑膜的形成是滑动轴承能正常工作的基本条件,影响润滑膜形成的因素有润滑方式、运动副相对运动速度、润滑剂的物理性质和运动副表面的粗糙度等。
滑动轴承的设计应根据轴承的工作条件,确定轴承的结构类型、选择润滑剂和润滑方法及确定轴承的几何参数。
润滑膜根据润滑方式的不同可分为:流体润滑膜与固体润滑膜;流体润滑膜是滑动轴承在流体介质润滑的情况下形成的具有一定抗压和缓冲性能的润滑膜;图1为流体润滑膜的形成过程;固体润滑膜为滑动轴承工作面材料本身具有较好的自润滑性能,在工作初始阶段逐步通过磨合磨损自润滑材料逐步转移到对磨件工作表面的凹坑中而形成的坚硬润滑膜;这对对磨件工作面的粗糙度有一定的要求,一般要求在Ra0.4~1.6之间;太光洁或太粗糙度表面都不利于润滑剂转移到工作面阻碍了润滑膜的建成;对固体润滑轴承来说一般要求是磨削面4到磨光面5(参考插图2);当固体润滑膜完全形成之后,轴与轴承之间的运动实际已经转变成润滑膜与轴承之间的摩擦运动,轴实际已不直接与轴承表面接触。
SF-1复合轴承的特性和结构SF-1复合轴承由金属基板,青铜粉和聚四氟乙烯(PTFE )组成。
其中金属基板(钢基/不锈钢基/铜基/铝基STEEL /STAINLESS STELL / BONZE/ALUMINUMBACKING )是提供较高的机械强度,烧结在钢板表面的0.2mm~0.3mm 厚度的青铜层将表面的聚四氟乙烯和钢板机械地结合起来,提高尺寸的稳定性,并能增强散热能力,表层的聚四氟乙烯和耐磨纤维的混合物则提供了很好的自润滑、耐磨损、低摩擦的性能,并且在正常使用过程中不会出现抱轴、卡轴的现象。
轴承的外表面电镀铜层或锡层(TIN-PLATING or COPPER PLATING ),有效地提高了轴套整体的耐腐蚀性能,同时方便了轴承的拆装与更换。
SF-1复合轴承材料构造图聚四氟乙烯(Polyteraflouroethylene )缩写为PTFE ,也称为teflon ,中文商品名称为“特氟隆”,“铁氟龙”,“特富隆”等,是目前为止,固体物质中摩擦系数较小的一种材质,可以不需要外界润滑,而摩擦系数却很低且有较好的化学稳定性。
该材料是有四氟乙烯经聚合而成的高分子化合物,是目前应用最广泛的的工程塑料,具有较广的温度使用范围,优异的化学稳定性,表面不粘性、突出的自润滑性能,优异的尺寸稳定性,极好的热稳定性。
SF-1复合轴承表面的面聚四氟乙烯和耐磨纤维的混合物,在正常的工作中呈现非常低的摩擦系数和磨损率,其和其它轴承材料的耐磨性能对比见表1.表1:在PV=336Kg/cm 2*m/min 的条件下试验。
材料 试验时间/h 磨损量/mm SF-1材料 1000 <0.025 含石墨的青铜 158 0.25 含油多孔性青铜 105 0.25 含油MoS 2的酚醛塑料 73 0.125 减磨石墨24 0.125 石棉物浸渍含MoS 2 0.8 0.125 尼龙 0.30.25SF-1复合轴承的物理机械性能SF-1复合轴承,它比单一塑料轴承,可提高承载能力20倍;导热系数50倍;降低线胀系数75%,从而改善了尺寸的稳定性,提高PV 值20倍左右。
氮化处理改性技术在轴承制造中的应用与发展方向氮化处理改性技术是一种将硅化钠和碳气体注入轴承制件表面,使其经过高温处理,形成一层高硬度、高抗磨损的氮化层的技术。
相比传统的热处理技术,氮化处理具有处理时间短、效果显著等优点,因此在轴承制造中得到了广泛的应用。
首先,氮化处理可以显著提高轴承制件的硬度和疲劳寿命。
在传统的热处理过程中,轴承表面仅经过文火处理,硬度较低,容易出现磨损和疲劳断裂的问题。
而氮化处理可以使轴承表面形成一层硬度高达1000-1200HV的氮化层,大大提高了轴承的硬度和抗磨损性能。
同时,氮化处理还能使轴承内部的细晶粒得到改善,提高了其的韧性和疲劳寿命。
其次,氮化处理可以提高轴承的耐腐蚀性和耐高温性能。
在氮化处理过程中,硅化钠和碳气体的注入可以改变轴承材料的化学成分和晶体结构,形成一层致密的氮化物层,阻止了外界腐蚀介质的侵蚀。
同时,氮化处理还可以提高轴承的耐高温性能,因为氮化层的熔点远高于轴承材料的熔点,能够有效抵抗高温环境下的软化和变形。
另外,氮化处理还可以改善轴承的表面润滑性能和减少摩擦损失。
由于氮化处理能够使轴承表面变得更加光滑,并且形成一层致密的氮化层,有效填平微小裂纹和孔洞,减少了表面的粗糙度和摩擦系数,从而提高了轴承的润滑性能和减少了摩擦损失。
这对于轴承的长时间稳定运转非常重要,能够延长轴承的使用寿命。
在未来的发展中,氮化处理技术还可以与其他表面处理技术相结合,进一步提高轴承的性能。
例如,可以将氮化处理与涂层技术结合,形成一层更加耐磨、耐腐蚀的涂层,进一步提高轴承的工作性能。
同时,还可以结合先进的材料和制造技术,开发出更加高性能的轴承材料,以适应高速、高负荷、高温等极端工况环境下的需求。
总之,氮化处理改性技术在轴承制造中具有广泛的应用前景。
通过提高轴承的硬度、疲劳寿命、耐腐蚀性能和润滑性能,可以大大提高轴承的工作性能和使用寿命,从而满足不同工况下的需求。
随着科技的进步和相关技术的不断改进,相信氮化处理技术在轴承制造中的应用会越来越广泛,发展方向更趋向于高性能、高可靠性的领域。
一、表面形貌(续)
一、表面形貌(续)
二、表面性质
晶体结构
体心
面心
密排六方
二、表面性质(续)
金属表面的晶格缺陷
二、表面性质(续)
二、表面性质(续)
三、表面的真实接触(续)
三、表面的真实接触(续)
接触面积计算
单一球体同光滑平面接触(赫兹接触)
简单模拟粗糙表面接触
结论:微凸峰的变形在
弹性条件下,真实接触面积与载荷的2/3次方成正比完全塑性条件下,真实接触面积与载荷成线性关系
粘着和犁沟理论
粘着{冷焊-剪断-剪切强度}
犁沟/变形{机械理论}
无润滑状态下金属副摩擦可忽略不计
一般,为[0.2,0.3],与实际情况不同原因是未考虑剪切作用对接触面积的影响,并
其他模型静电力模型
摩擦的影响因数
表面膜
减摩材料和摩阻材料
减摩材料
(粘着、剪切)
滑动轴承合金、复合材料摩阻材料
钢-钢
磨料磨损
磨料磨损
(1)磨料磨损形式
两体磨料磨损:
凿削式
三体磨料磨损:
高应力碾碎式
0.8 1.3
表面疲劳磨损
疲劳磨损
(1)材料硬度(2)润滑介质(3)环境(水分)
氧化、磨料、粘着磨损交替
(1)温度与环境气氛
温度升高,形成保护层较厚,
(2)循环次数、
(5)改善结构设计
硬度提高
有利于抗微动磨损
冲蚀磨损(3)冲击角度
(5)环境温度与介质气蚀磨损
耐磨设计
耐磨设计
摩擦学与润滑理论
粘压性
牛顿流体
粘温性。