最新分类变量资料的统计分析
- 格式:ppt
- 大小:1.01 MB
- 文档页数:85
分类资料的统计分析一、概念分类资料是指观测对象按照其中一种特征进行分类或分组的数据。
常见的分类资料有性别(男、女)、学历(小学、初中、高中、大学)、职业(医生、教师、律师等)。
分类资料中每个分类称为一类或一组,根据组别统计频数或百分比可以揭示不同分类间的差异和关系。
二、方法1.频数与频率分析:通过统计每个类别的个数,得到各类别的频数和频率(频次比),并绘制柱状图、饼图等图表,直观地展示不同类别的占比情况。
2.极差分析:对于有序分类资料,比如学历,可以计算最高和最低值的差距,该差距称为极差。
极差分析衡量了不同类别之间的距离,有助于比较不同类别在一些变量上的差异。
3.交叉分析:用于分析两个或多个分类资料之间的关系。
通过交叉表格(列联表)和卡方检验,可以计算出各类别之间的关联度,判断不同分类是否相互关联。
4.分类资料的描述性统计分析:主要包括计算百分比、计算平均数、计算方差等统计指标。
通过这些指标,可以对不同类别的分布情况进行综合分析。
三、实践应用1.人口统计学:年龄、性别、婚姻状况等是人口统计学中常见的分类资料。
通过对这些资料的统计分析,可以了解人口结构、人口变动趋势等,为制定人口政策提供参考。
2.市场调研:对于市场调研中收集到的消费者分类资料,可以通过频数分析和交叉分析揭示不同人群的消费偏好和购买行为,帮助企业制定更加精准的销售策略。
3.教育评估:对学生的学历、家庭背景等进行统计分析,可以了解学生群体的整体素质水平、教育资源配置情况等,为教育政策制定和学校招生计划提供依据。
4.健康管理:对医疗数据中患者的病种、治疗效果等分类资料进行统计分析,可以评估不同病种的流行趋势、治疗效果、药物副作用等,为医疗决策提供参考。
总之,分类资料的统计分析是统计学中的重要内容,通过对分类资料的频数、频率、交叉分析等方法进行利用,可以揭示分类之间的差异、关系和趋势,为各个领域的决策者和研究者提供参考依据。
描述分类变量资料的主要统计指标在描述统计中,经常要描述两个变量之间的关系,这就是指标。
描述分类变量资料的主要统计指标有:平均数(AV)、中位数(median)、众数(major)、方差(F)、标准差(SD)、相关系数(r)、误差(SEM)、信赖区间(CI)、 F统计值等。
一、全距n。
平均数在统计学上指全部观察单位的算术平均数,即众数、中位数和方差的算术平均数。
它反映了各个变量在总体中所占的比例。
用公式表示为n=AV。
例如:成人牙齿脱落率调查,共调查成人2046人,其中有根以上完全不能保留者占4.5%,按标准脱落百分数计算,每根牙齿应脱落2%。
则该项调查结果的全距是2.5%。
全距愈小说明变量在总体中所占的比例愈大,代表性愈强。
二、方差 1。
方差又称离散系数或变异系数。
由于各个观察单位所得的资料是来自不同的变量,因而这些资料都是不可比的。
但在抽样调查时,要使各个单位取得同样的结论,在对总体进行分析时,就必须把各单位的观察结果加以平均化,从而消除了由于来源不同引起的资料不可比问题,并使各单位的离散状况趋于一致。
这就需要用变异系数将各单位的资料加以平均,使其成为总体的平均资料。
因此,方差就是各个单位的变异程度的一种度量。
方差的符号是σ,单位是标准差(SD)。
2。
标准差的计算公式为:SD=∑[(X-Y)÷2]×100%。
式中SD表示标准差。
标准差的大小是随研究的目的而异的,通常用于某些问题的检验或推断。
如:某县的全年工业总产值的多少与全年粮食总产量的多少成正比;销售额的增长速度快慢与企业利润成正比。
对于全距,方差,标准差,原因,方差是概率统计的专有名词。
在实际工作中,我们通常简单地用:均数×方差=总体标准差(均值×方差=总体方差),来概括变量之间的关系。
当然,我们在阅读统计资料时,有时也会碰到一些专门用语,如果只看题目或只看这些专门用语,也很难理解题意,但只要知道它们的含义就行了。
分类变量资料的统计分析详细讲解资料的统计分析通常包括描述统计和推断统计两个方面。
描述统计主要是对变量的单个特征进行分析,常用的统计指标包括频数、比例、均值、中位数、众数、标准差等;推断统计则是在样本数据的基础上推断总体数据的特征,常用的方法包括假设检验、方差分析、回归分析等。
本文将以分类变量为例,详细介绍分类变量资料的统计分析方法和步骤。
首先,分类变量是一种相互独立、不可顺序比较的变量,常见的示例包括性别、职业、学历等。
对于分类变量资料的统计分析,首先需要进行数据的整理和描述。
数据整理包括去除缺失值、异常值和重复值等处理。
应根据实际情况选择合适的处理方法,常用的方法有均值填充、删除等。
同时,需要将数据进行编码或离散化处理,便于后续的分析。
数据描述主要包括频数及比例的统计,可以用来描述分类变量的分布情况。
通过计算每个类别的频数和比例,可以获得分类变量的基本特征。
同时,可以使用图表来展示分类变量的分布情况,如饼图、柱状图等。
接下来,可以对分类变量与其他变量之间的关系进行分析。
常用的方法有卡方检验和列联表分析。
卡方检验适用于两个分类变量之间的关系检验,可以用来判断两个分类变量是否相关;列联表分析则可以用来描述两个分类变量之间的关系程度。
通过分析发现两个或多个分类变量之间的关联关系,可以更好地理解数据。
此外,对于分类变量的统计分析还可以进行组内和组间的比较。
组内比较主要是对同一分类变量的不同类别进行比较,常用的方法有t检验和方差分析;组间比较则是对不同分类变量之间的差异进行比较,可以使用相关分析和回归分析等方法。
最后,需要进行结果的解释和报告。
对分类变量资料的统计分析得出的结果进行解读,并进行相关性讨论。
通过各种统计方法对变量进行分析,报告结果可以提供决策者一个更全面的了解。
总结起来,分类变量资料的统计分析主要包括数据整理和描述、关联分析、比较分析和结果解释等步骤。
通过这些步骤可以更好地分析分类变量的特征、关系和差异,为实际问题的解决提供有力的支持和参考。
实习二统计描述第164~180页实习二统计描述医学统计资料类型¾数值变量资料:又称为计量资料。
变量值是定量的,有单位的,表示为数值的大小。
¾无序分类资料:又称为计数资料。
变量值是定性的,没有单位,表示为相互独立的类别。
¾有序分类资料:又称为等级资料。
变量值是定性的,没有单位,各类别具有程度上的差异。
注:不同类型的资料,统计方法不同;各种类型的资料之间是可以相互转化的。
一、数值变量资料的统计描述统计描述包括两个方面:集中趋势的描述和离散趋势的描述一、数值变量资料的统计描述(一)数值变量资料的频数表频数表(frequency table):当变量值或者观测值较多时,将变量值分为适当的组段,统计各组段中相应的频数(或者人数),以描述数值变量资料的分布特征和分布类型。
一、数值变量资料的统计描述(一)数值变量资料的频数表频数表的用途1.描述数值变量资料的分布特征集中趋势(central tendency):频数最多的组段代表了中心位置(平均水平),从两侧到中心,频数分布是逐渐增加的。
离散趋势(tendency of dispersion):从中心到两侧,频数分布是逐渐减少的。
反映了数据的离散程度或者变异程度。
一、数值变量资料的统计描述(一)数值变量资料的频数表频数表的用途2.描述数值变量资料的分布类型正态分布:集中位置居中,左右两侧频数基本对称。
常见近似正态分布。
偏态分布:集中位置偏向一侧,频数分布不对称。
正偏态分布:集中位置偏向数值小的一侧或者左侧,有较长的右尾部。
负偏态分布:集中位置偏向数值大的一侧或者右侧,有较长的左尾部。
一、数值变量资料的统计描述(二)数值变量资料的频数分布图及正态曲线直方图及近似正态分布直方图及正偏态分布(二)数值变量资料的频数分布图及正态曲线一、数值变量资料的统计描述(三)集中趋势指标描述1.算数均数(均数mean )适用于正态分布或者近似正态分布总体均数:µ;样本均数:一、数值变量资料的统计描述一、数值变量资料的统计描述(三)集中趋势指标描述2.几何均数(geometric mean,G)适用于一种特殊的偏态分布资料:等比资料(常见于抗体滴度)。
分类变量资料的统计分析分类变量是一种在研究或分析中常见的类型数据,它描述了被观察个体或对象之间的不同特征,可以将其分为不同的类别或组。
在统计学中,对分类变量的分析可以帮助我们了解不同类别的分布情况、比较不同类别之间的差异、探索不同类别与其他变量之间的关系等。
本文将介绍分类变量资料统计分析的一些常用方法。
首先,我们可以通过计算频数和频率来描述分类变量的分布情况。
频数是指每个类别中观察到的个体或对象的数量,频率则是频数除以总数后的比例。
通过绘制条形图或饼图,可以直观地展示分类变量不同类别的频数或频率分布,帮助我们了解变量的整体情况。
其次,我们可以对不同类别之间的差异进行比较。
其中一种常用的方法是卡方检验,它用于检验两个或多个分类变量之间是否存在显著性差异。
卡方检验的原理是通过比较观察到的频数与期望频数之间的差异来判断差异是否显著。
比如,我们可以用卡方检验来确定两个不同群体之间的分布是否存在显著差异。
此外,分类变量的统计分析还可以探索其与其他变量之间的关系。
当我们有一个分类变量和一个或多个连续变量时,可以使用方差分析(ANOVA)来检验分类变量对连续变量的影响是否显著。
方差分析通过比较不同类别下的连续变量的均值来判断差异是否显著。
另外,我们还可以使用列联表分析来研究两个或多个分类变量之间的关联关系,例如,我们可以通过计算卡方值来确定两个分类变量之间的关联程度。
此外,还有一些其他常用的分类变量分析方法。
比如,在研究中,我们经常遇到多个分类变量之间的关联关系,可以使用多项Logistic回归模型来分析这些多分类变量之间的依赖关系。
另外,如果我们想预测或分类新的个体或对象所属的类别,可以使用分类树或逻辑回归等方法进行建模和预测。
综上所述,分类变量的统计分析是一种有价值的工具,可以帮助我们理解和揭示数据背后的模式和关联关系。
通过对分类变量的分布和差异进行描述分析,我们可以更好地理解数据,并从中提取有用的信息。
分类数据的统计分析开设目的医学科研中分类数据多见常用的分类数据的统计分析方法 软件实现过程讲授内容列联表中变量关联(association)的假设检验 2×2表行×列表分层2×2表CMH方法解释变量与反应结果间联系的统计模型 LOGISTIC回归模型Poisson回归模型对数线性模型成绩评定到课次数(20%) 平时作业(30%) 期终测验(50%)参考资料分类数据的统计分析及SAS编程Categorical Data Analysis Using the SAS SystemSAS-Base and SAS-STAT User's Guide _Version 8SPSS 使用教程分类数据定义分类数据是指反应变量(应变量)为分类变量,而解释变量(自变量)可是分类变量或连续变量。
列联表中变量关联(association)的假设检验 解释变量与反应结果间联系的统计模型。
分类反应变量的尺度分类尺度: 分类尺度是两种可能的结果顺序尺度: 结果不止两种可能性,而且有顺序关系离散计数: 结果本身是离散计数名义尺度: 结果多于两类,而类别之间并没有顺序关系分组计数: 数据本身是连续数据,经分组后,反应变量为在不同组中的例数。
分类数据分析策略¾假设检验对建立的一个关于联系(association)的假设进行检验,说明列联表的行与列之间是否有关。
¾建立模型用建立模型的方法可求得各参数值,说明各因素的作用。
通常用最大似然估计或加权最小二乘法估计。
2×2 列联表资料χ2二项分布一批产品共N 件,其中有M 件次品,进行有放回抽样检查,每次从这批产品中任意取出一件,取出的产品再放回去,连续取n 次,共取出n 件产品,则取出的n 件产品中的次品数X 服从二项分布X =0,1,…,n(1)()X nX n X P P X C P −−=Kappa 值的意义Kappa值的取值范围是|Κ| ≤1。
人群健康研究的统计学方法(四)1、率表示()A、某现象发生的频率或强度B、事物内部各组成部分所占的比重或分布情况C、两个有联系指标之比D、某事物内部各组成部分出现的频率2、以下关于率的抽样误差代表意义描述错误的是()A、率的抽样误差越小,说明率的标准误越小B、率的抽样误差越小,用样本推论总体时,可信程度越低C、率的抽样误差越小,用样本推论总体时,可信程度越高D、率的抽样误差越大,说明率的标准误越大3、相对比=A/B,说明()A、A为B的若干倍或百分之几B、A、B两个指标只可以为绝对数C、性质肯定相同D、肯定是定性资料4、以下关于应用相对数时的描述正确的是()A、分析时可以以构成比代替率B、观察单位数不等的几个率的平均率,不能将这几个率直接相加求其均值C、所比较资料的内部构成不一定相同D、样本率或构成比的比较不必进行假设检验5、()在表的左侧,表明被研究事物的主要特征,相当于句子的主语A、备注B、标题C、纵标目D、横标目人群健康研究的统计学方法(四)北京大学公共卫生学院刘爱萍一、分类变量资料的统计分析(一)分类变量资料的统计描述1 .相对数常用的指标及其意义相对数主要涵盖:率、构成比和相对比。
率是表示某现象发生的频率或强度,常用百分率、千分率、万分率或十万分率等表示。
它的计算公式是:(实际发生某现象的观察单位数 / 可能发生该现象的观察单位总数)×比例基数。
构成比是说明事物内部各组成部分所占的比重或分布情况,用百分数表示。
构成比 = (事物内部某一组成部分的观察单位数 / 同一事物各组成部分的观察单位总数)× 100% 。
构成比的特点有 : 它的值在 0 和 1 之间变动。
当某一部分构成比发生变化时,其他部分的构成比也相应地发生变化。
相对比是指两个有联系指标之比( A/B ),常以百分数或者倍数表示。
它说明 A 是 B 的若干倍或百分之几,指标可以是绝对数,也可以是相对数,性质可以相同,也可以不同,可以是定性资料,也可以是定量资料。