同步硝化反硝化综述
- 格式:doc
- 大小:57.50 KB
- 文档页数:9
3.7 硝化与反硝化废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
一、硝化与反硝化(一) 硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
反应过程如下:亚硝酸盐菌NH4++3/2O2 NO2-+2H++H2O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐:硝酸盐菌NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。
上诉两式合起来写成:NH4++2O2 NO3-+2H++H2O-△E △E=351KJ综合氨氧化和细胞体合成反应方程式如下:NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。
同步硝化反硝化脱氮机理及影响因素研究贾艳萍*贾心倩马姣(东北电力大学化学工程学院,吉林吉林132012)摘要:本文结合国内外研究,从宏观环境理论、微环境理论以及微生物学理论三方面阐明了同步硝化反硝化的脱氮机理,并对同步硝化反硝化的影响因素进行了综述,提出了该技术今后的研究方向。
关键词:同步硝化反硝化;脱氮机理;影响因素引言氮、磷等物质排入江河易导致水体的富营养化,传统脱氮理论认为,废水中氨氮必须经硝化反应和反硝化反应过程,才能够达到脱氮目的,这是因为硝化和反硝化过程中微生物生长的环境有很大差异,硝化反应需要有氧气存在的环境,而反硝化则需在厌氧或缺氧环境中进行。
近年来,国内外学者通过大量的试验对工程实践中遇到的现象和问题进行了研究,以传统的生物法脱氮理论作基础,发现硝化反应和反硝化反应可以在同一操作条件下同一反应器内进行,即同步硝化反硝化(简称SND),它使传统工艺中分离的硝化和反硝化两个过程合并在同一个反应器中,避免了亚硝酸盐氧化成硝酸盐及硝酸盐再还原成亚硝酸盐这两个多余的反应,从而可节省约25%的氧气和40%以上的有机碳,在反应过程中不需要添加碱度和外加碳源。
与传统工艺相同处理效果情况下减少了20%的反应池体积,需要更低的溶解氧浓度(1.0mg/L左右),无混合液的回流以及反硝化搅拌设施[1,2]。
因此,SND简化了生物脱氮工艺流程,减少了运行成本。
它突破了传统的生物脱氮理论,简化了脱氮反应发生的条件和顺序,强化了生物脱氮过程,使传统的生物脱氮理论发生了质的飞跃。
1 同步硝化反硝化作用机理SND的脱氮机理可以从宏观环境理论、微环境理论和微生物学理论三个方面加以解释1.1宏观环境理论一般来说,反应中所需的DO都是通过曝气来供给,不同的曝气装置会导致反应器内DO的分布状态不同。
但是在好氧条件下的活性污泥脱氮系统中,无论哪种曝气装置都无法保证反应器中的DO在废水中分布均匀,例如:在SBR反应器中,曝气并不能保证整个反应器中DO完全处于均匀的混合状态,缺氧区域的存在就为该反应器中成功实现SND提供了可能。
硝化反硝化功能
硝化反硝化功能是指生物体内的一种重要代谢过程,它涉及到氮的转化和循环,对于维持生态系统的平衡和生物体的生长发育具有重要意义。
硝化是指将氨氮转化为硝酸盐的过程,这个过程由硝化细菌完成。
硝化细菌是一类广泛存在于土壤和水体中的微生物,它们能够利用氨氮和氧气进行代谢,产生硝酸盐和水。
硝酸盐是一种重要的植物营养物质,能够提供植物所需的氮元素,促进植物的生长发育。
反硝化是指将硝酸盐还原为氮气的过程,这个过程由反硝化细菌完成。
反硝化细菌是一类生活在缺氧环境中的微生物,它们能够利用硝酸盐和有机物进行代谢,产生氮气和二氧化碳。
反硝化过程能够将土壤中的硝酸盐还原为氮气,从而减少土壤中的氮素含量,防止氮素过度积累对生态系统造成的负面影响。
硝化反硝化功能在生态系统中起着重要的作用。
它能够维持土壤中氮素的平衡,促进植物的生长发育,同时还能够减少氮素的流失和污染,保护生态环境。
此外,硝化反硝化功能还能够影响大气中的氮气含量,对大气环境的质量和气候变化产生影响。
硝化反硝化功能是生物体内的一种重要代谢过程,它对于维持生态系统的平衡和生物体的生长发育具有重要意义。
我们应该加强对硝化反硝化功能的研究,探索其在生态系统中的作用机制,为保护生
态环境和促进可持续发展做出贡献。
水体中的硝化和反硝化是指氮循环过程中的两个重要环节,对水体生态系统的氮素转化具有重要影响。
1. 硝化:硝化是指氨态氮转化为硝态氮的过程,主要由两个步骤组成:氨氧化和亚硝化。
在氨氧化过程中,氨被氨氧化细菌氧化为亚硝酸,然后在亚硝化过程中,亚硝酸再被亚硝化细菌氧化为硝酸。
2. 反硝化:反硝化是指硝态氮还原为气态氮气或氧化亚氮的过程,主要由一些厌氧细菌完成。
这些细菌利用硝酸离子或亚硝酸盐作为电子受体,并将其还原为氮气或氧化亚氮,释放出氮气或氧化亚氮到大气中。
硝化和反硝化在水体中起着至关重要的作用:
-硝化:有助于氮的循环,将氨态氮转化为硝态氮,提供植物所需的养分,促进水生植物的生长。
-反硝化:有助于减少水体中的硝态氮含量,防止水体富营养化和藻类过度生长,维持水体生态平衡。
水体中的硝化和反硝化过程受到环境因素的影响,如温度、氧气浓度、微生物种类和数量等。
合理管理水体中的氮素循环,有助于维护水生态系统的健康和平衡。
《CANON工艺启动及其影响因素研究》篇一一、引言随着现代工业技术的发展,环境友好型的污水处理技术在各行各业的应用逐渐成为关键的研究课题。
其中,CANON(完全厌氧氨氧化-同步硝化反硝化)工艺作为一种高效、节能的污水处理技术,得到了广泛关注。
本文旨在探讨CANON工艺的启动过程及其影响因素,为该工艺的优化和推广提供理论支持。
二、CANON工艺概述CANON工艺是一种在单一反应器中实现完全厌氧氨氧化(Anammox)和同步硝化反硝化(SND)的污水处理技术。
该工艺具有节能、高效、低污泥产量等优点,对于高氨氮含量的废水处理具有重要意义。
CANON工艺通过厌氧环境下的生物膜作用,使废水中的氨氮通过生物作用直接转化为氮气,达到降低水体中氮含量的目的。
三、CANON工艺启动CANON工艺的启动是决定其能否成功应用的关键步骤。
一般而言,启动过程需要控制合适的条件,如温度、pH值、底物浓度等,以促进生物膜的形成和生物反应的进行。
具体步骤如下:1. 底物调整:根据实际废水性质,适当调整废水中的底物浓度,以利于生物膜的形成。
2. 温度控制:在适宜的温度范围内,通过温控措施维持反应器内稳定的温度条件,以利于生物活动。
3. pH值调整:调节废水pH值至适宜范围,有利于提高生物膜的活性及稳定性。
4. 生物膜培养:通过接种高活性的生物膜,并逐步适应实际废水环境,形成稳定的生物膜系统。
四、影响因素研究CANON工艺的成功启动和稳定运行受多种因素影响,主要包括以下几个方面:1. 温度:适宜的温度范围有利于生物膜的生长和代谢活动。
研究表明,在适宜的温度条件下,CANON工艺的脱氮效率会显著提高。
2. pH值:pH值对生物膜的活性和稳定性具有重要影响。
在适宜的pH值范围内,生物膜的活性增强,有利于提高CANON 工艺的脱氮效果。
3. 底物浓度:底物浓度是影响CANON工艺运行效果的关键因素之一。
适当的底物浓度有利于生物膜的生长和代谢活动,但过高的底物浓度可能导致生物膜的过度增殖和脱落,影响系统稳定性。
硝化和反硝化脱氮效率
硝化和反硝化是生物脱氮过程中的两个重要步骤,其脱氮效率受到多种因素的影响。
硝化过程是由自养型好氧微生物完成的,主要包括两个步骤:氨氧化和亚硝酸盐氧化。
这个过程将氨氮(NH4+)转化为硝酸盐(NO3-),其中氨氧化细菌将氨氮转化为亚硝酸盐,而亚硝酸盐氧化细菌则将亚硝酸盐进一步氧化为硝酸盐。
硝化细菌的活性受温度、pH、溶解氧、碳源和有毒物质等多种环境因素的影响。
在适宜条件下,硝化细菌能够高效地将氨氮转化为硝酸盐。
反硝化过程则是由异养型微生物在缺氧条件下完成的,主要利用硝酸盐作为电子受体进行呼吸作用,并产生氮气(N2)或一氧化二氮(N2O)。
这个过程需要有机碳源作为电子供体,同时还需要适宜的温度、pH和缺氧环境。
反硝化细菌的活性同样受到多种环境因素的影响,如碳源类型、碳氮比、温度、pH和有毒物质等。
关于硝化和反硝化的脱氮效率,这取决于多种因素的综合作用。
在适宜的条件下,硝化细菌和反硝化细菌能够高效地完成各自的转化过程,从而实现较高的脱氮效率。
然而,在实际应用中,由于环境因素的复杂性和微生物群落的多样性,硝化和反硝化的脱氮效率可能会有所不同。
此外,为了提高脱氮效率,可以采取一些措施,如优化反应条件、选择合适的微生物菌种、提供充足的碳源等。
同时,还可以考虑采用组合工艺或联合其他技术,如厌氧氨氧化等,以进一步提高脱氮效果。
总之,硝化和反硝化的脱氮效率受到多种因素的影响,需要通过优化反应条件和选择合适的微生物菌种等措施来提高脱氮效果。
SBR工艺同步硝化反硝化脱氮摘要:文中采用内径为300mm,高为650mm 的圆柱形SBR 反应器进行试验,探讨SBR 工艺同步硝化反硝化现象及其脱氮效果。
SBR 系统采用鼓风曝气,用温控仪控制水温在所要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,用DO 仪和pH计分别在线判断SBR 反应器的运行状况,进行研究SBR 系统对有机物和氮的去除过程及其脱氮效果。
结果表明:溶解氧浓度控制在 3-5mg/L 时,其同步硝化反硝化现象明显,脱氮效果最佳,总氮去除率可达80%,CODCr 的去除率达 90%。
采用同步硝化反硝化脱氮还可以克服污水中碱度不足的现象,由于反硝化不断产生碱度,补充了微生物对有机物和含氮化合物的降解引起水中pH 值下降的过程。
当温度在18~25℃的变化区间内,SBR 系统氨氮的去除比较稳定,说明SBR 工艺可实现常温同步硝化反硝化。
关键字:SBR系统硝化反硝化脱氮在反应初期1. 引言脱氮是当今水污染控制领域研究的热点和难点之一,为了高效而经济地去除氮,研究人员开发了许多工艺和方法。
根据传统的脱氮理论,同一工艺中不可能同时进行硝化反硝化,然而,最近几年国外有文献报道了同步硝化反硝化现象,尤其是有氧条件下的反硝化现象确实存在于各种不同的生物处理系统中[1],本文针对序批式活性污泥(SBR)工艺中的同步硝化反硝化现象及其脱氮效果进行了研究。
2. 试验材料与方法2.1 试验装置试验所用SBR反应器为圆柱形,内径为300mm,高为650mm,有效容积为32L。
采用鼓风曝气,以转子流量计调节曝气量,用温控仪将反应器内的水温控制在所要求的范围内,由时间程序控制器控制进水、闲置、曝气、沉淀和排水全过程,并根据需要,选定各段的启动、关闭时间。
用DO 仪和pH 计分别在线测定各反应阶段的DO 和pH 值,并根据反应阶段DO 和pH 值的变化判断SBR 反应器的运行状况,及时加以调整。
AO工艺的硝化与反硝化原理解释这篇文章说透了!有关AO工艺的学问汇总,看完小白变专家!AO工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。
在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮,在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用化和态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时去除碳和氢的效果。
这里着重介绍生物脱氮原理。
(1)生物脱氮的基本原理:传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。
①氨化( Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程。
②硝化( Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2二和NO3的过程。
③反硝化( Denitrification):废水中的NO2和NO3在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程,其中硝化反应分为两步进行:亚硝化和硝化。
硝化反应过程方程式如下所示:①亚硝化反应:NH4++1.5O2→NO2-+H2O+2H+②硝化反应:NO2-+0.5O2→NO3-③总的硝化反应:NH4++2O2→NO3-+H2O+2H+反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电子供体为例):第一步:3NO3-+CH3OH→3NO2+2H2O+CO2其次步:2H++2NO2-+CH3OH→N2+3H2O+CO2第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO2除了上述脱氮原理外,还有一种短程反硝化作用可以脱氮,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2-N,但在A 池NO2同样被作为受氢体而进行脱氮(上述其次步可知);再者在A 池NO2-同样也可和NH4+进行脱氮,即短程反硝化的过程可以表示为:NH4++NO2→N2+2H2O。
污水短程硝化反硝化和同步硝化反硝化生物脱氮中N2O释放量及控制策略污水短程硝化反硝化和同步硝化反硝化生物脱氮中N2O释放量及控制策略引言:近年来,随着全球人口数量的不断增加和城市化进程的加速,污水处理厂的建设和运营成为了保障城市环境卫生的重要组成部分。
然而,污水处理过程中产生的氧化亚氮(N2O)作为一种强效温室气体,严重影响着大气环境质量和气候变化。
污水处理厂中,生物脱氮是一种常见的途径,通过提高污水中硝酸盐的浓度,利用硝化菌和反硝化菌将氮化合物转化为氮气(N2)从而减少有害氮元素的排放。
然而,生物脱氮过程中产生的N2O却会被释放到大气中,成为气候变化的重要驱动因素。
本文将探讨污水处理厂中两种生物脱氮方式(短程硝化反硝化和同步硝化反硝化)中N2O的释放量及控制策略。
一、污水短程硝化反硝化生物脱氮中N2O释放量及控制策略1. N2O的产生机理短程硝化反硝化是指在同一污水处理单元中,通过适当调控氧气和底物质量浓度,使硝化和反硝化反应在同一生物体系中进行。
在短程硝化反硝化过程中,硝酸盐通过硫酸盐处于氧化态和还原态之间的转化,从而先后氧化和反硝化的反应发生在同一个微环境中。
然而,短程硝化反硝化过程中的氧化底物和反硝化底物的不完全利用会导致N2O的产生。
2. N2O的释放量评估目前,常用的评估N2O释放量的方法有:质量平衡法、荧光光谱法和模型模拟法等。
质量平衡法通过测量进入和离开系统的N2O质量,计算N2O的释放量。
荧光光谱法则是通过N2O分子在特定波长下的荧光强度与其浓度之间的关系,来测定N2O的释放量。
模型模拟法则是通过建立硝化反硝化反应的动力学模型,考虑不同因素对N2O释放的影响,来预测N2O的释放量。
3. 控制策略研究控制N2O的释放量是实现生物脱氮效果和环境保护的重要方面。
目前,已有一些控制策略被提出,如调控DO(溶解氧)浓度、限制氧供、减少有机负荷等。
研究表明,通过适当调节DO浓度,可以达到降低N2O释放量的效果。
同步异养硝化—好氧反硝化是个啥?在目前的污水处理中我们脱氮用到的是硝化反硝化技术大家都知道硝化细菌是好氧自养菌反硝化细菌是缺氧异养菌这两种细菌都比较娇生惯养我们运营人员得小心伺候不然分分钟就让你氨氮超标但是科学家们正在研究的另一种脱氮细菌叫做异养硝化—好氧反硝菌(简称HN‐AD菌)就比较耐操了如果可以稳定用于水处理行业那我们运营人员就省心太多了没错,今天要讲的就是异养硝化—好氧反硝化在说异养硝化—好氧反硝化之前我们先来梳理一下▼传统的硝化反硝化过程1、硝化过程所谓硝化就是将氨氮转化为硝酸盐这个过程有两类微生物参与一种是亚硝酸盐菌一种是硝酸盐菌统称为硝化细菌这两种微生物在硝化反应中分工很明确首先是亚硝酸盐菌团伙上场把氨氮转化为亚硝酸盐然后兄弟团伙硝酸盐菌上场把亚硝酸盐转化为硝酸盐2、反硝化过程所谓反硝化就是把上一步中产生的硝酸盐和亚硝酸盐通通转化为N2产生的氮气直接从水中溢出从而实现脱氮的目的这个过程也分为两步首先是硝酸盐转化为亚硝酸盐然后亚硝酸盐再转化为NO、N2O和N2 参与的微生物是反硝化菌那么▼什么是异养硝化—好氧反硝化菌异养硝化就是异养微生物在好氧条件下将还原态N (包括有机态N)氧化为NO2-和NO3-的过程反硝化大家都知道需要严格的缺氧条件而好氧反硝化颠覆了传统认知它能够在有氧条件下进行反硝化过程同步异养硝化—好氧反硝化菌就是既能够进行异养硝化又可以在有氧的条件下进行反硝化的一类细菌既然目的是脱氮那么▼异养硝化—好氧反硝化过程中氮是如何转化的呢传统氮代谢的一般途径上面已经说过了总结一下就是第一步↓NH4+ → NH2OH → NO2- → NO3- 第二步↓NO3- →NO2‐→ NO → N2O → N2 而异养硝化—好氧反硝化中氮的代谢途径只能说尚不清楚这也是它尚未稳定应用于污水处理的因素之一从已经分离出来的异养硝化—好氧反硝化菌株来看它们的种类繁多、分布广泛想要弄清楚它的代谢机理和代谢途径确实不容易目前大多数代谢途径研究主要集中于相关酶系研究以及根据测定代谢产物推测氮代谢途径一些异养硝化-好氧反硝化菌的脱氮特性如下表↓来源:《异养硝化-好氧反硝化细菌的研究进展》。
__________________________________________________ __________________________________________________ 同步硝化反硝化研究进展 摘要:同步硝化反硝化工艺同传统的生物脱氮工艺相比,可以节省碳源,减少曝气量,减少设备运行费用等优点,具有很大的研究应用前途。本文结合国内外研究,介绍其主要机理,分析同步硝化反硝化实现条件和影响因素,并且提出了研究展望。 关键词:同步硝化反硝化;微环境;生物脱氮;好氧反硝化
Study Progress on Simultaneous Nitrification and Denitrification Abstract: Simultaneous nitrification and denitrification (SND) has some obvious merits in comparison with traditional method for nitrogen removal. This method could reduce energy consumption and construction cost. The paer made a summary on current domesticand foreign study status of simultaneous nitrification and denitrification (SND) in waste water treatment, and made a theoretical explanation for the phenomenom of nitrification and denitrification.The author alsosummarized the practice and influencing facts of SND process and put forward some suggestions for futher study of SND. Key words: Simultaneous nitrification and denitrification;Microbiology;Biological nitrogen removal; Aerobic denitrification __________________________________________________
__________________________________________________ 前言: 根据传统生物脱氮理论,脱氮途径一般包括硝化和反硝化2个过程,硝化过程是氨通过亚硝酸盐向硝酸盐的自养型转换,主要是由化能无机营养菌—硝化细菌完成的,反硝化过呈程则被认为是在严格的厌氧条件下完成的。硝化和反硝化2个过程需要在2个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中进行。然而,最近几年国外有不少实验和报道证明存在同步硝化反硝化(Simultaneous Nitrification and Denitrification, 简称SND),尤其是有氧条件下的反硝化现象确实存在于不同的生物处理系统中, 如生物转盘、SBR、氧化沟、CAST、MBR、SMBR等工艺。在SND工艺中,硝化反应的产物可直接成为反硝化反应的底物,因此,整个反应过程加快,水力停留时间可缩短,反应器容积也可相应减小。在废水脱氮工艺中,有机物氧化、硝化和反硝化在反应器中同时实现,既提高脱氮效果,又节约了曝气和混合液回流所需的能源。另外在SND工艺中,反硝化反应中所释放出的碱度可部分补偿硝化反应所需要的碱,使系统的pH值相对稳定,在反应过程中,碳源对硝化反应有促进作用,同时也为反硝化提供了碳源,减少或使系统无需添加外碳源。目前国内外学者也越来越多的关注SND技术的发展,并且进行了一些实验性的研究和应用。 1 同步硝化反硝化的机理研究 1.1 微环境理论 微环境理论是从物理学角度对同步硝化反硝化现象进行解释,该理论考虑活性污泥和生物膜的微环境中各种生态因子(如溶解氧、有机物、NO2- 或NO3-等物质)的传递与变化,各类微生物的代谢活动及其相互关系,以及微环境的物理、化学和生物条件或状态的变化。微环境理论认为:由于微生物个体形态非常微小,一般属微米级,影响生物的生存环境也是微小的,而宏观环境的变化往往会导致微观环境的变化或不均匀分布,从而影响微生物群体或类型的活动状态,并在某种程度上出现宏观环境与不一致的现象。同步硝化反硝化微__________________________________________________ __________________________________________________ 环境理论是建立在好氧硝化和缺氧反硝化相互独立的理论之上,主要强调DO浓度和污泥絮凝体尺寸或生物膜厚度的作用。许多研究表明,溶解氧控制在0.5mg/L~1.0mg/L时,可以在活性污泥或生物膜体系中获得较高程度的同步硝化反硝化作用,而在相同溶解氧浓度下,同步硝化反硝化程度受污泥絮凝体尺寸和生物膜厚度影响。 1.2 微生物学理论 在用生物转盘处理垃圾渗滤液时,用机械方法使生物膜均质,以破坏可能存在的厌氧区,结果发现在氧的浓度为1mg/L且未加碳源的条件下,有近90%的氨氮去除,但只有少量的硝酸盐产生,也未发现亚硝酸盐的积累。他们推测在生物膜上生长着一群自氧型微生物可以进行好氧反硝化,但也不排除存在异养型硝化菌的可能性。20 世纪80 年代以来,生物科学家研究发现微生物如荧光假单胞菌( Pseudomonas flures2 cens)、粪产碱(Alcaligenes facealis)、铜绿假单胞菌(Pseudomonas aeruginos)、致金色假单胞菌(Pseudomonasaureofaciena)等都可以对有机或无机氮化合物进行异养硝化。与自养型硝化菌相比较,异养型硝化菌的生长速率快、细胞产量高,要求的溶解氧浓度低,能忍受更酸性的生长环境。 反硝化一般是反硝化细菌在缺氧或低溶解氧条件下利用有机物的氧作为能量来源,以我NO2-和NO3-作为无氧呼吸时的电子受体而实现。国内外文献报道在实验室里进行硝化细菌纯培养和混合培养以及处理垃圾渗透液的研究中均发现了好氧反硝化现象的存在。好氧反硝化细菌和异养硝化细菌的发现,打破了传统理论认为的硝化反应只能由自养型细菌完成和反硝化只能在厌氧条件下进行的观点。而且Robertson认为好氧反硝化菌也能进行异养硝化,这样反硝化菌就可以在有微量氧存在的条件下直接把氨氮转化为气态产物去除,就此提出了好氧反硝化和异养硝化的工作模型,如图2所示。Thiosphaera pantotropha 以及其他好氧反硝化菌利用硝酸盐/亚硝酸盐的呼吸作用(好氧反硝化)、氨氧化(异氧硝化)以及最后一步中聚β羟丁酸(PHB)的形成作为过量还原能量的转换。同时, Robertso指出好氧反硝化和异养硝化的反应速率随溶解氧浓度的增加而减小。 2 影响同步硝化反硝化的因素 2.1 溶解氧(DO) 控制系统的溶解氧在一定范围内,对获得高效的同步硝化反硝化具有极其重要的意义。系统中的DO首先应足以满足有机物的氧化及硝化反应的需要,使硝化反应充分,其次DO浓度又不能太高,以便能在微生物絮体内产生DO浓度梯度,促进缺氧微环境的形成,同时__________________________________________________ __________________________________________________ 使系统中有机底物不致于过度消耗而影响了反硝化碳源的需求。对不同的水质和不同粒径、密实度的污泥絮体, DO浓度的控制也会有所不同。资料表明,各种不同构筑物发生SND的DO浓度范围也各异:四槽式氧化沟为0.3mg/L~0.8mg/L,半间歇式活性污泥法工艺为0.3mg/L~.5 mg/L,附着生长反应器系统中为1.0mg/L~2.0mg/L等,大多生产实验性的结果为0.5mg/L~1.0mg/L。对于不同的水质和不同的工艺,实现SND的具体DO浓度水平需要在实践中确定。可以肯定, SND系统中的DO比传统生物脱氮工艺中的DO低得多,属于低DO下的硝化反硝化脱氮工艺,这显然具有重要的实践意义。 2.2 污泥有机负荷(F/M) 污泥有机负荷是影响同步硝化反硝化效果的另一关键因素,有机负荷增加会降低氨氮的去除率。溶解氧浓度低而污泥负荷相对高时,微生物生存的微环境中缺氧微环境占有较大比例,硝化反应受到抑制;随着污泥有机负荷的降低,微生物生存的微环境形成好氧、缺氧微环境共存并达到平衡,同时硝化反硝化取得较好的效果;污泥有机负荷进一步降低,微生物生存的微环境中好氧微环境占有优势,反硝化反应受到抑制,总氮的去除率下降。同济大学周仰原在实验中得出曝气池内溶解氧浓度为0.5mg/L时,达到最佳同步硝化反硝化效果的污泥有机负荷为0.3kgCOD/kgMLSS·d,而曝气池内溶解氧浓度为0.3 mg/L时,达到最佳同步硝化反硝化效果的污泥有机负荷为0.15kgCOD/kgMLSS·d。 2.3 有机碳源 有机碳源作为生物生长代谢必需的物质和能量来源,被认为是实现完全生物反硝化的最关键因素之一。对于同步硝化反硝化体系,由于硝化与反硝化反应同时发生,相互制约,使得有机碳源对整个反应体系的影响尤为重要。对于同步硝化反硝化体系来说,存在一个碳源的浓度范围,使得氨氮的降解能达到一个较高的水平。有机碳源浓度过低,满足不了反硝化的需要,浓度过高,使得硝化菌的同化作用占优而不利于氨氮的去除。胡宇华得出的同步硝化反硝化C:N:P的最佳范围(60~140):5:1,保证99.5%的氨氮去除率的有机碳源浓度为400mg/L~1000mg/L。李丛娜的实验表明,增加有机物浓度,提高C/N比,可提高同步硝化反硝化效果。在碳源的投加方式上,一些学者也进行了研究。传统的碳源投加方式往往是一次性在曝气的开始段投加,胡宇华等认为采用易降解的有机物作为碳源,难以保证反应后期的C/N比维持在反应所需水平,因此,在SBR系统中实验了分批补料的方式,获得了很好的氨氮去除效果。 2.4 氧化还原电极电位(ORP)