事件的和的概率
- 格式:ppt
- 大小:209.50 KB
- 文档页数:11
高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。
4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。
随机事件与概率知识点随机事件和概率是概率论中的基本概念,它们揭示了不确定性现象背后的规律性。
本文将介绍随机事件的定义及性质,以及概率的概念、性质和计算方法。
一、随机事件的定义随机事件是指在一定条件下,具有不确定性的事件。
简单来说,就是不知道会发生什么的事件。
一个事件发生与否,可以用0或1表示,其中0代表事件不发生,1代表事件发生。
这种不确定性使得我们需要运用概率论的知识来描述和研究。
对于一个随机试验,其样本空间为Ω,由所有可能出现的结果组成。
样本空间中的每一个元素称为一个样本点,记作ω。
而样本空间中的子集,称为事件。
简单来说,事件就是样本空间的一个子集,用来描述某些结果的集合。
二、随机事件的性质1. 必然事件和不可能事件:必然事件是指在所有可能的结果中,一定会发生的事件。
记作Ω,其对应的概率为1。
例如,在一次掷骰子的实验中,必然事件就是出现的点数在1至6之间。
不可能事件是指在所有可能的结果中,一定不会发生的事件。
记作∅,其对应的概率为0。
例如,在一次掷骰子的实验中,不可能事件就是出现的点数为7。
2. 事件的互斥与对立:互斥事件是指两个事件不能同时发生的情况。
例如,掷骰子出现的点数为奇数和出现的点数为偶数就是互斥事件,因为在一次实验中,掷出奇数的点数和掷出偶数的点数不可能同时发生。
对立事件是指两个事件必定有一个发生,但不能同时发生的情况。
例如,掷骰子出现的点数为奇数和出现的点数为偶数就是对立事件。
三、概率的概念与性质概率是描述随机事件发生可能性大小的数值,通常用P(A)表示。
概率的取值范围在0到1之间,其中0代表不可能事件,1代表必然事件。
1. 古典概型:古典概型是指所有样本点出现的概率相等的情况。
例如,在一次掷骰子的实验中,每个点数出现的概率都是1/6。
2. 几何概型:几何概型是指样本空间是一个有限的几何图形的情况。
例如,在一个正方形平面内随机选择一个点,那么点落在正方形的某个子区域中的概率就可以通过计算子区域面积与正方形面积的比值得到。
概率论的公式大全概率论是数学中研究随机事件的理论,它用于描述事件发生的可能性,并通过概率的计算和分析来预测、评估和决策。
下面给出一些概率论中常用的公式,帮助你更好地理解和运用概率论。
1.概率定义公式:P(A)=N(A)/N,表示事件A发生的概率,N(A)代表事件A发生的次数,N代表试验的总次数。
2.互补事件公式:P(A')=1-P(A),表示事件A的补事件发生的概率。
3.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),表示事件A或B发生的概率。
4.独立事件公式:P(A∩B)=P(A)*P(B),表示事件A和事件B同时发生的概率,当事件A和事件B相互独立时成立。
5.条件概率公式:P(A,B)=P(A∩B)/P(B),表示事件B已经发生时事件A发生的概率。
6.乘法公式:P(A∩B)=P(A,B)*P(B),也可以写作P(A∩B)=P(B,A)*P(A),表示事件A和事件B同时发生的概率。
7.全概率公式:P(A)=ΣP(A,Bᵢ)*P(Bᵢ),表示事件A发生的概率,Bᵢ代表一组互不相容且构成样本空间的事件。
8.贝叶斯公式:P(B,A)=P(A,B)*P(B)/P(A),表示在事件A发生的条件下,事件B发生的概率。
9.随机变量的概率公式:P(X=x)≥0,表示随机变量X取值为x的概率非负。
10.随机变量期望公式:E(X)=ΣxP(X=x)*x,表示随机变量X的期望或均值。
11.随机变量方差公式:Var(X) = E[(X - µ)²],表示随机变量X的方差,其中µ为X的期望。
12.二项分布公式:P(X=k)=C(n,k)*p^k*q^(n-k),表示n次独立重复实验中,事件发生k次的概率,其中,C(n,k)为组合数,p为事件发生的概率,q为事件不发生的概率。
13.泊松分布公式:P(X=k)=e^(-λ)*(λ^k)/k!,表示单位时间或空间中,事件发生了k次的概率,λ为事件发生率。
事件运算公式大全事件运算的公式大全如下:1. 并事件:A∪B,指A发生或B发生,两事件至少有一个发生。
2. 交事件:A∩B,指A发生且B也发生,两事件同时发生。
3. 补事件:A',指A不发生。
4. 差事件:A-B,指属于A但不属于B的事件。
5. 两个事件的积事件:A∩B,指A发生的同时B也发生的事件。
6. 两个事件的逆事件:A',指A不发生的事件。
7. 划归原理:如果B是A的子集,那么A和B的划归性等价于A和B的包含关系。
8. 互斥事件的加法法则:如果A和B是互斥事件,则A 和B的和事件等于A和B中发生的事件。
9. 对立事件的减法法则:如果A和B是对立事件,则A 和B的差事件等于A和B中不发生的事件。
10. 完备事件的乘法法则:如果A和B是完备事件,则A和B的积事件等于A和B中发生的事件的和事件。
11. 互斥事件的乘法法则:如果A和B是互斥事件,则A 和B的积事件等于A和B中发生的事件的积事件。
12. 条件概率公式:如果A和B是两个事件,且已知概率P(A)和P(B),则P(A|B) = P(AB) / P(B)。
13. 全概率公式:如果A和B是两个事件,且已知概率P(A)和P(B),则P(B|A) = P(AB) / P(A)。
14. 贝叶斯公式:如果A和B是两个事件,且已知概率P(A)和P(B|A),则P(A|B) = P(B|A) * P(A) / P(B)。
15. 熵公式:如果X是一个随机变量,则H(X) = - sum(p * log2(p)),其中p是X取值为i的概率。
16. 联合熵公式:如果X和Y是两个随机变量,则H(X,Y) = - sum(p * log2(p)),其中p是X和Y取值为i和j的概率。
17. 条件熵公式:如果X和Y是两个随机变量,则H(X|Y) = sum(p * H(X|Y=j)),其中p是Y取值为j的概率,H(X|Y=j)是X在条件Y=j下的熵。
事件与概率的基本知识点总结事件与概率的基本知识点总结概率论是研究随机现象的可能性的一门数学学科,其中的核心概念就是事件与概率。
事件是我们希望研究的一个或一组结果,而概率是用来描述这个事件发生的可能性的。
一、事件的概念与分类事件是指我们希望研究的一个或一组结果。
根据事件的特性,可以将其分为互斥事件、相对事件和对立事件。
1. 互斥事件:指两个或多个事件不能同时发生的情况。
例如掷一枚硬币的结果只可能是正面或反面,不可能既是正面又是反面。
2. 相对事件:指两个或多个事件至少有一个发生的情况。
例如掷一个骰子,结果可能是1、2、3、4、5或6,至少会出现其中的一个数字。
3. 对立事件:指两个事件在同一次实验中不能同时发生的情况。
例如抽一张扑克牌,事件A是抽到红心,事件B是抽到黑桃,这两个事件是对立事件。
二、概率的定义与性质概率是用来描述事件发生可能性的数值,它介于0和1之间,包括0和1。
1. 频率定义:频率定义概率是指某一事件在相同条件下进行的实验中发生的频率。
即当实验次数趋于无穷大时,事件发生的频率逼近于概率。
2. 古典定义:古典定义概率适用于等可能性事件。
根据古典概率的定义,事件A发生的概率等于事件A包含的基本事件数目除以样本空间中的基本事件数目。
3. 几何定义:几何定义概率适用于几何模型的实验。
根据几何概率的定义,事件A发生的概率等于落入事件A的区域面积与落入样本空间的区域面积之比。
三、概率的运算法则概率运算法则是用来描述事件之间相互关系的数学原理。
1. 加法法则:对于互斥事件A和B,它们的概率和等于两个事件发生概率的和。
即P(A ∪ B) = P(A) + P(B)。
2. 减法法则:对于事件A,它的补事件是A的对立事件,即A'。
事件A和事件A'是对立事件,它们的概率和等于1。
即P(A') = 1 - P(A)。
3. 乘法法则:对于相对事件A和B,它们的联合概率等于A的概率乘以在A发生的条件下,B发生的条件概率。
概率的三大公式一、加法定理加法定理是概率论中最基本的公式之一,用于计算两个事件同时发生的概率。
假设A和B是两个事件,那么A和B同时发生的概率可以表示为P(A∪B),其中∪表示并集。
加法定理的公式如下:P(A∪B) = P(A) + P(B) - P(A∩B)其中P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A和B同时发生的概率。
举个例子来说明加法定理的应用。
假设有一个袋子里有红球和蓝球,红球的数量为3个,蓝球的数量为2个。
现在我们从袋子中随机抽取一个球,求抽到红球或者蓝球的概率。
根据加法定理,我们可以计算出P(红球∪蓝球) = P(红球) + P(蓝球) - P(红球∩蓝球) = 3/5 + 2/5 - 0 = 1。
因此,抽到红球或者蓝球的概率为1。
二、乘法定理乘法定理是概率论中另一个重要的公式,用于计算两个事件同时发生的概率。
假设A和B是两个事件,那么A和B同时发生的概率可以表示为P(A∩B),其中∩表示交集。
乘法定理的公式如下:P(A∩B) = P(A) × P(B|A)其中P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下,事件B发生的概率。
举个例子来说明乘法定理的应用。
假设有一个扑克牌的牌组,牌组中有52张牌。
现在我们从牌组中依次抽取两张牌,求第一张牌是红心的概率,且第二张牌是黑桃的概率。
根据乘法定理,我们可以计算出P(第一张牌是红心∩第二张牌是黑桃) = P(第一张牌是红心) × P(第二张牌是黑桃|第一张牌是红心) = 1/4 × 13/51 = 1/12。
因此,第一张牌是红心且第二张牌是黑桃的概率为1/12。
三、全概率公式全概率公式是概率论中用于计算复合事件概率的重要公式。
假设B1、B2、B3...是一组互不相容的事件,并且它们的并集构成了样本空间。
那么对于任意一个事件A,全概率公式的公式如下:P(A) = P(A|B1) × P(B1) + P(A|B2) × P(B2) + P(A|B3) × P(B3) + ...其中P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi发生的概率。
概率符号公式
概率论中常用的符号和公式包括:
事件符号:通常用大写字母A, B, C等表示事件。
概率符号:用P(A)表示事件A的概率。
并集符号:用∪表示事件的并集,即两个或多个事件至少发生一个。
交集符号:用∩表示事件的交集,即两个或多个事件同时发生。
差集符号:用-表示事件的差集,即事件A发生但事件B不发生。
互斥事件:如果两个事件不能同时发生,则它们是互斥的。
此时,P(A ∪ B) = P(A) + P(B)。
独立事件:如果两个事件的发生与否互不影响,则它们是独立的。
此时,P(A ∩ B) = P(A) × P(B)。
条件概率:P(A|B)表示在事件B发生的条件下,事件A发生的概率。
计算公式为P(A|B) = P(A ∩ B) / P(B)。
贝叶斯公式:P(A|B) = P(B|A) × P(A) / P(B),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。