一年级下册数学3月份月考试卷
- 格式:doc
- 大小:177.00 KB
- 文档页数:2
2022-2023学年云南省昭通市高一下学期3月月考数学试题一、单选题1.在平面直角坐标系中,角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终xOy αO x 边过点,则的值为( )()4,3P tan 4πα⎛⎫+ ⎪⎝⎭A .B .C .1D .77-17-【答案】D【分析】由终边经过点的坐标可求,再利用两角和的正切公式即可求解.tan α【详解】由终边过点,可得,()4,3P 3tan 4α=所以.3tan tan144tan 7341tan tan 144παπαπα++⎛⎫+=== ⎪⎝⎭--故选:D2.在中,,为边的中点,则( )ABC ()310AE AB AC=+D BC A .B .C .D .37AE ED = 73AE ED = 23AE ED = 32AE ED = 【答案】C【分析】利用向量加法的平行四边形法则可得,从而可得,即求.2AB AC AD += 35AE AD=【详解】因为为边的中点,所以,D BC 2AB AC AD +=因为,所以,()310AE AB AC=+35AE AD = 则.23AE ED = 故选:C 3.设(为虚数单位),其中是实数,则等于()()()2i 3i 35i x y +-=++i ,xy i x y +A .5B C .D .2【答案】A 【详解】由,得,()()()2i 3i 35i x y +-=++()()632i 35i x x y ++-=++∴,解得,∴.故选A .63325x x y +=⎧⎨-=+⎩34x y =-⎧⎨=⎩i 34i 5x y +=-+=4.我国航天技术的迅猛发展与先进的运载火箭技术密不可分.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度,其中是喷流相对速0lnMv v m =()m/s v ()0m/s v 度,是火箭(除推进剂外)的质量,是推进剂与火箭质量的总和,称为“总质比”.()kg m ()kg M Mm 已知甲型火箭的总质比为,经过材料更新和技术改进后,甲型火箭的总质比变为原来的,喷40018流相对速度提高了,最大速度增加了(),则甲型火箭在材料更新和技术改进前的喷流相23900m/s 对速度为( )(参考数据:,)ln 20.7≈ln 5 1.6≈A .B .C .D .1200m/s 1500m/s1800m/s2100m/s【答案】C【分析】根据题意列出改进前的等量关系式以及改进后的等量关系式,联立即可解得答案.【详解】设甲型火箭在材料更新和技术改进前的喷流相对速度为,最大速度为,0v v 则,00ln400219001ln 40038v v v v =⎧⎪⎨⎛⎫⎛⎫+=+⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎩故()()09002700552ln 5ln 232ln 54ln 2ln 50ln 4003v ==+-+-,27002700180)0(4ln 57ln 24 1.670.7m/s =≈=-⨯-⨯故选:C.5.已知集合,,则( )2{|log (5)}M x y x ==-1|,0N y y x x x ⎧⎫==+>⎨⎬⎩⎭M N ⋃=A .B .,C .,D .(,5)-∞[2)∞+[25)(5,)+∞【答案】B【分析】化简集合,,然后进行并集的运算即可.M N 【详解】由有意义可得,得,所以,2log (5)y x =-50x ->5x >{}|5M x x =>由,可得,当且仅当时,等号成立,所以,0x >12y x x =+≥=1x ={|2}N y y = ,.[2M N ∴⋃=)∞+故选:B .【点睛】本题考查了对数函数的定义域,基本不等式,并集的运算,考查了计算能力,属于基础题.6.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .B .C .D .y x =sin y x=3y x =-12xy ⎛⎫= ⎪⎝⎭【答案】C【分析】根据函数的奇偶性和单调性逐项进行判断即可.【详解】A.因为是奇函数,又是增函数,故错误y x =B.因为是奇函数,但在定义域上不单调,故错误.sin y x =C.因为是奇函数,又是减函数,故正确.3y x =-D.因为非奇非偶,是减函数,故错误.12xy ⎛⎫= ⎪⎝⎭故选:C【点睛】本题主要考查函数的奇偶性和单调性,还考查了理解辨析的能力,属于基础题.7.已知下表为函数部分自变量取值及其对应函数值,为便于研究,相关函数值3()f x ax cx d =++非整数值时,取值精确到0.01.x3.27 1.570.61-0.59-0.260.420.35-0.56-0y101.63-10.04-0.270.260.210.200.22-0.03-0下列关于函数的叙述不正确的是( )A .为奇函数B .在上没有零点()f x ()f x ()f x [0.55,0.6]C .在上单调递减D .()f x (,0.35]-∞-a<0【答案】B【分析】根据函数解析式,判断奇偶性后确定相应函数值的正负,得零点区间,然后(0)0f d ==结合各函数值得变化趋势,确定的正负.a 【详解】由,则,故,(0)0f =0d =3()f x ax cx =+所以且定义域为R ,故为奇函数,A 正确;3()()f x ax cx f x -=--=-()f x 又,,(0.56)0.030f =>(0.59)0.260f =-<所以在上必有零点,B 错误;()f x [0.56,0.59]根据已知表格数据:的情况下,越大,函数值越小,由三次函数的性质:,D 正确,0.35x >x a<0所以在上单调递减,C 正确.(,0.35]-∞-故选:B .8.已知函数,现给出下列四个结论,其中正确()()cos 22sin cos R 344f x x x x x πππ⎛⎫⎛⎫⎛⎫=--++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的是( )A .函数的最小正周期为()f x 2πB .函数的最大值为2()f x C .函数在上单调递增()f x ,66ππ⎡⎤-⎢⎥⎣⎦D .将函数的图象向右平移个单位长度;所得图象对应的解析式为()f x 12π()sin 2g x x=【答案】C【分析】首先利用三角恒等变换化简函数,再根据函数的性质依次判断选项【详解】对于A 和B ,()cos 22sin cos 344f x x x x πππ⎛⎫⎛⎫⎛⎫=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1cos 2sin 2cos 22cos 2322x x x x x ππ⎛⎫⎛⎫=--+=- ⎪ ⎪⎝⎭⎝⎭12cos 2sin 226x x x π⎛⎫=-=- ⎪⎝⎭所以的最小正周期为,的最大值为1,故A 错误,B 错误,()f x 22ππ=()f x 对于C ,当时,,,66x ππ⎡⎤∈-⎢⎥⎣⎦2,626x πππ⎡⎤-∈-⎢⎥⎣⎦因为在上单调递增,所以函数在上单调递增,故C 正确;sin y x =,26ππ⎡⎤-⎢⎥⎣⎦()f x ,66ππ⎡⎤-⎢⎥⎣⎦对于D ,将函数的图像向右平移个单位长度,所得图像对应的函数解析式为()f x 12π,故D 不正确,πππ()sin 2=sin 21263g x x x ⎡⎤⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选:C二、多选题9.下列命题为真命题的是( )A .若则B .若则,a b c d >>,a c b d+>+,a b c d >>,ac bd>C .若则D .若则a b >,22ac bc>0,0,a b c <<<c ca b <【答案】AD【分析】根据不等式的性质逐项检验即可求解.【详解】对于,因为所以成立,故选项正确;A ,a b c d >>,a c b d +>+A 对于,因为若,,则,故选项错误;B ,a b c d >>,4,2a b ==-1,3c d =-=-46ac bd =-<=B 对于,因为若,则,故选项错误;C a b >,0c =22ac bc =C 对于,因为,所以,因为,则,故选项正确,D 0,0a b c <<<110b a <<0c <c ca b <D 故选:.AD10.已知函数的零点构成一个公差为的等差数列,把的()()2cos 20f x x x ωωω=+>2π()f x 图象沿轴向右平移个单位得到函数的图象,则( )x 3π()g x A .在上单调递增B .是的一个对称中心()g x ,42ππ⎡⎤⎢⎥⎣⎦,04π⎛⎫⎪⎝⎭()g x C .是奇函数D .在区间上的值域为()g x ()g x 2,63ππ⎡⎤⎢⎥⎣⎦[]0,2【答案】AB【分析】首先利用辅助角公式将函数化简,再根据函数的零点依次构成一个公差为的等差数列,2π即可得到函数的最小正周期,从而求出,再根据三角函数的变换规则得到的解析式,最后ω()g x 根据余弦函数的性质计算可得.【详解】解:因为,所以()()2cos 20f x x x ωωω=+>,因为函数的()12cos 22sin 226f x x x x πωωω⎫⎛⎫=2+=+⎪ ⎪⎪⎝⎭⎭()()2cos 20f x x x ωωω=+>零点依次构成一个公差为的等差数列,2π,,所以,把函数的图象沿轴向右平移个单位,∴12222ππω⋅=1ω∴=()2sin 26f x x π⎛⎫=+ ⎪⎝⎭()f x x 3π得到,即,所以为偶函数,故2sin 22cos 236()2sin 22g xx x x πππ⎡⎤⎛⎫=-=- ⎪⎢⎥⎝⎛⎫=-+ ⎪⎝⎭⎭⎣⎦()2cos 2g x x =-()g x C 错误;对于A :当时,因为在上单调递减,所以在上,42x ππ⎡⎤∈⎢⎥⎣⎦2,2x ππ⎡⎤∈⎢⎥⎣⎦cos y x =,2ππ⎡⎤⎢⎥⎣⎦()g x ,42ππ⎡⎤⎢⎥⎣⎦单调递增,故A 正确;对于B :,故是的一个对称中心,故B 正确;2cos 22cos 0442g πππ⎛⎫⎛⎫=-⨯=-= ⎪ ⎪⎝⎭⎝⎭,04π⎛⎫ ⎪⎝⎭()g x 对于D :因为,所以,所以,所以,故D 错误;2,63x ππ⎡⎤∈⎢⎥⎣⎦42,33x ππ⎡⎤∈⎢⎥⎣⎦1cos 21,2x ⎡⎤∈-⎢⎥⎣⎦()[]1,2g x ∈-故选:AB11.已知,,,则( )0a >0b >21a b +=A .B .CD54a b +<1a b ->-12b ≤≥【答案】BCD【分析】先根据已知条件判断出的取值范围,然后逐项通过等量代换、不等式性质、不等式证,a b 明判断出各选项的对错.【详解】因为,所以,所以;2,100a b b =>>-01b <<01a <<A .因为,取等号时满足,故A 错误;221551244a b b b b ⎛⎫+=-+=--+≤ ⎪⎝⎭31,42a b ==B .因为,故B 正确;22215151112424a b b bb ⎛⎫⎛⎫-=--=-++>-++=- ⎪ ⎪⎝⎭⎝⎭C .因为,取等号时C 正确;12b ==≤1,2a b ==D .因为,只需证,20b -<≥()2132a b ≤-()232a b ≤-即证,即证,即证,()()22312b b -≤-24410bb -+≥()2210b -≥显然成立,且时取等号,故D 正确;()2210b -≥31,42a b ==故选:BCD.【点睛】方法点睛:本题中D 选项的判断除了可以通过分析法证明的方式进行判断,还可以通过三角换元的方法进行分析判断:设,然后分析形如的式子的2sin ,cos ,0,2a b πθθθ⎛⎫==∈ ⎪⎝⎭sin cos a b θθ--几何意义去进行求解并判断.12.函数(其中,,)的部分图象如图所示,则下列说法正()()sin f x A x =+ωϕ0A >0ω>ϕπ<确的是( )A .23πϕ=-B .函数图象的对称轴为直线()f x ()7212k x k ππ=+∈Z C .将函数的图象向左平移个单位长度,得到函数的图象()f x 3π()2sin 23g x x π⎛⎫=- ⎪⎝⎭D .若在区间上的值域为,则实数的取值范围为()f x 2,3a π⎡⎤⎢⎥⎣⎦A ⎡-⎣a 133,122ππ⎡⎤⎢⎥⎣⎦【答案】ABD【解析】利用函数图象求出函数的解析式,可判断A 选项的正误;解方程()f x 可判断B 选项的正误;利用三角函数图象的平移规律可判断C 选项的正误;()2232x k k πππ-=+∈Z 由求出的取值范围,结合题意求出的取值范围,可判断D 选项的正误.2,3x a π⎡⎤∈⎢⎥⎣⎦223x π-a 【详解】对于A 选项,由图可知,2A =设函数的最小正周期为,则,,,则()f x T 73312644T πππ⎛⎫--== ⎪⎝⎭T π∴=22T πω∴==,()()2sin 2f x x ϕ=+由得,解得,772sin 2126f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()7262k k ππϕπ+=+∈Z ()223k k πϕπ=-+∈Z 又,,,A 正确;ϕπ<23πϕ∴=-()22sin 23f x x π⎛⎫∴=- ⎪⎝⎭对于B 选项,由,得,B 正确;()2232x k k πππ-=+∈Z ()7212k x k ππ=+∈Z 对于C 选项,将函数的图象向左平移个单位长度,()f x 3π得的图象,C 错误;()22sin 22sin 2333g x f x x x πππ⎡⎤⎛⎫⎛⎫=+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于D 选项,由得,2,3x a π⎡⎤∈⎢⎥⎣⎦2222,2333x a πππ⎡⎤-∈-⎢⎣⎦由的图象可知,要使函数在区间上的值域为,2sin y t =()f x 2,3a π⎡⎤⎢⎥⎣⎦⎡-⎣则,解得,D 正确.3272233a πππ≤-≤133122a ππ≤≤故选:ABD.【点睛】思路点睛:根据三角函数的部分图象求函数解析式的步骤如下:()()sin f x A x bωϕ=++(1)求、,;A ()()max min:2f x f x b A -=()()max min2f x f x b +=(2)求出函数的最小正周期,进而得出;T 2T πω=(3)取特殊点代入函数可求得的值.ϕ三、填空题13.若,则__________.π2sin()45α-=-cos()4πα+=【答案】##-0.425-【分析】根据诱导公式进行求解.【详解】.ππππ2cos sin sin 42445ααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故答案为:.25-14.函数的图象经过函数的图象在轴右边的第一个对称点,()1sin 02y x ϕϕπ⎛⎫=+<< ⎪⎝⎭tan y x =y 则______.ϕ=【答案】34π【分析】根据过点,代值即可求得参数.()1sin 02y x ϕϕπ⎛⎫=+<< ⎪⎝⎭,02π⎛⎫ ⎪⎝⎭【详解】由题可知,过点,()1sin 02y x ϕϕπ⎛⎫=+<< ⎪⎝⎭,02π⎛⎫ ⎪⎝⎭故可得,解得,sin 04πϕ⎛⎫+= ⎪⎝⎭,4k k Zπϕπ+=∈解得;又因为,,4k k Zπϕπ=-∈()0,ϕπ∈故可得.34πϕ=故答案为:.34π【点睛】本题考查正切函数的对称点,以及由正弦型函数过一点求参数值,属综合基础题.15.若,则___________.sin cos 1sin cos 2αααα+=-tan 2α【答案】34【分析】只需对分子分母同时除以,将原式转化成关于的表达式,最后利用方程思想求cos αtan α出.再利用二倍角的正切公式,即可求得结论.tan α【详解】解:sin cos 1sin cos 2αααα+=-,∴sin 11cos sin 21cos αααα+=-即,tan 1tan 112αα-+=tan 3α∴=-22tan 63tan 21tan 194ααα-∴===--故答案为:34【点睛】本题考查同角三角函数的关系,考查二倍角的正切公式,正确运用公式是关键,属于基础题.16.如图,设的内角A ,B ,C 所对的边分别为a ,b ,c ,,且ABC cos cos sin a C c A b B +=若点D 是外一点,,,则当四边形ABCD 面积最大值时,.6CAB π∠=ABC 2DC =3DA =____.sin D =【详解】分析:由正弦定理,两角和的正弦函数公式,三角形内角和定理化简已知等式可得,根据范围B ∈(0,π),可求B 的值.2sin()sin sin 1.2A C B B B π+=⇒=∴=由余弦定理可得AC 2=13﹣12cosD ,由△ABC 为直角三角形,可求,,2ABC S AC S △BDC =3sinD ,由三角函数恒等变换的应用可求四边形的面积为C 值.()+3sinD D D φ=-详解: ,由正弦定理得到cosC cos sin a c A b B +=2sin()sin sin 1.2A CB B B π+=⇒=∴=在三角形ACD中由余弦定理得到,三角形ABC 的面积为21312cos AC D =-212AC AC AC D ==()+3sin D D D φ=-+当三角形面积最大时,sin()1,sin cos D D φφ-====点睛:本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,余弦定理,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.四、解答题17.如图,,,为山脚两侧共线的三点,在山顶处观测三点的俯角分别为,,.现测A B C P αβγ得,,,,,.计划沿直线开通一条穿山15α=45β= 30γ=5km 2AD =1km2EB =1km BC =AC隧道,试求出隧道的长度.DE【答案】 【分析】在中,利用正弦定理可得,在中,利用正弦定理可得PBC 12sin15PB =PAB的长度3AB =+DE 【详解】在中,,,.PBC 30C γ∠==15CPB βγ∠=-= 1BC =由正弦定理,sin sin BC PBCPB C =∠∠即,所以.1sin15sin30PB=12sin15PB = 在中,因为,,PAB 15A α∠==45ABP β∠== 所以.180120APB A ABP ∠=-∠-∠=由正弦定理,sin sin BP ABA APB =∠∠所以,2sin1202sin 15AB =3==+所以DE AB AD EB =--51322=+-=所以隧道的长度为.DE 18.已知函数的部分图像如图所示.()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭(Ⅰ)求函数的解析式,并写出的单调减区间;()f x ()f x (Ⅱ)已知的内角分别是,为锐角,且的值.ABC ∆,,A B C A 14,cos sin 21225A f B Cπ⎛⎫-== ⎪⎝⎭,求【答案】(Ⅰ);(Ⅱπ()sin(26f x x =+π2π[π,π],.63k k k ++∈Z 【详解】试题分析:(1)根据函数的图象确定得到π()sin(26f x x =+结合图象可得的单调递减区间为π2π[π,π],.63k k k ++∈Z (2)由(1)可知,1sin 2A =根据角为锐角,得到.A π6A =进一步应用三角函数诱导公式、同角公式、两角和差的三角函数公式即可得解.(1)由周期得 12πππ,2362T =-=2ππ,T ω==所以当时,,可得π6x =πsin(2) 1.6ϕ⋅+=因为所以故 π,2ϕ<π.6ϕ=π()sin(26f x x =+由图象可得的单调递减区间为π2π[π,π.63k k k ++∈Z (2)由(1)可知,, 即,ππsin(2()12126A -+=1sin 2A =又角为锐角,∴.A π6A =,.0πB <<.【解析】三角函数式的图象和性质,三角函数的同角公式、诱导公式、两角和差的三角函数公式.19.的内角的对边分别为,,.ABC ,,A B C ,,a b c 2a b =1cos 3C =(1)求;tan B(2)为边上一点,,的面积.M AB 2AM MB =CM =ABC【答案】(2)【分析】(1)利用正弦定理化边为角,结合由两角和的正弦公式展开,将sin sin()A B C =+代入,由即可求解;1cos 3C =sin tan cos BB B =(2)由同角三角函数基本关系求出,的值,再由正弦定理结合可得,sin B cos B 2ab =c =在中由余弦定理得的值,进而可得的值,再由三角形面积公式即可求解.CMB a b 【详解】(1)因为,由正弦定理化边为角可得:,2a b =sin 2sin A B =因为,所以sin sin()A B C =+sin()2sin sin cos cos sin B C B B C B C+==+由,得1cos C 3=sin C==所以,即12sin sin 3B B B=sintan cos B B B ==(2)由,可得,22sin tan cos sin cos 1B B B B B ⎧==⎪⎨⎪+=⎩sin B =cos B =在中,由正弦定理得,且ABCsin sin c bC B ==2a b=所以,sin sin b C c B ===在中,由余弦定理得:,CMB 2222cos 59MB BCMB BC B CM +-⋅==,222112cos 5933c a c a B CM ⎛⎫+-⨯⋅⋅== ⎪⎝⎭所以,22259a a ⎫+-⋅=⎪⎪⎭所以,可得25959108a =a =b =11sin 22ABC S ab C ==⨯= 20.在锐角中,角的对边分别为.ABC A B C △△a b c ,,2sin 0b C -=(1)求角的大小;B (2)再从下面条件①、条件②这两个条件中选择一个作为已知,求的面积.ABC 条件①;条件②:.2b a ==24a A π==,注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1);(2)答案不唯一,具体见解析.3B π=【分析】(1,进而得,再结合锐角三2sin sin 0C B C -=sin B 角形即可得答案;(2)条件①,结合(1)和余弦定理得,解方程得,进而根据三角形面22230--=c c 1=+c 积公式计算即可;条件②,结合(1)与正弦定理得,再结合内角和定理和正弦的和角公式得b sin C =进而根据三角形的面积公式求解.【详解】解(1.2sin =0b C -2sin sin 0C B C -=因为,所以.0,,sin 02C C π⎛⎫∈≠ ⎪⎝⎭sin B 因为,所以.0,2B π⎛⎫∈ ⎪⎝⎭3B π=(2)条件①:;2b a ==因为,由(1)得,2b a ==3B π=所以根据余弦定理得,2222cos =+-⋅⋅b c a c a B化简整理为,解得22230--=c c 1=+c所以△的面积ABC 1sin 2S c a B =⋅=条件②:24a A π==,由(1)知,,π3B =4A π=根据正弦定理得,sin sin b aB A =所以sin sin ⋅==a Bb A 因为,512C A B ππ=--=所以5sin sin sin 1246C πππ⎛⎫==+= ⎪⎝⎭所以△的面积ABC 1sin 2=⋅=S b a C 【点睛】本题考查正余弦定理解三角形,三角形的面积求解,考查运算求解能力,回归转化能力,是中档题.本题解题的关键在于利用正弦定理边角互化得,进而结合锐角三角形即可得sin B ;此外,第二问选择条件①,需注意余弦定理方程思想的应用.3B π=21.已知函数.()sin 2+sin(2)3f x x x π=-(1)求的最大值及相应的值;()f x x (2)设函数,如图,点分别是函数图像的零值点、最高点和最低点,g()()4x f x π=,,P M N ()y gx =求的值.cos MPN ∠【答案】(1);1,Z12x k k ππ=+∈【分析】(1)整理函数的解析式,结合三角函数的性质,即可求解;()sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)利用题意求得,在直角中,即可求解.PM MN PN ===MPN △【详解】(1)解:由题意,函数()1sin2sin22f x x x x =+-,1sin2sin 223x x x π⎛⎫==+ ⎪⎝⎭所以函数的最大值为,此时,即.()f x ()max 1f x =2232x k πππ+=+,Z12x k k ππ=+∈(2)由题意,函数 ,()sin 243g x x ππ⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦sin 23x ππ⎛⎫=+⎪⎝⎭过作轴于,D MD x ⊥D因为 所以,可得,1PD DM ==90PMN ∠=PM MN PN ==在直角中,可得MPN △cos PM MPN PN ∠===22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =,求cos C 的值;52(2)若sin A cos 2+sin B ·cos 2=2sin C ,且△ABC 的面积S =sin C ,求a 和b 的值.2B 2A 92【答案】(1) (2) a =3,b =3.15-【详解】( (1)由题意可知c =8-(a +b )=.由余弦定理得cos C ===-.(2)由sin A cos 2+sin B cos 2=2sin C ,可得sin A ·+sin B ·=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C .由正弦定理可知a +b =3c .又因为a +b +c =8,故a +b =6.由于S =ab sin C =sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,b =3.。
2025年湘师大新版一年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏一、选择题(共7题,共14分)1、3元8角=()A. 35角B. 38角C. 4元2、比3大比8小的数有()。
A. 4、5、 6、 7B. 5、6、 7C. 4、5、73、一个数个位上是3,十位比个位多1,这个数是()。
A. 31B. 34C. 434、7+()=14。
A. 5B. 6C. 7D. 85、一个数,比6大,比10小,它不可能是()。
A. 7B. 8C. 9D. 106、有65名家长来开会,已经有50把椅子了,还差( )把A. 10B. 15C. 207、数一数;下图中表示数字()。
A. 6B. 9C. 8D. 7评卷人得分二、填空题(共5题,共10分)8、圈一圈;算一算。
13-8=____9、10个十是____。
10、哪个动物重?____11、13-7=____。
12、想一想。
;①一共有____张数字卡片。
②左起第4张是____。
③把这些数按从小到大的顺序排列。
____。
评卷人得分三、判断题(共9题,共18分)13、这是个长方形()14、97前面的数是98,后面的数是96。
15、下图是由长方形;圆形两种平面图形组成的密铺图形。
16、有10只小动物,其中小兔有5只。
17、从10数到20,2个2个地数:10、12、14、16、18、20。
18、每人一顶帽子;不够。
19、由1、0、9组成的最小三位数是019。
20、下列车辆中车身最长的是大客车。
21、姐姐在弟弟的左面,弟弟在姐姐的右面。
评卷人得分四、问答题(共5题,共20分)22、从1到10中列式后找找得数是“8”的式子。
23、从1到10中列式后找找减“8”的算式。
24、从1到10中找找“14”减几的5个算式。
25、上山的动物有几只?谁第一?谁第三?26、看图回答问题。
小学一年级第二学期月考数学试卷人教版(3月)一、计算。
1.(40分)看谁都能算对。
20+2=38﹣8=9+8=16﹣2=50+6=13﹣5=14﹣3=15﹣8=12﹣6=12﹣8=9+70=13﹣6=7+30=18﹣3=30+5=3+8=60+5=15﹣9=8+20=49﹣40=83﹣3=35﹣5=16﹣10=11﹣7=7+60=5+12=14﹣7=4+70=82﹣2=17﹣9=13﹣4=3+20=5+8+6=14﹣3﹣7=15﹣7+4=2+11﹣9=4+8﹣3=11﹣5+6=19﹣6﹣5=68﹣60+9=2.(8分)在〇填“>”“<“或“=”。
12﹣7〇620+3〇3216﹣5〇94〇13﹣714﹣9〇14﹣86+7〇11+618﹣7〇18﹣954﹣20〇53﹣203.(4分)填一填。
4.(8分)在方框里填上合适的数。
60+□=67□+8=1213﹣□=315﹣□=9□﹣6=716﹣□>104+□<11□﹣5<8二、综合实践。
5.(22分)看图写数。
6.58是由个十和个一组成的,与它相邻的两个数分别是和。
58后面的第4个数是。
7.按照数的顺序,在横线上填数。
24、26、、、、。
、40、50 、、。
、、、90、95 。
8.一个两位数,十位上的数比个位上的数小6,这个数最大是。
9.填一填。
30分=角80角=元2元4角=角69角=元角7角+6角=元角5角+2元3角=元角10.如图的七巧板中,号和号是同样的三角形。
5号是形,号是平行四边形。
11.(1)按不同的形状分一分,填写如下表。
圆柱长方体正方体圆三角形个数(2)根据分类的结果回答问题。
的个数最多,的个数最少;圆柱的个数比正方体的个数多个。
12.圈一圈,填一填。
5个装一筐,这些足球可以装满筐,还剩个。
再拿来个,正好又能装1筐。
13.用8个●能摆出哪些不同的两位数?请按从大到小的顺序写出来。
个位十位三、解决问题。
14.(16分)一共有15根木头,大象运走了6根木头,还剩多少根?15.他们钓(diào)了多少条鱼?16.(1)小朵想买一把尺和一块橡皮,要付多少钱?(2)布娃娃比跳绳贵(guì)多少钱?参考答案与试题解析一、计算。
2022-2023学年云南省红河州个旧市高一下学期3月月考数学试题一、单选题1.已知集合,,则( ){20}A xx =+>∣{2,1,0,1}B =--A B = A .B .C .D .[]2,1-(]2,1-{}2,1,0,1--{}1,0,1-【答案】D【分析】先求出集合A ,利用交集定义能求出.A B ⋂【详解】解:∵,,{20}{2}A xx x x =+>=>-∣∣{2,1,0,1}B =--∴.{1,0,1}A B =- 故选:D2.已知扇形的圆心角为,面积为,则扇形的弧长等于( )6π3πA .B .C .D .4π23π6π3π【答案】D【分析】根据面积公式可得出半径,进一步求出弧长.【详解】由扇形面积公式得212S r α=,21326r ππ=⋅⋅,2r ∴=,263l r ππα∴==⨯=故选:D .3.已知函数f (x )=3x +2x 的零点所在的一个区间是( )A .)B .C .D .(2,1)--(1,0)-(0,1)(1,2)【答案】B 【分析】判定函数在定义域上为增函数,再求,,即可判断零点的位()32x f x x=+()10f -<() 00f >置在区间(-1,0)【详解】由函数,易证在定义域R 上为增函数,又因为,,()32xf x x =+()11203f -=-<() 010f =>可得函数的零点所在的区间为(-1,0).()32x f x x=+故选:B.【点睛】本题考查了函数零点位置的判断,判断函数的单调性是解题的关键,属于一般难度的题.4.设,则a ,b ,c 大小关系为( )0.2 1.20.21.2,0.9,0.3a b c -===A .B .C .D .a b c >>a c b >>c a b >>c b a>>【答案】C【分析】利用有理指数幂和幂函数的单调性分别求得,,的范围即可得答案.a b c 【详解】,,200. 1.211.2a >== 1.200.90.91b =<=,b a ∴<又在上单调递增,0.2y x =(0,)+∞,0.20.20.2101 1.20.3()3a -∴<=<=,b a c ∴<<故选:C .5.已知是第四象限角,为其终边上一点,且,则的值( )θ()1,M m sin θ=2sin cos sin cos θθθθ-+A .0B .C .D .54543【答案】D【分析】首先根据三角函数的定义求,再求正切,最后根据的齐次分式化简求值.m sin ,cos θθ【详解】由条件可知,所以,r =0m <sin θ==解得:,2m =-所以,tan 2m θ==-.2sin cos 2tan 15sin cos tan 1θθθθθθ--==++故选:D6.已知,,则的值为( )2tan()5αβ+=1tan 44πβ⎛⎫-= ⎪⎝⎭tan 4πα⎛⎫+ ⎪⎝⎭A .B .C .D .32223【答案】C【分析】由,然后利用两角差的正切公式可计算出的值.()44ππααββ⎛⎫+=+-- ⎪⎝⎭tan 4πα⎛⎫+ ⎪⎝⎭【详解】.()tan tan 44ππααββ⎡⎤⎛⎫⎛⎫+=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()21tan tan 3454212211tan tan 544παββπαββ⎛⎫+---⎪⎝⎭===⎛⎫+⋅++- ⎪⎝⎭故选:C.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是明确已知角与所求角之间的关系.7.设向量,,则是的条件.11(,)a x y =22(,)b x y =1122x y x y =//a b A .充要B .必要不充分C .充分不必要D .既不充分也不必要【答案】C【分析】根据向量共线得坐标表示,从充分性和必要性两方面进行判断即可.【详解】若则,1122x y x y =12210//x y x y a b -=∴,若,有可能或为0,//a b2x 2y 故是的充分不必要条件.1122x y x y =//a b故选:.C 【点睛】本题考查充分比不要条件的判断,涉及向量共线的坐标表示,属基础题.8.如图,已知,,共线,且向量,则( )A B C 4AC BC =A .B .4155OB OA OC=+1455OB OA OC=+C .D .3144OB OA OC=+ 1344OB OA OC=+ 【答案】D【分析】由已知得,再利用向量的线性可得选项.34AB AC=【详解】因为,,,三点共线,所以,4AC BC = A B C 34AB AC=OB OA AB =+ 34OA AC =+ ()34OA OC OA =+- 3344OA OC OA =+-1344OA OC =+ 所以.1344OB OA OC=+故选:D.二、多选题9.下列命题为真命题的是( )A .若则B .若则,a b c d >>,a c b d +>+,a b c d >>,ac bd>C .若则D .若则a b >,22ac bc >0,0,a b c <<<c ca b <【答案】AD【分析】根据不等式的性质逐项检验即可求解.【详解】对于,因为所以成立,故选项正确;A ,a b c d >>,a c b d +>+A 对于,因为若,,则,故选项错误;B ,a b c d >>,4,2a b ==-1,3c d =-=-46ac bd =-<=B 对于,因为若,则,故选项错误;C a b >,0c =22ac bc =C 对于,因为,所以,因为,则,故选项正确,D 0,0a b c <<<110b a <<0c <c ca b <D 故选:.AD 10.有如下命题,其中真命题为( )A .若幂函数的图象过点,则()y f x =12,2⎛⎫ ⎪⎝⎭()132f >B .函数(且)的图象恒过定点()11x f x a -=+0a >1a ≠()1,2C .函数在上单调递减()21f x x =-()0,∞+D .己知向量与的夹角为,且,,则在方向上的投影向量是.a b 3π42a = 3b = a b 【答案】BD【分析】A 选项,根据幂函数经过的点,求出解析式,即可判断;B 选项,根据指数函数恒过定点即可得到;C 选项,根据二次函数的单调性可以判断;D 选项,由投影向量知识可算得.(0,1)【详解】对A 选项,设幂函数的解析式为,因为幂函数的图像经过点,即,解y x α=12,2⎛⎫ ⎪⎝⎭122α=得,则,,故A 选项错误;1α=-1y x -=11(3)32f =<对B 选项,函数的图象恒过定点,故B 选项正确;1()1(0,1)x f x a a a -=+>≠(1,2)对C 选项,函数在上单调递增,故C 选项错误;()21f x x =-()0,∞+对D 选项,在方向上的投影向量,故D 选项正确.a bcos 23b b a b θ⎛⋅=⨯⨯= ⎝故选:BD.11.下列结论错误的是( )A .若函数对应的方程没有根,则不等式的解集为R ;()20y ax bx c a =++≠20ax bx c ++>B .不等式在R 上恒成立的条件是且;()200ax bx c a ++≤≠a<0240∆=-≤b ac C .若关于x 的不等式的解集为R ,则;210ax x +-≤14a -≤D .不等式的解为.11x >1x <【答案】AD【分析】根据一元二次不等式与对应二次函数的关系,结合各选项的描述判断A 、B 、C 正误即可,对于D 将不等式化为求解集即可.10xx ->【详解】A :函数不存在零点,若则解集为R ,若则解集为空集,错误;0a >a<0B :由不等式对应的二次函数图像开口向下,说明且至多与x 轴有一个交点,故,a<02Δ40b ac =-≤正确;C :当时,显然不符合题意,当时由二次函数的性质知:,解得0a =1x ≤0a ≠0140a a <⎧⎨∆=+≤⎩,正确;14a -≤D :,解得,错误;1110x x x --=>01x <<故选:AD12.若函数在一个周期内的图象如图所示,则( )1()sin()(0,0,0)22f x A x A ωϕωϕπ=+>><<A .()2sin 23()3f x x π=+B .的图象的一个对称中心为()f x 7(,0)2π-C .的单调递增区间是,()f x 5[3,3]44k k πππ-π-Zk ∈D .把的图象上所有点的横坐标变为原来的,纵坐标不变,可得的图象π()2sin()3g x x =+23()f x 【答案】AB【分析】根据图像求出的解析式,借助于正弦函数的性质一一验证:()f x 对于A ,根据图像求出的解析式进行判断;()f x 对于B ,利用代入法进行判断;对于C ,求出单增区间进行判断;对于D ,利用图像变换判断.【详解】由题图可知,函数的最小正周期,故,解得2A =()f x 4()34T π=⨯π-=π24312T ωωππ===π,所以,又函数的图象经过点,所以,43ω=2()2sin()3f x x ϕ=+()f x (,2)4π(2sin(2)2434f ϕππ=⨯+=即,因为,所以,所以,解得,所以sin()16πϕ+=02πϕ<<2663ϕπππ<+<62ππϕ+=3πϕ=,故A 正确;()2sin 23()3f x x π=+因为,所以的图象的一个对称中心为,故B 正2377()2sin[()2sin(2)0223f πππ-=⨯-+=-π=()f x 7(,0)2π-确;令,,解得,,所以的单调递增区间2222332πππk πx k π-≤+≤+Z k ∈5ππ3π3π44k x k -≤≤+Z k ∈()f x 是,,故C 错误;5[3,3]44k k πππ-π+Z k ∈把的图象上所有点的横坐标变为原来的,纵坐标不变,可得到的π()2sin()3g x x =+2332sin()23y x π=+图象,故D 错误.故选:AB .【点睛】(1)利用图像求三角函数解析式的方法:①求A 通常用最大值或最小值;②求ω通常用周期;③求φ通常利用函数上的点带入即可求解.(2)三角函数问题通常需要先求出系数A 、ω、φ或把它化为“一角一名一次”的结构,借助于或的性质解题.sin y x =cos y x =三、填空题13.命题“”的否定是_______.2,10x R x ∃∈+<【答案】.2,10x R x ∀∈+≥【分析】根据特称命题的否定为全称命题,直接写出答案即可.【详解】易知命题“”的否定是“”.2,10x R x ∃∈+<2,10x R x ∀∈+≥故答案为:.2,10x R x ∀∈+≥14.已知向量,,若,则__________.(1,2)=- a (,2)b x = a b ⊥|2|a b -=【答案】【分析】根据向量垂直的坐标表示求得参数,再根据向量的模的计算可得答案.【详解】由,,,得,解得a b ⊥(1,2)=- a (,2)b x = 40x -=4,x =所以,,所以(4,2)b = 2(2,6)a b -=-- |2|a b -=故答案为:.15.若函数在上单调递增,则的取值范围是__________.(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩(),∞∞-+m 【答案】(0,3]【分析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的1y mx m =+-(),0∞-m 取值范围.【详解】∵函数在上单调递增,(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩(),-∞+∞∴函数在区间上为增函数,1y mx m =+-(),0∞-∴,解得,001212m m >⎧⎨-≤+=⎩03m <≤∴实数的取值范围是.m (0,3]故答案为.(0,3]【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每()f x (),-∞+∞一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.16.已知函数,若函数无零点,则实数的取值范围是3lg ,2(){3lg(3),2x x f x x x ≥=-<()y f x k =-k ________.【答案】3lg2k <【详解】试题分析:∵函数,故函数在上是增函数,在3lg ,2(){3lg(3),2x x f x x x ≥=-<()f x 32⎡⎫+∞⎪⎢⎣⎭上是减函数.故当时,有最小值为.由题意可得,函数的图象与直线32⎛⎤-∞ ⎥⎝⎦,32x =()f x 3lg 2()f x 无交点,∴.故实数的取值范围是.y k =3lg2k <k 3lg2k <【解析】1.函数零点;2.函数的单调性.【思路点睛】本题考查函数零点的定义,函数的单调性以及最小值,体现了转化的数学思想,利用函数的单调性求出函数的最小值,由题意可得,函数的图象与直线无交点,故只()f x ()f x y k =要小于的最小值即可.k ()f x 四、解答题17.化简求值:(1)已知化简.()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫---+ ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()f α(2).20338πsin log lg 25lg 4275-⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭【答案】(1)()cos f αα=-(2)234【分析】(1)应用诱导公式化简函数式即可;(2)应用指对数的运算性质化简求值.【详解】(1).()()()()()3πsin πcos 2πcos sin cos sin 2cos πsin sin cos sin π2f αααααααααααα⎛⎫---+ ⎪⋅⋅-⎝⎭===-⋅⎛⎫--- ⎪⎝⎭(2).202338π219123sin log lg 25lg 41lg1001227532424--⎛⎫⎛⎫⎛⎫+++=+++=+++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭18.在锐角中,角的对边分别为.ABC A B C ,,a b c ,,2sin 0b C -=(1)求角的大小;B (2)再从下面条件①、条件②这两个条件中选择一个作为已知,求的面积.ABC 条件①;条件②:.2b a ==24a A π==,注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1);(2)答案不唯一,具体见解析.3B π=【分析】(1,进而得,再结合锐角三2sin sin 0C B C -=sin B 角形即可得答案;(2)条件①,结合(1)和余弦定理得,解方程得,进而根据三角形面22230--=c c 1=+c 积公式计算即可;条件②,结合(1)与正弦定理得,再结合内角和定理和正弦的和角公式得bsin C =进而根据三角形的面积公式求解.【详解】解(1.2sin =0b C -2sin sin 0C B C -=因为,所以.0,,sin 02C C π⎛⎫∈≠ ⎪⎝⎭sin B 因为,所以.0,2B π⎛⎫∈⎪⎝⎭3B π=(2)条件①:;2b a ==因为,由(1)得,2b a ==3B π=所以根据余弦定理得,2222cos =+-⋅⋅b c ac a B 化简整理为,解得22230--=c c 1=+c 所以△的面积ABC 1sin 2S c a B =⋅=条件②:24a A π==,由(1)知,,π3B =4A π=根据正弦定理得,sin sin b aB A =所以sin sin ⋅==a Bb A 因为,512C A B ππ=--=所以5sin sin sin 1246C πππ⎛⎫==+= ⎪⎝⎭所以△的面积ABC 1sin 2=⋅=S b a C 【点睛】本题考查正余弦定理解三角形,三角形的面积求解,考查运算求解能力,回归转化能力,是中档题.本题解题的关键在于利用正弦定理边角互化得,进而结合锐角三角形即可得sin B ;此外,第二问选择条件①,需注意余弦定理方程思想的应用.3B π=19.已知,且.将表示为的函数,若记此函数为()()2cos ,1,cos ,m x x n x y =+=- m n ⊥ y x ,()f x (1)求的单调递增区间;()f x (2)将的图象向右平移个单位,再将所得图象上各点的横坐标变为原来的2倍(纵坐标不()f x 6π变),得到函数的图象,求函数在上的最大值与最小值.()g x ()g x []0,x π∈【答案】(1)单调递增区间为(2)最大值为3,最小值为0.,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【详解】试题分析:(1)根据向量的垂直关系求出 的解析式,结合三角函数的性质求出函f x ()数的递增区间即可;(2)求出 的解析式,根据自变量的范围,以及三角函数的性质求出函数的最大值和最小值即g x ()可.试题解析:(1)由得,mn ⊥ 22cos cos 0m n x x x y ⋅=+-=所以. 22cos cos 1cos22sin 216y x x x x x x π⎛⎫=+=+=++ ⎪⎝⎭由得,222,262k x k k Zπππππ-+≤+≤+∈,36k x k k Zππππ-+≤≤+∈即函数的单调递增区间为2sin 216y x π⎛⎫=++ ⎪⎝⎭,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)由题意知()2sin 16g x x π⎛⎫=-+ ⎪⎝⎭因为, []50,,,666x x ππππ⎡⎤∈∴-∈-⎢⎥⎣⎦故当时, 有最大值为3; 62x ππ-=()g x 当时, 有最小值为0.66x ππ-=-()g x 故函数在上的最大值为3,最小值为0.()g x []0,x π∈20.人脸识别技术在各行各业的应用改变着人类的生活,所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别对象的身份,在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用测量距离的方式有曼哈顿距离和余弦距离.若二维空间有两个点,,则曼哈顿距离为:,余弦相似度为:()11,A x y ()22,B x y ()1212,d A B x x y y =-+-()cos ,A B =()1cos ,A B -(1)若,,求A ,B 之间的曼哈顿距离和余弦距离;()1,2A -34,55B ⎛⎫ ⎪⎝⎭(),d A B (2)已知,,,若,,()sin ,cos M αα()sin ,cos N ββ()sin ,cos Q ββ-()1cos ,5M N =()2cos ,5M Q =求的值tan tan αβ【答案】(1),1451(2)3-【分析】(1)根据公式直接计算即可.(2)根据公式得到,,计算得到答案.1sin sin cos cos 5αβαβ+=2sin sin cos cos 5αβαβ-=【详解】(1),()3414,12555d A B =--+-=,故余弦距离等于()34cos ,55A B ==()1cos ,1A B -=(2)()cos ,M N =;1sin sin cos cos 5αβαβ=+=()cos ,M Q =+2sin sin cos cos 5αβαβ=-=故,,则.3sin sin 10αβ=1cos cos 10αβ=-sin sin tan tan 3cos cos αβαβαβ==-21.某呼吸机生产企业计划投资固定成本500万元引进先进设备,用于生产救治新冠肺炎患者的无创呼吸机,需要投入成本y (单位:万元)与年产量x (单位:百台)的函数关系式为.据以往出口市场价格,每台呼吸机的售价为3万元,且依据国外疫25150,02064003011700,20x x x y x x x ⎧+≤<⎪=⎨+-≥⎪⎩情情况,预测该年度生产的无创呼吸机能全部售完.(1)求年利润t (单位:万元)关于年产量x 的函数解析式(利润=销售额-投入成本固定成本);(2)当年产量为多少时,年利润最大?并求出最大年利润.【答案】(1)25150500,020********,20x x x t x x x ⎧-+-≤<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩(2)8000台,1040万元【分析】(1)分别求出和时的解析式,即可得到年利润t (单位:万元)关于年产020x ≤<20x ≥量x 的函数解析式;(2)分别求出和时的最大值,比较大小,即可得到最大年利润.020x ≤<20x ≥【详解】(1)当时,;020x ≤<()2230051505005150500t x x x x x =-+-=-+-当时,.20x ≥6400640030030117005001200t x x x x x ⎛⎫⎛⎫=-++-=-+ ⎪ ⎪⎝⎭⎝⎭所以.25150500,020********,20x x x t x x x ⎧-+-≤<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩(2)当时,,020x ≤<()225150500515625t x x x =-+-=--+故当时,t 取得最大值,为625,15x =当时,因为,20x ≥6400160x x +≥=当且仅当,即时等号成立,6400x x =80x =所以,6400120012001601040t x x ⎛⎫=-+≤-= ⎪⎝⎭即当时,t 取得最大值,为1040,80x =综上所述,当年产量为8000台时,年利润最大,且最大年利润为1040万元.22.已知函数.2()(2)3f x x a x a =--+-(1)若f (a +1)=f (2a ),求a 的值;(2)若函数y =f (x )在x ∈[2,3]的最小值为5-a ,求实数a 的取值范围;(3)是否存在整数m 、n 使得关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ]?若存在,请求出m 、n 的值:若不存在,请说明理由.【答案】(1)1或;(2);(3)存在, ,.32-(,6]-∞2n =1m =-【分析】(1)根据已知条件,得到解方程即可()()()221(2)1322(2)3a a a a a a a a +--++-=--+-求出结果;(2)由于的对称轴为,根据对称轴与区间的位置关系进行分类讨论,判断单调性求()f x 22a x -=出最小值即可;(3)根据题意转化为是方程的两个根,结合韦达定理得到,,m n 2(2)3x a x a x --+-=2m n mn +=+分离常数,根据m 、n 为整数即可求解.【详解】(1)因为,且,2()(2)3f x x a x a =--+-()(1)2f a f a +=所以,()()()221(2)1322(2)3a a a a a a a a +--++-=--+-整理得,解得或;2230a a +-=1a =32-(2)的对称轴为,2()(2)3f x x a x a =--+-22a x -=因为,[]2,3x ∈①若,即,则在上单调递增,所以222a -≤6a ≤()f x []2,3x ∈,符合题意;2min ()(2)22(2)35f x f a a a ==--+-=-②若,即,则在上单调递减,在单调递增,所以2232a -<<68a <<()f x 22,2a -⎛⎫ ⎪⎝⎭2,32a -⎛⎫ ⎪⎝⎭,则,与矛盾,22min 222816()((2)352224a a a a a f x f a a a ----+-⎛⎫==--+-==- ⎪⎝⎭6a =68a <<不符合题意;③,即,则在上单调递减,232a -≥8a ≥()f x []2,3x ∈所以,则,与矛盾,不符合题意;2min ()(3)33(2)31225f x f a a a a ==--+-=-=-7a =8a ≥综上,因此实数a 的取值范围为;6a ≤(,6]-∞(3)因为关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ],①若,则在上单调递增,所以,即是方程,22a m -≤()f x [],m n ()()f m mf n n ⎧=⎪⎨=⎪⎩,m n 2(2)3x a x a x --+-=即的两个根,由韦达定理得,所以,所以2(1)30x a x a --+-=13m n a mn a +=-⎧⎨=-⎩2m n mn +=+,当时,不存在,舍去,()12m n n -=-1n =m 当时,,所以当时,;当时,,1n ≠21111n m n n -==+--0n =2m =2n =0m =又因为,所以,,经检验,此时,关于x 的不等式m ≤f (x )≤n 的解集不是m n <2n =0m =3a =[m ,n ],故不符合题意舍去;②若,则在上单调递减,在上单调递增,所以22a m n -<≤()f x 2,2a m -⎛⎫ ⎪⎝⎭22a n -⎛⎫ ⎪⎝⎭,,即,()()22a f m fn n f m n ⎧-⎛⎫≥ ⎪⎪⎝⎭⎪⎨=⎪⎪=⎩22222(2)322(2)3(2)3a a a a m n a n a n m a m a n ⎧--⎛⎫--⋅+-≥⎪ ⎪⎝⎭⎪⎪--⋅+-=⎨⎪--⋅+-=⎪⎪⎩所以,即有两个不相等的实数根,且2228164(2)3(2)3a a m n a n a nm a m a n ⎧-+-≥⎪--⋅+-=⎨⎪--⋅+-=⎩2(2)30x a x a n --⋅+--=,由于为整数,则为整数,则2m n a +=-,m n a 231=211n n a n n n +-=+---当时,,经检验关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍0n =3,1a m ==-去;当时,,经检验符合题意;2n =3,1a m ==-故,;1m =-2n =③若,则在上单调递减,所以,22a n -≥()f x [],m n ()()f m nf n m ⎧=⎪⎨=⎪⎩即,则,不合题意舍去.22(2)3(2)3m a m a n n a n a m ⎧--⋅+-=⎨--⋅+-=⎩m n =综上:存在这样的为整数,且,.,m n 1m =-2n =【点睛】动轴定区间型二次函数最值得方法:(1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点值对应的函数值进行分析;(3)将分类讨论的结果整合得到最终的结果.。
一年级数学单元测试卷(一、二、三单元)学校班级姓名第一部分:基础知识一、按规律填空.(每个1分,共4分)二填空。
(每空0.8分,共20分)1、29前面的一个数是(),后面的一个数是()。
2、厘米用字母()表示,米用字母()表示,1米=()厘米。
3、四十八写作(),92读作(),70写作()4、写出个位是5的数()()()。
写出十位是3的数()()。
5、五个十是()。
七个十是()。
()个十是一百。
6、()个十和()个一是73。
()个一是一十。
7、46中的“6”在()位上,表示()个(),“4”在()位上,表示()个()。
三、看图写数。
(每空0.5分,共2分)(()()()()四、请把下面的数字排排队。
(每空1分,共7分)36 18 78 99 20 100 11()>()>()>()>()>()>()五、按要求写数。
(没写对1个0.3分,共3分)(1)、写出5个大于37的数——----———————————。
(2)、写出5个小于78的数————————————------。
六、想一想,画一画。
(每题1分,共2分)(1)、 ___________________________________. (2)、 _________________________________.第二部分:动手操作(13分)1、画一条3厘米长的线段。
(2分)2、量一量。
2分()㎝3、填“m”还是“㎝”(共6分)(1)、一条毛巾长约60()。
(2)、我的裤子长约80()。
(3)、一座楼房高约20()。
(4)、黄瓜长约20()。
15 20 35 17 27 94 84 54 22 24(5)、一棵大树高约10()。
(6)、马路宽约20()。
4、填“>”“<”或“=”。
(每空0.5分,共3分)9㎝10 ㎝50㎝ 1 m 1 m100 ㎝15㎝ 51㎝ 10㎝ 10 m 10㎝ 11㎝第三部分:计算(24分)一、口算。
(每个0.4分,共8分)31+8= 36-3= 4+75= 5+23=99-9= 46-5= 47-3= 96-4=60+20= 40+40= 20+7= 6+40=45+20= 68+30= 20+43= 30+35=68-40= 96-30= 80-20= 85-40=二、填“>”“<”或“=”(共8分)。
2024年苏教版一年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共7题,共14分)1、有一个四边形满足:两组对边分别平行,没有直角,这个四边形是()A. 长方形B. 平行四边形C. 梯形2、上体育课时,开始小丽面向北站着,她向后转后,左边是()A. 东B. 西C. 南3、计算6.51++3.49+用()方法比较简便.A. 把分数化成小数B. 把小数化成分数C. 用加法运算定律4、图中有()组平行线.A. 1B. 2C. 3D. 45、一个长方形的周长是60厘米,长与宽的比是3:2,这个长方形的长是()厘米.A. 12B. 36C. 18D. 246、2.7992×2.5得数保留两位小数约是()A. 7B. 7.00C. 6.997、把一个圆柱的侧面展开,不可能得到()A. 长方形B. 正方形C. 平行四边形D. 三角形二、填空题(共7题,共14分)8、工作总量÷____=时间____×____=总价;单产量×____=总产量速度×____=路程;总产量÷____=数量速度=____÷____;时间=____÷工效工效=____÷____.9、市场上苹果每千克2.8元,妈妈买3.5千克花了____元钱.10、在横线上填上“›”“‹”或“=”-7____-5.5; 0.01____-2.4;-3.1____3.1;-1____0.11、一组数据:a、b、c的平均数为6,另一组数据:x、y、m、n的平均数为2,则这7个数组成的一组新数据的平均数是____.12、画的△比☆多2个.☆☆☆____.13、一个长4分米,宽2分米的长方形.以长为轴旋转一周,形成的图形的表面积是____平方分米,以宽为轴旋转一周,形成的图形的体积是____立方分米.14、把式子按从大到小排列。
一年级数学下学期三月月考试卷(考试时间90分钟,满分100分)一、我会算。
(12分)12―9= 16―7= 10―6= 9+5=18-6= 12+7= 15―8= 17―9=14―9―3= 18―4+3= 17-7+2= 14-8+7=二、我会填。
(5+8+6+5+4=28分)1、长方形正方形平行四边形三角形圆()个()个()个()个()个13-9○5 18-9○8 14+4○18-7 15+2○1914-9○7 18-8○6+4 13+5○8 17-9○83、5+()=11 9+()=16 16-5=10+()14=()+3 17=9+() 16-()=17-8 4、连一连5、看图列算式。
○○○¦○○○○▲▲▲▲▲▲▲▲○○○¦○○○▲▲▲▲▲▲▲□○□=□□○□=□□○□=□□○□=□三、四、看图列式(8分)□○□=□()□○□=□()五、用数学。
(32分)1、还能坐几人?□○□=□()2、一共有12只羊。
(1)左边有7只,右边有几只?(2)黑羊有4只,白羊有几只?□○□=□()□○□=□()3、□○□=□()4、小明有19本练习本,小红有15本练习本,小明比小红多几本练习本?小红比小明少几本练习本?□○□=□()□○□=□()5、一组共有17人,其中男生有9人,女生有几人?□○□=□()一年级参考答案一、3,9,4,14,12,19,7,8,2,17,12,13 二、1、5,3,1,13,32、<>><<=>=3、6,7,1,11,8,74、略5、6+7=13,7+6=13;8+7=15,7+8=15三、略四、15-8=7(条);11-6=5(只)五、1、14-9=5(人)2、12-7=5(只),12-4=8(只)3、17-9=8(元)4、19-15=4(本)19-15=4(本)5、17-9=8(人)。
2020年新人教版数学下册3月月考试卷一年级数学(测试时间90分钟满分100分)一、填一填。
(每空1分,第8题每空0.5分,共19分)1、七巧板由()个三角形,()个正方形,()个平行四边形组成。
2、被减数是16,减数是9,差是()。
3、摆一个大正方形至少需要()个小正方形。
4、两个完全一样的长方形可以拼成一个()。
5、长方形有( )个正方形有( )个三角形有( )个圆形有( )个6、把一张正方形纸对折后剪开,可以剪成两个相同的()。
7、将左图做成一个正方体,数字1的对面是(),数字4的对面是(),数字5的对面是()。
8、找规律填数20、( )、18、( )、( )、15。
5、( )、9、11、( )、( )、179、按规律接着往下画。
(1)△○△○○△(2)三、看谁算得又对又快。
(19分)9+7=15-8=7+5=17-9=8+4=16-6 =5+8=12-5=14-7=13-6=11-4=14-8=17-10 = 11-2 = 13-5= 14-6=14-4-7= 16-9+8= 6+5-9=四、按要求做一做。
(18分)1、在○里填上“+”或“-”,使算式正确。
(6分)13○5 = 8 14○8 = 6 17○9 = 8 8○7 = 15 18○8= 10 12 = 8○42、在○里填上“>”、“<”或“=”。
(6分)15-9○9 14-5○9 13-8○412-6○4+8 11-5○0+6 5+7○16-93、在□里填上适当的数。
(6分)5+□=12 7+□=16 □-6=9 □-8=2 13-□<7 5=13-□五、看图列式计算(每题3分,共12分)题号一二三四五六七八总分得分5461 3 212只= =?个14个?支====六、生活中的数学问题。
(每题5分,共20分)1、图书角有15本故事书,借出了7本,还剩几本?□○□=□(本)答:还剩□本。
2、树上有16只小鸟,飞走了9只,还剩几只小鸟?□○□=□(只)答:还剩□只小鸟。
(考试时间90分钟,总分100分)一、算一算。
(共20分,加减混合每题2分,其它每题1分。
)12-9= 13-6= 11-5= 17-5=14-7= 5+8= 12-7= 12-3=12-5+4= 18-9+7= 6+10-8=3+9-7= 11-8+7= 13-7+6=二、下面的说法对吗?你认为对的在后面的()里画∨,错的画×。
(共10分,每题2分。
)(1)长方形相对的边相等。
()(2)圆就是球。
()(3)用2个同样的小正方形可以拼成一个大正方形。
()(4)用同样长的小棒摆两个三角形,最少要6根。
()(5)一个长方形不能剪成4个同样的三角形。
()三.在○里填上“﹥”“﹤”或“= ”。
(共12分,每题2分。
) 16-9○8 16-7○1个十和1个一 13-4○10+1 7+7○13 15-6○8 12-8○13-9 四.□里最大能填几?(共12分,每题2分。
)7+□﹤14 11-□﹥6 8﹥□-5□+6﹤12 15-□﹥9 6﹥□-2五.数一数,再填空。
(共10分,每空2分。
)六.圈一圈。
(请你找出用右侧哪一个物体可以画出左侧的图形,用笔圈出来。
)(共8分,每题2分。
)、七.数一数,需要多少块砖才能把墙补好,需要( )块砖。
(共2分。
)八.沿虚线折一折下面的图形。
(共3分,每空1分。
)折出来的是(),“2”的对面是(),“1”的对面是()。
九.作图题。
(共6分,每画对一个2分。
)下面的图形是由许多小正方形组成的,请在图上,分别画一个正方形、一个平行四边形和一个三角形。
十.看图列式计算。
(共12分,每题3分。
)1. 2.3.★★★★★★★4.■■■■■■★★★★★★■■■■■十一.解决问题。
(共15分,每题5分。
)1.兔有15只,狗有6只,猫有7只。
兔比猫多多少只?()2.树上原来有17个桃,小猴吃了8个,树上还剩几个桃?()3.游走5只鸭后,河边还剩7只鸭,,河边原来有几只鸭?()。
2022-2023学年四川省甘孜州康定中学高一下学期3月月考数学试题一、单选题1.已知角的终边与单位圆的交于点,则为( )α1,2P y ⎛⎫- ⎪⎝⎭cos αA .BC .D .12-12【答案】A【分析】直接利用三角函数的定义,可得结果.cos x α=【详解】由三角函数的定义可得.1cos 2α=-故选:A.2.下列与角的终边相同的角的表达式中正确的是( )45︒A .()B .()2π45k +︒Z k ∈π3604k ⋅︒+Z k ∈C .()D .()36045k ⋅︒+︒Z k ∈5ππ4k +Z k ∈【答案】C【分析】根据终边相同的角的表示方法以及角度和弧度的应用,一一判断各选项,可得答案.【详解】对于A ,B ,终边相同的角的表达式中弧度与角度混用,不正确;又与角的终边相同的角的表达式可以为()或(),45︒36045k ⋅︒+︒Z k ∈π2π4k +Z k ∈对于,令,表示的角为与角的终边不相同,故C 正确,D 错误,5ππ4k +0k =5π445︒故选:C3.已知,则( )tan 3α=-22cos sin αα-=A .B .C .D .4545-3535-【答案】B【分析】弦化切即可求解.【详解】,22222222cos sin 1tan 84cos sin cos sin 1tan 105αααααααα----====-++故选:B.4.下列函数中,最小正周期为,且在上单调递减的是( )π2π(,0)4-A .B .)πsin(42y x =+)πcos(42y x =-C .D .tan(π2)y x =+|sin(π2)|y x =+【答案】D【分析】利用诱导公式化简函数的解析式,根据周期公式及三角函数的性质进行求解判断.【详解】,函数的最小正周期为;当时,,则此函c πsin(4)os 42y x x =+=π2)π(,04x ∈-4(π,0)x ∈-数在区间上单调递增,故A 错误;π(,0)4-,函数的最小正周期为;当时,,则此函数在区间s πcos(4)in 42y x x =-=π2)π(,04x ∈-4(π,0)x ∈-上是单调递减,在区间上是单调递增,故B 错误;(,π48)π--()π8,0-,函数的最小正周期为;当时,,则此函数在区间tan(π2)tan 2y x x =+=π2)π(,04x ∈-π2(,0)2x ∈-上单调递增,故C 错误;π(,0)4-,因为的最小正周期为,则此函数的最小正周期为;|sin(π2)||sin 2||sin 2|y x x x =+=-=sin 2y x =ππ2当时,,,则此函数在区间上单调递减,故D )π(,04x ∈-π2(,0)2x ∈-|sin 2|sin 2y x x ==-π(,0)4-正确.故选:D.5.函数在上的图像大致为( )()3sin xf x x x =-[]π,π-A .B .C .D .【答案】B【分析】根据给定的函数,由奇偶性排除两个选项,再取特值即可判断作答.【详解】函数定义域为,3sin ()xf x x x =-(,0)(0,)-∞+∞ 而,且,33sin()sin ()()()x xf x x x f x x x --=--=--≠-()()f x f x -≠-即函数既不是奇函数也不是偶函数,其图象关于原点不对称,排除选项CD ;()f x 而当时,,排除选项A ,选项B 符合要求.πx =()(π)πf x f ==故选:B6.已知,则( )π3,π,sin 25αα⎛⎫∈=⎪⎝⎭cos π2α⎛⎫-= ⎪⎝⎭A .BC .D【答案】A【分析】根据同角三角函数的平方关系及半角的余弦公式,再结合诱导公式即可求解.【详解】由,得π3,π,sin 25αα⎛⎫∈=⎪⎝⎭,4cos 5α===-,,ππππ,2224αα<<∴<<cos 02α>,cos 2α===所以cos πcos 22αα⎛⎫-=-= ⎪⎝⎭故选:A.7.如图,在正方形中,分别是边上的点,,,则( )ABCD ,E F ,AB AD 32AE BE =4ECF π∠=A .B .32AD DF =2AD DF =C .D .3AD DF =4AD DF=【答案】D【分析】利用正切的和差公式得到,然后得到,即可得到.tan FCB ∠tan FCD ∠4AD DF =【详解】由题可知,()31tan tan 5tan tan 431tan tan 115FCE BCE FCB FCE BCE FCE BCE ∠∠∠∠∠∠∠++=+===-⋅-⨯则,即,.1tan 4FCD ∠=4CD DF =4AD DF =故选:D.8.已知函数的图象关于对称,且,则()()sin cos 0f x a x b x ab =+≠6x π=()085f x a=的值是( )0sin 26x π⎛⎫+ ⎪⎝⎭A .B .C .D .725-2425-7252425【答案】C【分析】先对函数化简变形,然后由题意可得,求得,再由6f π⎛⎫= ⎪⎝⎭b =可得,再利用诱导公式和二倍角公式可求得结果()085f x a=04sin 35x π⎛⎫+= ⎪⎝⎭【详解】因为,()()sin cos f x a x b xx ϕ=+=+0ab ≠其中,sin ϕ=cosϕ=由于函数的图象关于对称,所以,6x π=6fπ⎛⎫=⎪⎝⎭即,化简得,12ab =所以,即,()00008sin cos 2sin 35f x a x x a x aπ⎛⎫==+= ⎪⎝⎭04sin 35x π⎛⎫+= ⎪⎝⎭所以,20000227sin 2sin 2cos 22sin 16323325x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫+=+-=-+=+-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故选:C.二、多选题9.下列各式中正确的是( )A .B .3ππtantan 55>tan2tan3<C .D .17π23πcos cos 45⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭ππsin sin 1810⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】BC【分析】根据正切函数的函数值的正负以及单调性可判断A ,B ,利用诱导公式结合正余弦函数的性质可判断C ,D.【详解】对于A ,,A 错误;3π2π2ππtantan(πtan 0tan 5555=-=-<<对于B ,,由于函数在上单调递增,π23π2<<<tan y x =π(,π)2故,B 正确;tan2tan3<对于C ,,17π17πππcos(cos cos(4πcos 4444-==+==,故,C 正确;23π3π3πcos()cos(4π+cos 0555-==<17π23πcos cos 45⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭对于D,函数在上是增函数,而,sin y x =ππ[,]22-ππ1018-<-所以,D 不正确; ππsin sin 1810⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭故选:BC10.下列说法正确的是( )A .若为第一象限角,则为第一或第三象限角α2αB .函数是偶函数,则的一个可能值为()πsin 4f x x ϕ⎛⎫=++ ⎪⎝⎭ϕ3π4C .是函数的一条对称轴π3x =()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭D .若扇形的圆心角为,半径为,则该扇形的弧长为601cm 60cm 【答案】AC【分析】对于A :直接代入象限角的范围即可求解;对于B :代入即可判断奇偶性;对于3π4ϕ=C :代入根据余弦函数对称轴的性质即可判断;对于D :根据弧长公式即可求解.π3x =【详解】对于A :若为第一象限角,则,απ2π2π,Z2k k k α<<+∈则:,所以为第一或第三象限角,πππ,Z 24k k k α<<+∈2α故选项正确;A对于B :当时,,函数为奇函数,3π4ϕ=()()sin πsin f x x x =+=-故选项错误;B 对于C :因为,所以是函数π2cos π23f ⎛⎫==- ⎪⎝⎭3x π=的一条对称轴,()2cos 23f x x π⎛⎫=+ ⎪⎝⎭故C 选项正确;对于D :扇形圆心角为,半径为,则该扇形的弧长为,π31cm πcm3故D 选项错误.故选:AC.11.已知函数,其中表示不超过实数x 的最大整数,下列关于()[][]sin cos cos sin f x x x =+[]x 结论正确的是()f x A .B .的一个周期是cos12f π⎛⎫= ⎪⎝⎭()f x 2πC .在上单调递减D .()f x ()0,π()f x 【答案】ABD 【分析】将代入可判断A ;根据函数周期的定义可判断B ;根据取整函数的定义,可以判断2x π=在上函数值是确定的一个值,从而判断C ;利用可判断D.()0,π()0f 【详解】由,()[][]sin cos cos sin f x x x =+对于A ,,故A 正确;sin 0cos1cos12f π⎛⎫=+= ⎪⎝⎭对于B ,因为()()()2sin cos 2cos sin 2f x x x πππ+=+++⎡⎤⎡⎤⎣⎦⎣⎦,所以的一个周期是,故B 正确;[][]()sin cos cos sin x x f x =+=()f x 2π对于C ,当时,,,所以,0,2x π⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<[][]sin cos 0x x ==所以,故C 错误;()[][]sin cos cos sin sin 0cos 01f x x x =+=+=对于D ,()[][]0sin cos 0cos sin 0f =+D 正确;sin1cos 0sin111=+=+>>故选:ABD【点睛】本题考查了三角函数相关性质的辨析,涉及到的知识点有取整函数、单调性、周期性、最值的综合应用,属于中档题.12.已知函数,则( )()cos 2sin ,Rf x x a x a =+∈A .的最小正周期为()f x πB .的图象关于直线轴对称()f x π2x =C .当则函数在上单调递增2a =()f x ππ,63x ⎛⎫∈- ⎪⎝⎭D .当时,最小值为0,则1a =()π,,6x f x α⎛⎫∈- ⎪⎝⎭π7,π26α⎛⎤∈ ⎥⎝⎦【答案】BD【分析】A 、B 分别判断、是否成立即可;C 、D 研究正弦函数和二(π)()f x f x +=(π)()f x f x -=次函数所构成的复合函数的单调性,以及正弦函数的值域判断正误.【详解】A :,又,故不一(π)cos 2(π)sin(π)cos 2sin f x x a x x a x +=+++=-R a ∈(π)()f x f x +=定成立,错误;B :,即关于直线轴对称,正确;(π)cos 2(π)sin(π)cos 2sin ()f x x a x x a x f x -=-+-=+=()f x π2x =C :由,令,则,2()12sin 2sin f x x x =-+1sin (2t x =∈-2215()()1222()24f x g t t t t ==-+=--+而在上递增,在上递增,上递减,sin t x =ππ,63x ⎛⎫∈- ⎪⎝⎭()g t 11(,22-1(2所以在上递增,在上递减,错误;()f x ππ,66x ⎛⎫∈- ⎪⎝⎭ππ,63x ⎛⎫∈ ⎪⎝⎭D :由,令,则,而2()12sin sin f x x x =-+sin t x =2219()()122()48f x g t t t t ==-+=--+,1((1)02g g -==要使在上最小值为0,只需保证至少取到或1中的一个值,但不能小于,()f x π,6α⎛⎫-⎪⎝⎭sin α12-12-即,正确.π7π26α<≤故选:BD三、填空题13.已知,且是第二象限的角,则______.2sin 3β=βtan β=【答案】【分析】根据同角的平方关系求得,从而得到结果.cos β【详解】因为是第二象限的角,则,βcos 0β<所以cos β==则sin tan cos βββ==故答案为:14.函数的定义域为______.()()lg tan 1f x x =-【答案】,πππ,π42k k ⎛⎫++⎪⎝⎭()k ∈Z 【分析】根据对数函数真数大于0,正切函数图象性质解决即可.【详解】由题知,,()()lg tan 1f x x =-所以,即,解得,tan 10ππ2x x k ->⎧⎪⎨≠+⎪⎩ππππ42ππ2k x k x k ⎧+<<+⎪⎪⎨⎪≠+⎪⎩πππ,42k x k k π+<<+∈Z 所以函数的定义域为,()()lg tan 1f x x =-πππ,π42k k ⎛⎫++ ⎪⎝⎭()k ∈Z 故答案为:,πππ,π42k k ⎛⎫++⎪⎝⎭()k ∈Z15.已知函数,若函数在区间上存在两个零点和两个最值点,则m 的()sin cos f x x x=-()f x []0,m 取值范围是___.【答案】79ππ,44⎡⎫⎪⎢⎣⎭【分析】先根据辅助角公式得到,再求出的取值范围,然后根据正弦函()π4f xx ⎛⎫=- ⎪⎝⎭π4x -数的性质及题意建立不等关系,求得参数的取值范围即可.【详解】依题意可得,()πsin cos 4f x x x x ⎛⎫=-=- ⎪⎝⎭由,则,[]0,x m ∈πππ,444x m ⎡⎤-∈--⎢⎥⎣⎦要使函数在区间上存在两个零点和两个最值点,()f x []0,m 则,解得.3ππ2π24m ≤-<7π9π44m ≤<所以m 的取值范围为.79ππ,44⎡⎫⎪⎢⎣⎭故答案为:.79ππ,44⎡⎫⎪⎢⎣⎭16.若定义在上的函数满足:当时,,且R ()f x π2x ≤()()sin 2sin 3sin cos f x f x x x -+=,则__________.()()2f x f x +=365f ⎛⎫=⎪⎝⎭【答案】##3625-1.44-【分析】将代入已知等式,结合正余弦函数的奇偶性可构造方程组求得,x -()sin 3sin cos f x x x=结合可化简得到;利用周期性可知所求函数值为,令cos 0x ≥()sin 3sin f x x =45f ⎛⎫- ⎪⎝⎭即可求得结果.4sin 5x =-【详解】当时,π2x ≤,;π2x -≤()()()()()()sin 2sin sin 2sin 3sin cos f x f x f x f x x x ∴--+-=+-=-由得:,()()()()sin 2sin 3sin cos sin 2sin 3sin cos f x f x x x f x f x x x ⎧-+=⎪⎨+-=-⎪⎩()sin 3sin cos f xx x =当时,,π2x ≤cos 0x ≥cos x ∴=()sin 3sin f x x ∴=,,()()2f x f x += 36448555f f f ⎛⎫⎛⎫⎛⎫∴=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令,则.4sin 5x =-412365525f ⎛⎫-=-=-⎪⎝⎭故答案为:.3625-【点睛】关键点点睛:本题考查利用函数周期性求解函数值的问题,解题关键是能够灵活应用正余弦函数的奇偶性,采用构造方程组的方式求得,利用周期性将自变量转化到的范围()sin f x []1,1-内即可.四、解答题17.(1)已知,求值;sin 2cos α63sin α5cos αα-=--tan α(2)化简.()()πcos 2sin 2πcos 2π5πsin 2αααα⎛⎫- ⎪⎝⎭--⎛⎫+ ⎪⎝⎭【答案】(1);(2).28tan 19α=-2sin α【分析】(1)根据同角的三角函数关系式进行求解即可;(2)根据诱导公式进行求解即可.【详解】(1);sin 2cos αtan 22866tan 3sin α5cos 3tan 519ααααα--=⇒=⇒=-----(2)()()2πcos 2sin 2πcos 2π5πsin 2sin sin cos cos sin ααααααααα⎛⎫- ⎪⎝⎭--⎛⎫+ ⎪⎝⎭==18.如图所示,在平面直角坐标系中、角的项点与原点重合,以x 轴非负半轴为始边的两个锐xOy 角、,它们的边分别与单位圆交于A 、B 两点,已知A 、B.αβ(1)求,的值.sin αsin β(2)求的值()sin 2αβ+【答案】(1),sin α=sin β=【分析】(1)根据三角函数的定义即可求解,cos α=cos β=解sin α=sin β=(2)由二倍角公式可得,,进而由正弦的和角公式即可求解.4sin25β=3cos25β=【详解】(1)由三角函数的定义可知为锐角,则,从而cos α=cos β=αsin 0α>sin α==sin β==sin α=sin β(2)∵,,4sin22sin cos 5βββ==23cos22cos 15ββ=-=所以()34sin 2sin cos2cos sin255αβαβαβ+=+==19.已知,.π1tan 43α⎛⎫-= ⎪⎝⎭π0,4α⎛⎫∈ ⎪⎝⎭(1)求的值;()2sin 22cos f ααα=-(2)若,且的值.π0,2β⎛⎫∈ ⎪⎝⎭3πsin 4β⎛⎫+= ⎪⎝⎭αβ+【答案】(1);45-(2).π4【分析】(1)先利用两角差的正切公式求得角的正切值,把所给的函数式进行恒等变形,根据二倍α角公式和同角三角函数的基本关系,进行弦化切,代入即得结果;(2)由,结合所给的角的范围,利用两角和与差的三角函数公式和同角三角函数的3π3π44ββ⎛⎫=+- ⎪⎝⎭基本关系,求得,再利用和角的正切公式求解即可.1tan 3β=【详解】(1)∵,π1πtan 0434αα⎛⎫⎛⎫-=∈ ⎪ ⎪⎝⎭⎝⎭,,∴,解得.1tan 11tan 3αα-=+1tan 2α=∴;()2222sin 22cos 2sin cos 2cos 1cos sin f αααααααα-⋅-==+21222tan 2211tan 5144αα⨯--===-++(2)∵,且,∴,π02β⎛⎫∈ ⎪⎝⎭,3πsin 4β⎛⎫+ ⎪⎝⎭3π3π5π444β<+<∴,3π3πcos 0,cos 44ββ⎛⎫⎛⎫+<+== ⎪ ⎪⎝⎭⎝⎭∴3π3π3π3π3π3πsin sin sin cos cos sin 444444ββββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,⎛=-= ⎝π02β⎛⎫∈ ⎪⎝⎭,∴,∴.cos β=1tan 3β=∴,()11tan tan 23tan 1111tan tan 123αβαβαβ+++===-⋅-⨯又∵,3π04αβ⎛⎫+∈ ⎪⎝⎭,∴.π4αβ+=20.已知函数,的最小正期为.()()()2π2sin 2104f x x x ωωω⎛⎫=+-> ⎪⎝⎭()f x π(1)求的单调增区间和对称中心;()f x (2)方程在上有两个解,求实数的取值范围.()210f x n -+=70,π12⎡⎤⎢⎥⎣⎦n 【答案】(1)的单调增区间为,;对称中心为,;()f x π5ππ,π1212k k ⎡⎤-+⎢⎥⎣⎦Z k ∈ππ,062k ⎛⎫+ ⎪⎝⎭Z k ∈(2).31,2⎡⎫⎪⎢⎣⎭【分析】(1)利用二倍角公式和辅助角公式化简函数,再结合三角函数的图象及性质求解即()f x 可;(2)根据正弦函数的图象和性质结合条件即得.【详解】(1)因为,()()()2π2sin 2104f x x x ωωω⎛⎫=+-> ⎪⎝⎭所以,()ππcos 22sin 222sin 223f x x x x x x ωωωωω⎛⎫⎛⎫=-+==- ⎪ ⎪⎝⎭⎝⎭因为的最小正周期为,,()f x π0ω>所以,即,2ππ2ω=1ω=所以的解析式,()f x ()π2sin 23f x x ⎛⎫=- ⎪⎝⎭令,,πππ2π22π232k x k -≤-≤+Z k ∈得:,π5πππ1212k x k -≤≤+所以的单调增区间为,,()f x π5ππ,π1212k k ⎡⎤-+⎢⎥⎣⎦Z k ∈令,,得:,π2=π3x k -Z k ∈ππ62k x =+所以的对称中心为,;()f x ππ,062k ⎛⎫+ ⎪⎝⎭Z k ∈(2)因为,所以,7π0,12x ⎡⎤∈⎢⎥⎣⎦ππ5π2336x -≤-≤当,即时,单调递增,πππ2332x -≤-≤5π012x ≤≤()π2sin 23y f x x⎛⎫==- ⎪⎝⎭,()π2sin 232y f x x ⎛⎫==-∈ ⎪⎝⎭⎡⎤⎣⎦当,即时,单调递减,ππ5π2236x ≤-≤5π7π1212x ≤≤()π2sin 23y f x x ⎛⎫==- ⎪⎝⎭,()[]π21,2sin 23y f x x ⎛⎫==-∈ ⎪⎝⎭方程在上有两个解,即在上有两个解,()210f x n -+=70,π12⎡⎤⎢⎥⎣⎦()21f x n =-70,π12⎡⎤⎢⎥⎣⎦所以,即,1212n ≤-<312n ≤<所以实数的取值范围为.n31,2⎡⎫⎪⎢⎣⎭21.已知函数.()21sin cos 2y f x x x x ==-(1)求函数在区间的值域;()y f x =2π0,3⎡⎤⎢⎥⎣⎦(2)已知函数,若不等式在上恒成立,求实数的取值范围.()π6h x f x ⎛⎫=- ⎪⎝⎭()cos 0x h x m -->π0,2⎡⎤⎢⎥⎣⎦m 【答案】(1)1,12⎡⎤-⎢⎥⎣⎦(2)(),1-∞-【分析】(1)首先化简,再根据范围求出范围,即可得到其值域;()πsin 26f x x ⎛⎫=- ⎪⎝⎭x π26x -(2)利用诱导公式和二倍角余弦公式结合分离参数得,再结合22192cos cos 12cos 48m x x x ⎛⎫<+-=+- ⎪⎝⎭范围,即可求出右边最小值,即得到答案.x 【详解】(1)21()sincos 2f x x x x =-1cos21222x x -=+-12cos 22x x =-,πsin 26x ⎛⎫=- ⎪⎝⎭当时,,2π0,3x ⎡⎤∈⎢⎣⎦ππ7π2,666x ⎡⎤-∈-⎢⎥⎣⎦所以,1()sin 2,162πf x x ⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦故函数在区间的值域为.()y f x =2π0,3⎡⎤⎢⎥⎣⎦1,12⎡⎤-⎢⎥⎣⎦(2)因为()ππsin 2cos 262h x f x x x ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭则()cos 0,cos cos 20x h x m x x m -->+->所以2219cos 2cos 2cos cos 12cos 48m x x x x x ⎛⎫<+=+-=+- ⎪⎝⎭设()2192cos 48g x x ⎛⎫=+- ⎪⎝⎭若不等式在上恒成立,只需.()cos 0x h x m -->π0,2⎡⎤⎢⎥⎣⎦()min m g x <当时,则,π0,2x ⎡⎤∈⎢⎥⎣⎦cos [0,1]x ∈所以当,即时,cos 0x =π2x =()2min π1921248g x g ⎛⎫⎛⎫==⨯-=- ⎪ ⎪⎝⎭⎝⎭所以.1m <-实数的取值范围为.m (),1-∞-22.已知函数,其中a 为常数.()245f x x ax =-+(1)若对,恒成立,求实数a 的取值范围;1,22x ⎡⎤∀∈⎢⎥⎣⎦()121f x ≤≤(2)若方程在内有且只有三个互异实数解,求实数a 的取值范围.()2sin 0f x =5π0,6⎛⎫ ⎪⎝⎭【答案】(1)[]0,8(2)2192a ≤<【分析】(1)参变分离得到对恒成立,由函数单调性和基本不等式16444x a x x x -≤≤+1,22x ⎡⎤∀∈⎢⎥⎣⎦求出和的最值,得到实数的取值范围;()164g x x x =-()44h x x x =+a (2)解法一:换元后得到,问题等价于且;或且;或2450t at -+=11t =212t <<101t <<212t <<且,分三种情况数形结合得到实数a 的取值范围;112t <<22t =解法二:换元后得到,问题等价于且;或且;或2450t at -+=11t =212t <<101t <<212t <<且,先考虑和,再考虑,,得到实数的取值范围.112t <<22t =11t =22t =101t <<212t <<a 【详解】(1),恒成立,1,22x ⎡⎤∀∈⎢⎥⎣⎦()121f x ≤≤即对恒成立,16444x a x x x -≤≤+1,22x ⎡⎤∀∈⎢⎥⎣⎦因为在上单调递增,()164g x x x =-1,22x ⎡⎤∈⎢⎥⎣⎦所以, ()()max 20g x g ==今,由基本不等式可知,当且仅当时取等号,()44h x x x =+448x x +≥1x =所以,()min 8h x =所以,即实数的取值范围是.08a ≤≤a []0,8(2)解法一:今,则方程即,2sin t x =()2sin 0f x =2450t at -+=设,是方程的两根,1t ()212t t t <2450t at -+=则方程在内有且只有三个实数解等价于且;()2sin 0f x =5π0,6⎛⎫ ⎪⎝⎭11t =212t <<或且;或且101t <<212t <<112t <<22t =今,对称轴为,且,()245m t t at =-+8a t =1254t t =①当且时,,解得;11t =212t <<()()219022120128Δ800m a m a a a ⎧=-=⎪=->⎪⎪⎨<<⎪⎪=->⎪⎩9a =②当且时,,解得; 101t <<212t <<()()()0519022120m m a m a ⎧=⎪=-<⎨⎪=->⎩2192a <<③当且时,与相矛盾,不合题意;112t <<22t =1254t t =综上,实数的取值范围为.a 2192a ≤<解法二:今,则方程即, 2sin t x =()2sin 0f x =2450t at -+=设,是方程的两根,令.1t ()212t t t <2450t at -+=()245m t t at =-+若,则,,当时,有一个实数解,有两个实数解,11t =9a =254t =5π0,6x ⎛⎫∈ ⎪⎝⎭2sin 1x =52sin 4x =则方程在有两个实数解; ()2sin 0f x =5π0,6x ⎛⎫∈ ⎪⎝⎭若,则,,22t =212a =158t =当时,有一个实数解,有一个实数解,5π0,6x ⎛⎫∈ ⎪⎝⎭2sin 2x =52sin 8x =则方程在有两个实数解,不合题意; ()2sin 0f x =5π0,6x ⎛⎫∈ ⎪⎝⎭此外,要使方程在有三个实数解,只需,,()2sin 0f x =5π0,6x ⎛⎫∈ ⎪⎝⎭101t <<212t <<则,解得;()()()0519022120m m a m a ⎧=⎪=-<⎨⎪=->⎩2192a <<综上,实数的取值范围为.a 2192a ≤<【点睛】复合函数零点问题处理策略:考虑关于的方程的根的个数,在解决此类问x ()0g f x =⎡⎤⎣⎦题时,分两层来分析,第一层是解关于的方程,观察有几个的值使其等式成立,第二层()g x ()f x 是结合第一层的值,求出对应的的值,求出零点的个数.()f x x。