第八章 生物药物的分离纯化技术
- 格式:ppt
- 大小:97.50 KB
- 文档页数:31
生物大分子分离与纯化技术是生物学、生物医学和生物工程领域中非常重要的技术之一。
它可以用于提取和分离生物大分子,从而达到纯化的目的。
本文将着重探讨的原理、方法和应用。
一、原理在生物细胞中,不同的生物大分子有着不同的形态、结构和性质。
为了分离和纯化这些生物大分子,需要利用它们的理化性质差异。
例如,蛋白质可以通过电泳分离,根据电荷、分子量等差异分离出不同的成分;核酸则可以通过浓度梯度离心分离,根据密度差异分离出单独的成分。
还有一些生物大分子,如多肽、糖类、脂质等,可以通过其他特殊方法分离。
二、方法1. 柱层析法柱层析法是中常用的重要方法之一。
它利用固定相(柱子中的树脂)和流动相(洗脱缓冲液)之间的相互作用来分离和纯化生物大分子。
根据固定相和洗脱缓冲液的不同性质,可以选择不同的柱层析方法,例如离子交换层析、凝胶过滤层析和亲和层析等。
2. 电泳法电泳法是基于生物大分子的电荷差异和分子量差异的原理,将不同的生物大分子分离并捕获的技术。
根据电泳介质、运行方式以及电场的不同条件,可以选择不同的电泳方法,如蛋白质电泳、DNA电泳、脂质电泳等。
3. 超滤法超滤法是利用微孔过滤膜的不同截留分子量,将生物大分子按照大小分离纯化的技术。
超滤法分为正压式和负压式,正压式是通过液体压力将生物大分子向膜孔内压缩,从而分离得到小分子;负压式是通过负压将大分子向膜孔内吸附,难以通过的是大分子。
4. 溶剂萃取法溶剂萃取法是将生物大分子从混合物中溶解到特定的有机溶剂中,然后通过反萃取、扩散等工艺,使它在不同相中转移、分离和纯化的方法。
5. 其他方法生物大分子的分离和纯化方法还有一些其他方法,例如磁性珠法、浓缩法、冷冻干燥法等。
三、应用在生物医学、生物工程、食品工业、环境保护和新能源开发等领域中有广泛的应用。
具体来说,1. 生物医学领域生物医学领域的应用主要是分离和纯化蛋白质和多肽类物质,如酶、抗体、激素、血浆蛋白等。
这些物质可以作为药物、诊断试剂、生物治疗的原材料等。
生物产品分离纯化的一般工艺流程1.生物材料的来源及选择生物产品的种类繁多,如氨基酸及其衍生物、蛋白质、酶、核酸、多糖、脂类等。
各种生物物质主要来源于它们广泛存在的生物资源中,包括天然的生物体及其器官、组织以及利用现代生物技术改造的生物体等,归纳起来主要有以下几种:①植物器官及组织植物器官及组织中含有很多活性成分,我国药用植物种类繁多,从天然植物材料中寻找和提取有效生物药物已逐渐引起爪视,品种逐年增加。
此外,转基因植物可产生大览的以传统方式难以获得的生物物质。
②动物器官及组织以动物器官和组织为原料可制备多种生物制品,从海洋生物的器官和组织中获取生物活性物质是目前研究的热点和重要的发展趋势。
③血液、分泌物及其他代谢物人和动物的血液、尿液、乳汁,以及胆汁、蛇毒等其他分泌物与代谢产物也是生物物质的正要来源。
④微生物及其代谢产物微生物种类繁多,其代谢产物有1300多种,应用前景广泛。
以微生物为资源,除了可生产初级代谢产物如奴荃酸、维生索外,还可生产许多次级代谢产物如抗生素等。
⑤动植物细胞培养产物细胞培养技术的发展使得从动物细胞、植物细胞中获得有较高应用价值的生物物质成为可能,且发展迅速,前景广阔。
选择生物材料主要根据实验的目的而定。
从工业生产角度来考虑,首先是材料来源丰富、含量高、成本低。
有时材料来源丰富但含最不高,或者材料来源、含量都很理想,但材料中杂质太多,分离纯化手续十分烦琐,以致影响质量和收率,反不如含量低些但易于操作获得纯品者。
因此,必须根据共体情况,抓住主要矛后而决定取舍.如果为了科学实验和某种特殊需要,例如从某种材料或某一生物品种中寻找某种未知物质,选材时则无需全面考虑上述问题,只要能达到实验目的即可。
2.分离纯化的一般工艺流程由于工业生物技术产品众多,原料广泛,性质多样,用途各异,且对产品质量与纯度的要求也可以是多方面的,因而其分离纯化技术、生产工艺及相关装备也是多种多样的。
大多数生物产品的分离纯化过程按生产过程的顺序大致可分为四个类似步骤,即预处理与固液分离、提取(初步纯化)、精制(高度纯化)和成品制作,具体流程见图1-3。
生物制药设备和分离纯化技术作者:奚家龙来源:《健康前沿》2018年第03期摘要:分子生物学以及生物化学是分离纯化技术以及生物制药设备的基础,其中还包括了药学,物理化学以及普通化学方面的内容。
生物制药设备以及分离纯化技术是一门复杂的学科。
本文作一综述讲解生物制药设备以及分离纯化技术。
关键词:分子生物学;分离纯化技术;生物制药设备近年来,我国的生物技术发展很快,如今,我国的高新技术中最关键的部分是生物制药,现在生物制药的产业的规模不断增加,其中分离纯化技术在生物制药中具有重要的作用。
分离纯化技术能够将两个或者多个的生产结合起来,将其中物质从另一种比较复杂常见的化合物中分离出来的提纯的技术[1]。
因此,生物制药设备与分离纯化技术对生物制药的发展具有重要的意义。
1 生物制药设备生物制药设备在生物产业中具有重要的作用,生物制药的所有的药物需要使用生物制药设备操作才能制作成功。
在工作时,需要使用生物体的生物功能,在生物体内进行生化反应或者通过生物体自身的代谢反应得到产品。
在生物制药的过程中有些工序中具有一些基础的设备,如对原材料进行处理,粉碎,去除杂质以及对原材料的输送等。
在生物制药的过程中的生物反应器,主要是发酵罐或者种子罐等。
在后期还需要对得到产物进行过滤,浓缩和结晶等操作。
另外,在这个过程中还需要进行设置无菌空气系统以及蒸汽系统等。
在发酵的设备中还包括生物反应器以及糖化的设备[2]。
在生物制药过程中,需要在常温或者低压的环境中使用,在操作的过程需要保证空气无菌,在操作过程中需要保持无菌操作。
另外,需要保证产品的质量的前提下,尽可能的降低成本。
2 分离纯化技术以及应用分离纯化技术在生物制藥的过程中具有重要的地位,随着医学技术逐渐成熟,对医用的纯水的要求也逐渐提高,在分离纯水中使用传统的分离纯化技术有些无法满足要求。
传统的分离纯化技术主要有带电性质以及荷电量不同的离子交换层析法以及溶解度不同的盐析法等。
传统的分离纯化技术的在分离纯化的过程中效率较低,而且生产过程中控制条件比较严格,不利于生物制药的产业的发展。
我国生物分离纯化技术现状及发展方向一、本文概述生物分离纯化技术是生物技术领域的重要组成部分,对于生物制药、生物材料、生物能源等多个产业的发展具有至关重要的作用。
本文旨在全面概述我国生物分离纯化技术的现状,并探讨其未来的发展方向。
我们将先介绍生物分离纯化技术的基本概念及其在各个领域的应用,然后分析我国在这一领域的研究进展、技术应用情况和存在的问题。
在此基础上,我们将提出我国生物分离纯化技术的发展方向,以期为我国相关产业的持续健康发展提供有益的参考。
随着生物技术的不断进步和产业的快速发展,生物分离纯化技术面临着越来越多的挑战和机遇。
一方面,新的生物材料、生物药物等不断涌现,对生物分离纯化技术提出了更高的要求;另一方面,我国在生物分离纯化技术方面的研究和应用也在不断深入,为产业的升级换代提供了有力的支撑。
因此,本文的研究不仅有助于了解我国生物分离纯化技术的现状,还能为未来的技术创新和产业发展提供有益的启示。
二、我国生物分离纯化技术现状近年来,我国在生物分离纯化技术领域取得了显著的进步和发展。
随着国家对生物科技产业的重视和支持,以及科研力量的不断壮大,我国在这一领域的研究和应用已经取得了长足的进展。
从科研角度来看,我国的生物分离纯化技术研究已经具备一定的深度和广度。
许多高校和研究机构都在积极开展相关研究,涉及从基础理论到应用技术的各个方面。
通过不断的技术创新和实验探索,我国在生物分离纯化技术的基础研究和应用研究方面都取得了重要突破。
从产业应用角度来看,我国的生物分离纯化技术已经在医药、食品、农业等多个领域得到了广泛应用。
特别是在医药领域,随着生物医药的快速发展,生物分离纯化技术在药物研发、生产和质量控制等方面发挥着越来越重要的作用。
同时,在食品和农业领域,生物分离纯化技术也被广泛应用于食品添加剂、农产品深加工等方面,为提升产品品质和附加值提供了有力支持。
然而,尽管我国在生物分离纯化技术方面取得了一定的成就,但仍存在一些问题和挑战。
⽣物分离与纯化技术-绪论(邱⽟华版)第⼀章绪论第⼀节⽣物分离纯化的概念与原理学习⽬标熟悉⽣物物质的概念、种类和来源;了解分离纯化技术并掌握其基本原理。
突飞猛进,⽇益成熟的现代⽣物技术,正在成为推动世界新技术⾰命的重要⼒量,其产业化发展必将对⼈类社会的经济发展和⽣活⽅式产⽣越来越⼤的影响。
⽣物技术产业主要制备具有⽣活活性的⽣物物质并使其商品化,利⽤专门的设备和技术将⽣物物质从⽣物原料中分离纯化出来并保持其活性,其中以复杂、周期长、影响因素多。
分离纯化技术是现代⽣物技术产业下游⼯艺过程的核⼼,是决定产品的安全、效⼒、收率和成本的技术基础,在⽣物技术产业中起着重要的作⽤。
⼀、⽣物物质及其来源1.⽣物物质“⽣物物质”这个词汇是在20世纪末随着⽣物技术的发展逐渐出现的,它指的是来源于⽣物中天然的或利⽤现代⽣物⼯程技术以⽣物为载体合成的,从氨基酸、多肽等低分⼦化合物到病毒、微⽣物活体制剂等具有复杂结构和成分的⼀类物质。
它们存在于⽣物体内直接参与⽣物机体新陈代谢过程,并能与⽣物各种机能产⽣⽣物活化效应,因此也称为⽣物活性物质,⽽在产业中的⽣物物质的制成品被称为⽣物产品。
⽣物物质的种类繁多,分布⼴。
按照其化学本质和特性分类,常见的有如下⼀些类型。
(1)氨基酸及其衍⽣物类主要包括天然氨基酸及其衍⽣物,这是⼀类结构简单、分⼦量⼩、易制备的⽣物物质,约有60多种。
⽬前主要⽣产的品种有⾕氨酸、赖氨酸、天冬氨酸、精氨酸、半胱氨酸、苯丙氨酸、苏氨酸和⾊氨酸等,其中⾕氨酸的产量最⼤,约占氨基酸总量的80%左右。
(2)活性多肽类活性多肽是由多种氨基酸按⼀定顺序连接起来的多肽链化合物,分⼦量⼀般较⼩,多数⽆特定空间构像。
多肽在⽣物体内浓度很低,但活性很强,对机体⽣理功能的调节起着⾮常重要的作⽤,主要有多肽类激素,⽬前应⽤于临床的多肽药物已达20多种以上。
(3)蛋⽩质类这类⽣物物质主要由简单蛋⽩和结合蛋⽩(包括糖蛋⽩、脂蛋⽩、⾊蛋⽩等)。
生物制药工艺学1、生物药物是以生物体、生物组织或其成份、代谢产物为原料(包括组织、细胞、细胞器、细胞成分、代谢、排泄物)综合应用生物学、物理化学与现代药学的原理与方法加工制成的药物。
2、现代生物药物分四大类:(1)重组DNA药物(又称基因工程药物)(2)基因药物:以遗传物质DNA、RNA为物质基础制造的药物一般把采用DNA重组技术或单克隆抗体技术或其他生物技术制造的蛋白质、抗体或核酸类药物统称为生物技术药物,在我国又统称为生物制品。
(3)天然生物药物(4)合成或半合成生物药物3、生化药物分离纯化原理:总的原则:A根据分配率不同将其分配到两个或几个物相中,再用机械法分离。
B在某一相中,外加一定力(电泳、离心、超滤)使混合组分分离。
具体:(1)根据分子形状和大小不同进行分离。
如差速离心与超离心、膜分离(透析,电渗析)与超滤,凝胶过滤法。
(2)根据分子电离性质的差异性进行分离。
如离子交换法,电泳法,等电聚焦法。
(3)根据分子极性大小及溶解度不同进行分离。
如溶剂提取法,逆流分配法,分配层析法,盐析法,等电点沉淀法,及有机溶剂分级沉淀法。
(4)根据物质吸附性质的不同进行分离。
如选择性吸附法与吸附层析法。
(5)根据配体特异性进行分离—亲和层析法。
4、分离纯化早期和精制阶段使用方法的选择原则分离纯化早期使用方法的选择:大处理量,相对低分辨率;精制阶段分离方法:高分辨率第三章生物材料的预处理、细胞破碎和液-固分离5.细胞培养液的预处理方法。
1)细胞及蛋白质的处理:(1)加入凝聚剂(2)加入絮凝剂(3)变性作用(4)吸附(5)等电沉淀(6)加各种沉淀剂沉淀2)多糖的去除可用酶解转化为单糖、黏多糖可与一些阳离子表面活性剂如十六烷基溴化铵(CTAB)和十六烷基氯化吡啶(CPC)生成季铵盐络合物沉淀去除。
3)高价金属离子的去除A离子交换法通过阳离子交换树脂。
B沉淀法6、常用的细胞破碎方法有哪些?1)机械法:匀浆法、珠磨法、超声波2)物理法:干燥、冻融、渗透压冲击3)化学法:化学试剂处理、制成丙酮粉4)生物法:酶解法、自溶7、固液分离方法有哪些?1)、细胞及蛋白质的处理:(1)加入凝聚剂:Al2(SO4)3218H2O、AlCl326H2O、FeCl3、ZnSO4、MgCO3;(2)加入絮凝剂絮凝剂:有机高分子,易溶,链长,活性功能基团多。