2020届高考文科数学大二轮复习第4讲立体几何第3课时立体几何中的翻折问题和探索性问题练习
- 格式:doc
- 大小:293.00 KB
- 文档页数:14
专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。
立体几何中的探索性问题作者:徐勇来源:《理科考试研究·高中》2012年第10期立体几何中的探索性问题有利于考查学生的归纳、判断等各方面的能力,也有利于创新意识的培养,因此应注意高考中立几探索性命题的考查趋势.立体几何探索性命题的类型主要有:一、探索条件,即探索能使结论成立的条件是什么;二、探索结论,即在给定的条件下命题的结论是什么.而对命题条件的探索,在立体几何的题型更为常见,对命题条件的探索常采用以下三种方法:1.先猜(作)后证,即先观察与尝试给出条件再给出证明.2.先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.3.把几何问题转化为代数问题,探索出命题成立的条件.现例举如下例1 如图1,已知四面体ABCD四个面均为锐角三角形,E,F,G,H分别为边AB,BC,CD,DA上的点,BD∥平面EFGH,且(1)求证:HG∥平面ABC;(2)请在平面ABD内过点E作一条线段垂直于AC,并给出证明解析(1)因为BD∥平面EFGH,平面BDC∩平面EFGH=FG,所以BD∥同理BD∥EH,又因为EH=FG,所以四边形EFGH为平行四边形,所以HG∥又平面ABC,平面ABC,所以HG∥平面(2)如图2,在平面ABC内过点E作EP⊥AC,且交AC于P点,在平面ACD内过点P 作PQ⊥AC,且交AD于Q点,连结EQ,则EQ即为所求线段证明如下:因为EP⊥AC,PQ⊥AC,EP∩PQ=P,所以AC⊥平面又因为平面EPQ,所以EQ⊥例2 如图3,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面(1)求证:AE⊥BE;(2)求三棱锥D—AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面解析(1)因为AD⊥平面ABE,AD∥BC,所以BC⊥平面ABE,则AE⊥又因为BF⊥平面ACE,则AE⊥所以AE⊥平面又平面BCE,所以AE⊥(2)——(]1[]3[SX)]×2[KF(]2[KF)]×[KF(]2[KF)] (]4[]3[SX)(3)在三角形ABE中过M点作MG∥AE交BE于G点,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,则由比例关系易得CN=[SX(]1[]3[SX)因为MG∥AE,平面ADE,平面ADE,所以MG∥平面同理GN∥平面所以平面MGN∥平面又平面MGN,所以MN∥平面所以N点为线段CE上靠近C点的一个三等分点例3 如图3,在四棱锥P—ABCD中,底面ABCD为菱形,∠ABD=60°,Q为AD的中点(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面解析(1)连因为四边形ABCD为菱形,所以又∠BAD=60°,所以△ABD为正三角形而Q为AD中点,所以AD⊥因为PA=PD,Q为AD中点,所以AD⊥又BQ∩PQ=Q,所以AD⊥平面而平面PAD,所以平面PQB⊥平面(2)当t=[SX(]1[]3[SX)]时,使得PA∥平面连AC交BQ于N,交BD于O,连MN,则O为BD的中点又BQ为正△ABD边AD上的中线,所以N为正△ABD的中心设菱形ABCD的边长为a,则AN=[SX(][KF(]3[KF)][]3[SX)]a,AC=[KF(]3[KF)由PA∥平面MQB,平面PAC,平面PAC∩平面MQB=MN,所以PA∥MN,[SX(]PM[]PC[SX)]=[SX(]AN[]AC[SX)]=[SX(][SX(][KF(]3[KF)][]3[SX)]a[][KF (]3[KF)]a[SX)]=[SX(]1[]3[SX)],即PM=[SX(]1[]3[SX)]PC,t=[SX(]1[]3[SX)例4 如图4,在四棱锥P—ABCD中,四边形ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,平面PAD⊥平面ABCD.(1)求证:PA⊥平面ABCD;(2)若平面PAB∩平面PCD=l,问直线l能否与平面ABCD平行?请说明理由解析(1)∠ABC=90°,AD∥BC,所以AD⊥而平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,所以AD⊥平面PAB,所以AD⊥同理可得AB⊥由于AB,平面ABCD,且AB∩AD=C,所以PA⊥平面(2)不平行证明:假定直线l∥平面ABCD,由于平面PCD,且平面PCD∩平面ABCD=CD,同理可得l∥AB,所以AB∥这与AB和CD是直角梯形ABCD的两腰相矛盾,故假设错误,所以直线l与平面ABCD不平行例5 如图5所示,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面(1)若G为AD边的中点,求证:EG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF平面ABCD,并证明你的结论解析(1)在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面(2)连结PG,由△PAD为正三角形,G为AD的中点,得PG⊥由(1)知BG⊥AD,PG∩BG=G,平面PGB,平面PGB,所以AD⊥平面因为平面PGB,(3)当F为PC的中点时,满足平面DEF⊥平面取PC的中点F,连结DE、EF、在△PBC中,FE∥PB,所以EF∥平面在菱形ABCD中,GB∥DE,所以DE∥平面平面DEF,平面DEF,EF∩DE=E,所以平面DEF∥平面由(1)得PG⊥平面ABCD,而平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面例6 如图6,边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点(1)求四棱锥P—ABCD的体积;(2)求证:PA∥平面MBD;(3)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由解析(1)因为Q为AD的中点,△PAD为正三角形,因为平面PAD⊥平面ABCD,所以PQ⊥平面因为AD=4,所以PQ=2[KF(]3[KF)所以四棱锥P—ABCD的体积V=[SX(]1[]3[SX)=[SX(]1[]3[SX)(]3[KF)](]32[KF(]3[KF)][]3[SX)(2)连结AC交BD于点O,连结由正方形ABCD知点O为AC的中点,因为M为PC的中点,所以MO∥又平面MBD,平面MBD,所以PA∥平面(3)存在点N,当N为AB中点时,平面PQB⊥平面因为四边形ABCD是正方形,Q为AD的中点,所以BQ⊥由(1)知,PQ⊥平面ABCD,平面ABCD,所以PQ⊥又BQ∩PQ=Q,所以NC⊥平面因为平面PCN,所以平面PCN⊥平面。
立体几何空间几何中的探索性问题大题拆解技巧【母题】(2021年全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE.(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?【拆解1】已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC 和CC1的中点,D为棱A1B1上的点,BF⊥A1B1,证明:BA⊥BC.【解析】连接AF,∵E,F分别为直三棱柱ABC-A1B1C1的棱AC和CC1的中点,且AB=BC=2,∴CF=1,BF=√BC2+CF2=√22+12=√5,∵BF⊥A1B1,AB∥A1B1,∴BF⊥AB,∴AF=√AB2+BF2=√22+(√5)2=3,AC=√AF2-CF2=√32-12=2√2,∴AC2=AB2+BC2,即BA⊥BC.【拆解2】本例条件不变,证明:BF⊥DE.【解析】由拆解1可知BA⊥BC,故以B为原点,BA,BC,BB1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),B(0,0,0),C(0,2,0),E(1,1,0),F(0,2,1),设B 1D=m(0≤m≤2),则D(m,0,2), ∴BF ⃗⃗⃗⃗ =(0,2,1),DE ⃗⃗⃗⃗⃗ =(1-m,1,-2), ∴BF ⃗⃗⃗⃗ ·DE⃗⃗⃗⃗⃗ =0,即BF ⊥DE. 【拆解3】本例条件不变,问当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?【解析】∵AB ⊥平面BB 1C 1C,∴平面BB 1C 1C 的一个法向量为m=(1,0,0), 由(1)知,DE ⃗⃗⃗⃗⃗ =(1-m,1,-2),EF ⃗⃗⃗⃗ =(-1,1,1), 设平面DFE 的法向量为n=(x,y,z),则{n ·DE⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗ =0,即{(1-m )x +y -2z =0,-x +y +z =0, 令x=3,则y=m+1,z=2-m,∴n=(3,m+1,2-m), ∴cos m,n =m ·n |m |·|n |=1×√9+(m+1)+(2-m )=√2m 2-2m+14=√2(m -12) 2+272,∴当m=12时,平面BB 1C 1C 与平面DFE 所成的二面角的余弦值最大,为√63,此时正弦值最小,为√33. 小做 变式训练《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(1)若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C.(2)是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【拆解1】《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C. 【解析】取A 1C 1的中点H,连接PH,HC,如图所示.在堑堵ABC -A 1B 1C 1中,四边形BCC 1B 1为平行四边形, 所以B 1C 1∥BC 且B 1C 1=BC.在△A 1B 1C 1中,P,H 分别为A 1B 1,A 1C 1的中点, 所以PH ∥B 1C 1且PH=12B 1C 1. 因为N 为BC 的中点,所以NC=12BC,从而NC=PH 且NC ∥PH,所以四边形PHCN 为平行四边形,于是PN ∥CH.因为CH ⊂平面A 1C 1CA,PN ⊄平面A 1C 1CA,所以PN ∥平面AA 1C 1C. 【拆解2】本例条件不变,求平面PMN 的法向量.【解析】以A 为原点,AB,AC,AA 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),N(12,12,0),M(0,1,12).假设满足条件的点P 存在,令P(λ,0,1)(0≤λ≤1),则NM ⃗⃗⃗⃗⃗⃗ =(-12,12,12),PN⃗⃗⃗⃗⃗ =(12-λ,12,-1,). 设平面PMN 的法向量为n=(x,y,z), 则{n ·NM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{-12x +12y +12z =0,(12-λ)x +12y -z =0.令x=3,得y=1+2λ,z=2-2λ, 所以n=(3,1+2λ,2-2λ).【拆解3】本例条件不变,问是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【解析】由拆解2知,平面PMN 的一个法向量为n=(3,1+2λ,2-2λ), 且易知平面ABC 的一个法向量为m=(0,0,1). 由题意得|cos <m,n>|=√9+(1+2λ)+(2-2λ)=√8λ2-4λ+14=√22,解得λ=-12,故点P 不在线段A 1B 1上.所以不存在.通法 技巧归纳解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如平面xOy 上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z);④直线(线段)AB 上的点P,可设为AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,表示出点P 的坐标,或直接利用向量运算. 突破 实战训练 <基础过关>1.如图,在三棱锥P -ABC 中,△ABC 为直角三角形,∠ACB=90°,△PAC 是边长为4的等边三角形,BC=2√3,二面角P -AC -B 的大小为60°,点M 为PA 的中点.(1)请你判断平面PAB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由. (2)求CM 与平面PBC 所成的角的正弦值.【解析】(1)平面PAB ⊥平面ABC,理由如下:如图,分别取AC,AB 的中点D,E,连接PD,DE,PE, 则DE ∥BC.因为∠ACB=90°,BC=2√3. 所以DE ⊥AC,DE=√3.因为△PAC 是边长为4的等边三角形,所以PD ⊥AC,PD=2√3.所以∠PDE 为二面角P -AC -B 的平面角,则∠PDE=60°, 在△PDE 中,由余弦定理,得PE=√PD 2+DE 2-2PD ·DEcos 60°=3, 所以PD 2=PE 2+ED 2, 所以PE ⊥ED.因为ED ⊥AC,PD ⊥AC,ED∩PD=D,ED,PD ⊂平面PDE, 所以AC ⊥平面PED, 所以AC ⊥PE.又AC∩ED=D,DE,AC ⊂平面ABC,所以PE ⊥平面ABC, 因为PE ⊂平面ABC, 所以平面PAB ⊥平面ABC.(2)以点C 为原点,CA,CB 所在的直线分别为x,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则B(0,2√3,0),A(4,0,0),E(2,√3,0),P(2,√3,3),M(3,√32,32),CM ⃗⃗⃗⃗⃗⃗ =(3,√32,32),CB⃗⃗⃗⃗⃗ =(0,2√3,0),CP ⃗⃗⃗⃗ =(2,√3,3). 设平面PBC 的法向量为n=(x 1,y 1,z 1), 则{n ·CB⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0,即{2√3y 1=0,2x 1+√3y 1+3z 1=0,取x 1=3,则n=(3,0,-2).所以CM 与平面PBC 所成的角的正弦值为sin θ=|cos<CM⃗⃗⃗⃗⃗⃗ ,n>|=2√3×√13=√3913.2.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是B 1B,BC 的中点. (1)求证:A 1E,AB,DF 三线共点.(2)线段CD 上是否存在一点G,使得直线FG 与平面A 1EC 1所成的角的正弦值为√33?若存在,请指出点G 的位置,并求二面角E -A 1C 1-G 的平面角的余弦值大小;若不存在,请说明理由.【解析】(1)连接EF,AD,∵EF ∥A 1D 且EF≠A 1D,∴A 1E,DF 共面,设A 1E∩DF=P,则点P ∈A 1E,而A 1E ⊂平面AA 1B 1B, ∴点P ∈平面AA 1B 1B. 同理可得点P ∈平面ABCD,∴点P 在平面ABCD 与平面AA 1B 1B 的公共直线AB 上, 即A 1E,AB,DF 三线共点.(2)根据题意可知,AA 1,AB,AD 两两垂直,以A 为原点,AB,AD,AA 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系,由图可得A 1(0,0,2),E(2,0,1),C 1(2,2,2),F(2,1,0), 故A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-1),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0), 假设满足条件的点G 存在, 设G(a,2,0),a ∈[0,2],则FG ⃗⃗⃗⃗ =(a -2,1,0), 设平面A 1EC 1的法向量为m=(x,y,z), 则由{m ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =0m ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{2x -z =0,2x +2y =0,不妨取z=2,则x=1,y=-1,所以平面A 1EC 1的一个法向量为m=(1,-1,2), 设直线FG 与平面A 1EC 1的平面角为θ,则sin θ=|cos<m,FG ⃗⃗⃗⃗ >|=|m ·FG⃗⃗⃗⃗⃗|m ||FG ⃗⃗⃗⃗⃗ ||=|√(a -2)+12+02×√12+(-1)+22|=√33,解得a=1,故G 为CD 的中点. 则GC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,2),设平面A 1GC 1的法向量为n=(x,y,z),由{n ·GC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{x +2z =0,2x +2y =0,取x=-2,则z=1,y=2,则平面A 1GC 1的一个法向量为n=(-2,2,1), |cos<m,n>|=|m ·n|m ||n ||=|√6×3|=√69, 所以二面角E -A 1C 1-G 的平面角的余弦值为√69.3.如图,C 是以AB 为直径的圆O 上异于A,B 的点,平面PAC ⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线l ⊥平面PAC.(2)直线l 上是否存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出|AQ|的长;若不存在,请说明理由.【解析】(1)∵E,F 分别是PC,PB 的中点,∴BC ∥EF,又EF ⊂平面EFA,BC ⊄平面EFA,∴BC ∥平面EFA,又BC ⊂平面ABC,平面EFA∩平面ABC=l,∴BC ∥l,又BC ⊥AC,平面PAC∩平面ABC=AC,平面PAC ⊥平面ABC,∴BC ⊥平面PAC,∴l ⊥平面PAC.(2)以C 为坐标原点,CA,CB 所在的直线分别为x,y 轴,过点C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,可得A(2,0,0),B(0,4,0),P(1,0,√3),E(12,0,√32),F(12,2,√32),AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF ⃗⃗⃗⃗ =(0,2,0), 设Q(2,y,0),平面AEF 的法向量为m=(x,y,z),则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF⃗⃗⃗⃗ ·m =2y =0,取z=√3,得m=(1,0,√3),PQ ⃗⃗⃗⃗⃗ =(1,y,-√3), |cos<PQ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ >|=|2√4+y 2|=√4+y 2,|cos PQ⃗⃗⃗⃗⃗ ,m |=|2√4+y 2|=√4+y 2,依题意得|cos PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ |=|cos PQ ⃗⃗⃗⃗⃗ ,m |, ∴y=±1,∴直线l 上存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,此时|AQ|=1. 4.在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A -BCDM(如图②所示).(1)设平面ABC 和平面ADM 的交线为l,在四棱锥A -BCDM 的棱AC 上求一点N,使直线BN ∥l;(2)若二面角A -BM -D 的大小为60°,求平面ABD 和平面ACD 所成的锐二面角的余弦值. 【解析】(1)延长CB,DM,设其交点为E,如图所示,因为点A,E 既在平面ABC 内,又在平面AMD 内, 所以直线AE 为平面ABC 与平面AMD 的交线l,因为BD 为∠MDC 的平分线,且BD ⊥BC,所以B 为EC 的中点, 取AC 的中点N,连接BN,则BN 为△AEC 的中位线, 所以直线BN ∥AE,即BN ∥l, 故N 为棱AC 的中点.(2)因为BM ⊥AM,BM ⊥MD,所以∠AMD=60°, 又因为AM=MD,所以△AMD 为等边三角形,取MD 的中点O 为坐标原点,以OM 所在的直线为x 轴,在平面BCDM 内过点O 且和MD 垂直的直线为y 轴,以OA 所在的直线为z 轴,建立如图所示的空间直角坐标系,所以D(-1,0,0),A(0,0,√3),C(-5,4√3,0),B(1,2√3,0), 所以DA ⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB ⃗⃗⃗⃗⃗ =(2,2√3,0), 设平面ACD 的法向量为m=(x,y,z),则{m ·DA ⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0,令z=-√3,则x=3,y=√3, 所以m=(3,√3,-√3),设平面ABD 的法向量为n=(a,b,c),则{n ·DA⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗ =0,即{a +√3c =0,2a +2√3b =0,令c=-√3,则a=3,b=-√3, 所以n=(3,-√3,-√3),设平面ABD 和平面ACD 所成的锐二面角的大小为θ, 所以cos θ=|m ·n ||m ||n |=√3×√3)√3)√3)|√32+(√3)+(-√3)·√32+(-√3)+(-√3)=35,所以平面ABD 和平面ACD 所成的锐二面角的余弦值为35.<能力拔高>5.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,且BC=BD,DD 1⊥平面ABCD,AA 1=1,BE ⊥CD 于点E.(1)试问在线段A 1B 1上是否存在一点F,使得AF ∥平面BEC 1?若存在,求出点F 的位置;若不存在,请说明理由.(2)在(1)的条件下,求平面ADF 和平面BEC 1所成的锐二面角的余弦值.【解析】(1)当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. 下面给出证明:取AB 的中点G,连接EG,B 1G,则FB 1∥AG,且FB 1=AG, 所以四边形AGB 1F 为平行四边形,所以AF ∥B 1G.因为BC=BD,BE ⊥CD,所以E 为CD 的中点,又G 为AB 的中点,AB ∥CD,AB=CD,所以BG ∥CE,且BG=CE,所以四边形BCEG 为平行四边形,所以EG ∥BC,且EG=BC,又BC ∥B 1C 1,BC=B 1C 1, 所以EG ∥B 1C 1,且EG=B 1C 1,所以四边形EGB 1C 1为平行四边形, 所以B 1G ∥C 1E,所以AF ∥C 1E,又AF ⊄平面BEC 1,C 1E ⊂平面BEC 1,所以当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. (2)连接DG,因为BD=BC=AD,G 为AB 的中点,所以DG ⊥AB,又AB ∥CD,所以DG ⊥CD, 因为DD 1⊥平面ABCD,DC,DG ⊂平面ABCD,所以DD 1⊥DC,DD 1⊥DG,所以DG,DC,DD 1两两垂直,以D 为原点,DG,DC,DD 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系D -xyz,由题意知BD=BC=CD=AB=AD=2,所以∠DAB=∠BDC=60°,又AA 1=1,所以D(0,0,0),A(√3,-1,0),D 1(0,0,1),E(0,1,0),C 1(0,2,1),B(√3,1,0),F(√3,0,1), 所以EB ⃗⃗⃗⃗⃗ =(√3,0,0),EC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(√3,-1,0),DF ⃗⃗⃗⃗⃗ =(√3,0,1).设平面BEC 1的法向量为n=(x,y,z),则{EB ⃗⃗⃗⃗⃗ ·n =0,EC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√3x =0,y +z =0,令z=1,得平面BEC 1的一个法向量为n=(0,-1,1).设平面ADF 的法向量为m=(a,b,c),则{DA ⃗⃗⃗⃗⃗ ·m =0,DF ⃗⃗⃗⃗⃗ ·m =0,即{√3a -b =0,√3a +c =0,令a=1,得b=√3,c=-√3,平面ADF 的一个法向量m=(1,√3,-√3).设平面ADF 和平面BEC 1所成的锐二面角的大小为θ, 则cos θ=|m ·n ||m |·|n |=√3√7×√2=√427.所以平面ADF 和平面BEC 1所成的锐二面角的余弦值为√427. 6.在正三棱柱ABC -A 1B 1C 1中,已知AB=2,AA 1=3,M,N 分别为AB,BC 的中点,P 为线段CC 1上一点.平面ABC 1与平面ANP 的交线为l.(1)是否存在点P 使得C 1M ∥平面ANP?若存在,请指出点P 的位置并证明;若不存在,请说明理由.(2)若CP=1,求二面角B -l -N 的余弦值.【解析】(1)当CP=2时,C 1M ∥平面ANP. 证明如下:连接CM 交AN 于点G,连接GP,因为CG GM =CPPC 1=2,所以C 1M ∥GP,又GP ⊂平面ANP,C 1M ⊄平面ANP, 所以C 1M ∥平面ANP.(2)取AC 的中点O,连接BO,易证OB ⊥平面ACC 1A 1,如图,分别以OB,OC 所在的直线为x,y 轴,以过点O且平行于AA 1的直线为z轴建立空间直角坐标系,A(0,-1,0),B(√3,0,0),C 1(0,1,3),N (√32,12,0),P(0,1,1),则AB ⃗⃗⃗⃗⃗ =(√3,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,3),AN ⃗⃗⃗⃗⃗ =(√32,32,0),AP ⃗⃗⃗⃗⃗ =(0,2,1). 设平面ABC 1的法向量为n 1=(x 1,y 1,z 1),平面APN 的法向量为n 2=(x 2,y 2,z 2), 由{n 1·AB ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0得{√3x 1+y 1=0,2y 1+3z 1=0,令x 1=√3得n 1=(√3,-3,2),由{n 2·AP ⃗⃗⃗⃗⃗ =0,n 2·AN ⃗⃗⃗⃗⃗ =0得{2y 2+z 2=0,√32x 2+32y 2=0,令x 2=√3得n 2=(√3,-1,2), 设二面角B -l -N 的平面角为θ,则cos θ=|n 1·n 2|n 1||n 2||=4×√8=5√28. <拓展延伸>7.如图,在△ABC 中,AB=BC=2,∠ABC=90°,E,F 分别为AB,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB=BE.(1)证明:EF ⊥平面PBE.(2)设N 为线段PF 上的动点,求直线BN 与平面PCF 所成角的正弦值的最大值.【解析】(1)因为E,F 分别为AB,AC 边的中点,所以EF ∥BC. 又因为∠ABC=90°,所以EF ⊥BE,EF ⊥PE. 又因为BE∩PE=E,所以EF ⊥平面PBE. (2)取BE 的中点O,连接PO,由(1)知EF ⊥平面PBE,EF ⊂平面BCFE, 所以平面PBE ⊥平面BCFE. 因为PB=BE=PE,所以PO ⊥BE.又因为PO ⊂平面PBE,平面PBE∩平面BCFE=BE, 所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M,分别以OB,OM,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则P (0,0,√32),C (12,2,0),F (-12,1,0),B(12,0,0),PC ⃗⃗⃗⃗ =(12,2,-√32),PF ⃗⃗⃗⃗ =(-12,1,-√32),N 为线段PF 上一动点,设PN ⃗⃗⃗⃗⃗ =λPF ⃗⃗⃗⃗ (0≤λ≤1), 则N (-λ2,λ,√32(1-λ)),BN⃗⃗⃗⃗⃗ =(-λ+12,λ,√32(1-λ)), 设平面PCF 的法向量为m=(x,y,z),则{PC ⃗⃗⃗⃗ ·m =0,PF ⃗⃗⃗⃗ ·m =0,即{12x +2y -√32z =0,-12x +y -√32z =0,取m=(-1,1,√3).设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos<BN ⃗⃗⃗⃗⃗ ,m>|=|BN ⃗⃗⃗⃗⃗⃗·m ||BN ⃗⃗⃗⃗⃗⃗||m |=√5×√2λ2-λ+1=√5×√2(λ-14)2+78≤√5×√78=4√7035,当且仅当λ=14时取等号.故直线BN 与平面PCF 所成角的正弦值的最大值为4√7035.8.如图,矩形ABCD中,AB=3,BC=1,E、F是边DC的三等分点.现将△DAE,△CBF分别沿AE,BF 折起,使得平面DAE、平面CBF均与平面ABFE垂直.(1)若G为线段AB上一点,且AG=1,求证:DG∥平面CBF.(2)求二面角A-CF-B的正弦值.【解析】(1)(法一)如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN..因为AD=DE=1,所以DM⊥AE,且DM=√22.因为BC=CF=1,所以CN⊥BF,且CN=√22因为平面DAE⊥平面ABFE,平面DAE∩平面ABFE=AE,DM⊥AE,DM⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN⊥平面ABFE,所以DM∥CN,且CN=DM.又DM⊄平面CBF,CN⊂平面CBF,所以DM∥平面CBF,在矩形ABCD中,∠DAE=45°,故∠EAB=45°,同理可得∠FBA=45°,,所以MG2+AM2=AG2,所以在几何体ABFEDC中,因为MG=√AM2+AG2-2AM·AGcos45°=√22∠AMG=90°,所以△AMG是以AG为斜边的等腰直角三角形,故∠MGA=45°.而∠FBA=45°,且MG与FB共面于平面EFBA,故MG∥FB.又MG⊄平面CBF,FB⊂平面CBF,所以MG∥平面CBF.又MG∩DM=M,MG,DM⊂平面DMG,所以平面DMG∥平面CBF.因为DG⊂平面DMG,所以DG∥平面CBF.(法二)如图,分别取AE,BF 的中点M,N,连接DM,CN,MG,MN. 因为AD=DE=1,∠ADE=90°,所以DM ⊥AE,且DM=√22. 因为BC=CF=1,∠BCF=90°,所以CN ⊥BF,且CN=√22.因为平面DAE ⊥平面ABFE,平面DAE∩平面ABFE=AE,DM ⊥AE,DM ⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN ⊥平面ABFE,所以DM ∥CN,且CN=DM, 所以四边形CDMN 是矩形,所以CD MN. 又MN 是等腰梯形ABFE 的中位线,所以CD=MN=1+32=2.又GB=2,所以CD ∥GB,CD=GB,所以四边形CDGB 是平行四边形,所以CB ∥DG. 又CB ⊂平面CBF,DG ⊄平面CBF,所以DG ∥平面CBF.(2)如图,以G 为坐标原点,分别以AB,GE 所在直线为x 轴,y 轴,以过点G 并垂直于平面ABFE 的直线为z 轴建立空间直角坐标系, 则A(-1,0,0),B(2,0,0),E(0,1,0),F(1,1,0),C (32,12,√22), 则AF ⃗⃗⃗⃗⃗ =(2,1,0),FC ⃗⃗⃗⃗ =(12,-12,√22),BF ⃗⃗⃗⃗ =(-1,1,0),GF ⃗⃗⃗⃗ =(1,1,0), 所以GF ⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,1,0)·(-1,1,0)=0,所以GF ⊥BF. 由(1)得CN ⊥平面ABFE,所以GF ⊥CN.而BF,CN ⊂平面CBF,BF∩CN=N,故GF ⊥平面CBF, 从而GF ⃗⃗⃗⃗ =(1,1,0)是平面CBF 的一个法向量. 设n=(x,y,z)为平面AFC 的法向量, 则{n ·AF⃗⃗⃗⃗⃗ =0,n ·FC⃗⃗⃗⃗ =0,即{2x +y =0,x -y +√2z =0,解得{y =-2x ,z =-3√22x , 取x=-2,则y=4,z=3√2,即n=(-2,4,3√2),所以cos<GF ⃗⃗⃗⃗ ,n>=√2)√2×√38=√1919,故所求二面角的正弦值为√1-119=3√3819。
第3讲 立体几何中的向量方法A 级 基础通关一、选择题1.如图,F 是正方体ABCD-A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合解析:以D 为坐标原点,以DA ,DC ,DD 1所在直线为坐标轴建立坐标系,设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),因为D 1F →·DE →=0×2+1×2-2z =0,所以z =1,所以B 1E =EB .答案:A2.如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A.43B.53C.23D .-23解析:由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C-AB-O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.答案:C3.在三棱柱ABC-A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32B.22C.104D.64解析:如图,建立空间直角坐标系,易求点D ⎝⎛⎭⎪⎫32,12,1,平面AA 1C 1C的一个法向量是n =(1,0,0),所以sin α=|cos 〈n ,AD →〉|=322=64.答案:D4.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.以上说法正确的个数为( ) A .1B .2C .3D .4解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,所以A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.答案:C5.(2018·全国卷Ⅱ)在长方体ABCD A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3).则cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故异面直线AD 1与DB 1所成角的余弦值为55. 答案:C 二、填空题6.(2019·东莞中学检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成的角的大小是________.解析:依题意,以C 为原点,建立如图所示的直角坐标系,设AB =BC =CD =a ,AB ⊥平面BCD .则B (a ,0,0),D (0,a ,0),C (0,0,0),A (a ,0,a ).所以BD →=(-a ,a ,0),CA →=(a ,0,a ).所以cos 〈BD →,CA →〉=BD →·CA →|BD →|·|CA →|=-a 22a ·2a =-12,则〈BD →,CA →〉=2π3,故AC 与BD 所成角为π3.答案:π37.如图所示,在正方体ABCD-A 1B 1C 1D 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.解析:因为AC ⊥BD 且AC ⊥BB 1,BD ∩BB 1=B ,所以AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面ADD 1A 1,则β=∠EDF .cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF = sin ∠EDF =EF ED =66. 答案:66三、解答题8.(2018·北京卷)如图,在三棱柱ABC A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC =5,AC =AA 1=2.(1)求证:AC ⊥平面BEF ; (2)求二面角B CD C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.(1)证明:在三棱柱ABC A 1B 1C 1中,因为CC 1⊥平面ABC , 所以四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, 所以AC ⊥EF .因为AB =BC ,所以AC ⊥BE . 又EF ∩BE =E , 所以AC ⊥平面BEF .(2)解:由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC , 所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐标系E xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),E (0,0,0),F (0,0,2),G (0,2,1).所以BC →=(-1,-2,0),BD →=(1,-2,1). 设平面BCD 的法向量为n =(x 0,y 0,z 0). 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,即⎩⎪⎨⎪⎧x 0+2y 0=0,x 0-2y 0+z 0=0.令y 0=-1,则x 0=2,z 0=-4. 于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0),所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题意知二面角B CD C 1为钝角,所以其余弦值为-2121. (3)证明:由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1). 因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.9.(2019·长郡中学模拟)如图1,直角梯形ABCD 中,AD ∥BC 中,∠ABC =90°,E ,F 分别为边AD 和BC 上的点,且EF ∥AB ,AD =2AE =2AB =4FC =4.将四边形EFCD 沿EF 折起成如图2的位置,使AD =AE .(1)求证:AF ∥平面CBD ;(2)求平面CBD 与平面DAE 所成锐角的余弦值. (1)证明:取DE 中点G ,连接FG ,AG ,CG . 由条件CF DG ,所以CFGD 为平行四边形,所以FG ∥CD .又FG ⊄平面CBD ,CD ⊂平面CBD , 所以FG ∥平面CBD . 同理AG ∥平面CBD .又FG ∩AG =G ,FG ⊂平面AFG ,AG ⊂平面AFG . 所以平面AFG ∥平面CBD . 又AF ⊂平面AFG , 所以AF∥平面CBD .(2)解:因为EF ⊥AE ,EF ⊥DE ,AE ∩DE =E ,所以EF ⊥平面ADE . 又AD =AE =DE ,以AE 中点H 为原点,AE 为x 轴建立如图所示的空间直角坐标系, 则A (-1,0,0),D (0,0,3),B (-1,-2,0),E (1,0,0),F (1,-2,0).因为CF →=12DE →,所以C ⎝ ⎛⎭⎪⎫12,-2,32,所以BC →=⎝ ⎛⎭⎪⎫32,0,32,BD →=(1,2,3).易知BA →是平面ADE 的一个法向量,BA →=n 1=(0,2,0), 设平面BCD 的一个法向量为n 2=(x ,y ,z ),由⎩⎪⎨⎪⎧n 2·BC →=(x ,y ,z )·⎝ ⎛⎭⎪⎫32,0,32=32x +32z =0,n 2·BD →=(x ,y ,z )·(1,2,3)=x +2y +3z =0,令x =2,则y =2,z =-23,所以n 2=(2,2,-23).cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=2×0+2×2-23×02×25=55.所以平面CBD 与平面DAE 所成锐角的余弦值为55. B 级 能力提升10.(2019·天津卷)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E-BD-F 的余弦值为13,求线段CF 的长.(1)证明:依题意,建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴、y 轴、z 轴正方向的空间直角坐标系(如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的法向量. 又BF →=(0,2,h ),可得BF →·AB →=0, 又因为直线BF ⊄平面ADE . 所以BF ∥平面ADE .(2)解:依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0.即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0.不妨令z =1,可取n =(2,2,1). 因此有cos 〈CE →·n 〉=CE →·n |CE →||n |=-49.所以直线CE 与平面BDE 所成角的正弦值为49.(3)解:设m =(x 1,y 1,z 1)为平面BDF 的法向量, 则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h .由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h 2=13,解得h =87 .经检验,符合题意.所以线段CF 的长为87.11.(2019·六安一中模拟)如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,由题意知SO ⊥平面ABCD ,以O 为坐标原点, OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立坐标系O-xyz , 设底面边长为a , 则高SO =62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0, 于是,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解:由题设知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a .设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,所以所求二面角的大小为30°.(3)解:在棱SC 上存在一点E 使BE ∥平面PAC .根据第(2)问知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a .设CE →=tCS →.则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .由BE →·DS →=0,得-a 22+0+64a 2t =0,则t =13.所以当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面PAC ,故BE ∥平面PAC .因此在棱SC 上存在点E ,使BE ∥平面PAC ,此时SE ∶EC =2∶1.。
专题三立体几何第1讲空间几何体的三视图、表面积及体积[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019三棱锥的外接球、球的体积·T12空间几何体的结构特征、直观图、几何运算、数学文化·T16空间两直线的位置关系的判定·T8简单几何体的组合体、长方体和棱锥的体积·T16 2018空间几何体的三视图、直观图及最短路径问题·T7圆锥的性质及侧面积的计算·T16三视图与数学文化·T3与外接球有关的空间几何体体积的最值问题·T10 2017空间几何体的三视图与直观图、面积的计算·T7空间几何体的三视图及组合体体积的计算·T4球的内接圆柱、圆柱的体积的计算·T8(1)“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).(2)考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第12或16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.考点一空间几何体的三视图、直观图与截面图[例1](1)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(2)(2019·江西八所重点中学联考)某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是()A .52B .2C .355D .32(3)(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .321.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .22.已知球O 是正三棱锥A BCD 的外接球,BC =3,AB =23,点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是________.考点二 几何体的表面积与体积 题型一 求空间几何体的表面积[例2] (1)《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体,如图所示,四边形ABCD 为矩形,棱EF ∥AB .若此几何体中,AB =4,EF =2,△ADE 和△BCF 都是边长为2的等边三角形,则该几何体的表面积为( )A .83B .8+83C .62+23D .8+62+23(2)我国古代数学名著《算法统宗》中有如下问题:“今有倚壁外角堆米,下周九十尺,高十二尺.”其意思为:在屋外墙角处堆放米(其三视图如图所示),米堆底部的弧长为90尺,米堆的高为12尺.圆周率约为3.若将此堆米用草席盖上,则此草席的面积至少约为(计算结果保留整数,如544≈23,550≈23)( )A .250平方尺B .990平方尺C .1 035平方尺D .518平方尺题型二 求空间几何体的体积[例3] (1)(2019·天津高考)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.(2)(2019·江西省五校协作体试题)某几何体的三视图如图所示,正视图是一个上底为2,下底为4的直角梯形,俯视图是一个边长为4的等边三角形,则该几何体的体积为______.1.(2019·重庆市学业质量调研)已知某几何体的三视图如图所示,则该几何体的体积为A.323 B .643 C.1283 D .16032.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .3034B .6034C .3034+135D .1353.已知直四棱柱ABCD A 1B 1C 1D 1的所有棱长都是1,∠ABC =60°,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,点H 在线段OB 1上,OH =3HB 1,点M 是线段BD 上的动点,则三棱锥M C 1O 1H 的体积的最小值为________.考点三 与球有关的切、接问题 题型一 外接球[例4] (2019·全国卷Ⅰ)已知三棱锥P ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD .6π题型二 内切球[例5] 已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( ) A.7π6 B .4π3 C.2π3 D .π2题型三 与球有关的最值问题[例6] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .123B .183C .243D .5431.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( ) A .83πB .323πC .16πD .32π 2.(2019·福建五校第二次联考)已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为______.3.已知四棱锥S ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积为______.4.已知某几何体的三视图如图所示,则该几何体的体积等于( )A .2π+4B .4π+2 C.2π3+4 D .4π3+8【课后专项练习】A 组一、选择题1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )2.(2019·福州市质量检测)棱长为1的正方体ABCD A 1B 1C 1D 1木块的直观图如图所示,平面α过点D 且平行于平面ACD 1,则该木块在平面α内的正投影面积是( )A.3 B .323C.2D .13.已知矩形ABCD ,AB =2BC ,把这个矩形分别以AB ,BC 所在直线为轴旋转一周,所成几何体的侧面积分别记为S 1,S 2,则S 1与S 2的比值等于( )A.12B .1C .2D .44.设球O 是正方体ABCD A 1B 1C 1D 1的内切球,若平面ACD 1截球O 所得的截面面积为 6π,则球O 的半径为( )A.32 B .3 C.32 D .35.(2019·武汉市调研测试)如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A BC 1M 的体积VA BC 1M =( )A.12 B .14C.16 D .1126.(2019·武汉市调研测试)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A.23π B .43πC .2πD .25π7.在三棱锥A BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥的体积为( ) A. 6 B .66 C .6 D .268.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2 D .π49.若一个球与四面体的六条棱都相切,则称此球为四面体的棱切球.已知正四面体的棱长为2,则它的棱切球的体积为( )A .3π54B .π6C .π3D .3π210.已知点A ,B ,C ,D 均在球O 上,AB =BC =3,AC =3.若三棱锥D ABC 体积的最大值为334,则球O 的表面积为( )A .36πB .16πC .12πD .163π11.已知一个半径为7的球中有一个各条棱长都相等的内接正三棱柱,则正三棱柱的体积是( )A .18B .16C .12D .812.(2019·福州市质量检测)如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2 D .9π4二、填空题13.(2019·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为______.14.已知正方体ABCD A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH 的体积为______.15.古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为______.16.已知三棱锥P ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,AB ⊥BC ,且P A =8.若平面ABC 截球O 所得截面的面积为9π,则球O 的表面积为______.B 组1.(2019·合肥市第二次质量检测)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对2.在棱长为3的正方体ABCD A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M PBC 的体积为( )A .1B .32C.92D .与M 点的位置有关3.已知正方体ABCD A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎤0,13 B .⎝⎛⎦⎤0,12 C.⎣⎡⎭⎫12,1D .⎣⎡⎦⎤12,234.已知直三棱柱ABC A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为( )A .22B .3C .23D .45.(2019·郑州市第二次质量预测)在△ABC 中,已知AB =23,BC =26,∠ABC =45°,D 是边AC 上的一点,将△ABD 沿BD 折叠,得到三棱锥A BCD ,若该三棱锥的顶点A 在底面BCD 上的射影M 在线段BC 上,设BM =x ,则x 的取值范围是( )A.(0,23)B.(3,6)C.(6,23)D.(23,26)6.如图,在正三棱柱ABCA1B1C1中,D为棱AA1的中点.若AA1=4,AB=2,则四棱锥BACC1D 的体积为________.7.已知在正四棱锥SABCD中,SA=63,那么当该棱锥的体积最大时,它的高为________.8.(2019·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V的最大值为________.第2讲空间位置关系的判断与证明[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019线面平行的证明·T18(1)面面平行的判定·T7直线与直线位置关系的判定·T8面面垂直的证明·T19(1)线面垂直的证明·T17(1)2018直线与平面所成的角、正方体的截面·T12求异面直线所成的角·T9面面垂直的证明·T19(1)面面垂直的证明·T18(1)线面垂直的证明·T20(1)2017面面垂直的证明·T18(1)求异面直线所成的角·T10圆锥、空间线线角的求解·T16线面平行的证明·T19(1)面面垂直的证明·T19(1)(1)高考对此部分的命题较为稳定,一般为“一小一大”或“一大”,即一道选择题(或填空题)和一道解答题或只考一道解答题.(2)选择题一般在第9~11题的位置,填空题一般在第14题的位置,多考查线面位置关系的判断,难度较小.(3)解答题多出现在第18或19题的第一问的位置,考查空间中平行或垂直关系的证明,难度中等.考点一空间点、线、面的位置关系1.[命题真假的判定]已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③2.[判断直线与直线的位置关系](2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线3.[线面垂直、面面垂直的判定]如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF4.[求异面直线所成的角](2018·全国卷Ⅱ)在正方体ABCD A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( )A .22B .32C .52D .721.[与充要条件交汇](2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面2.[与命题的交汇](2019·北京高考)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:____________.3.[线面角与其他问题的交汇](2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________.考点二 空间平行、垂直关系的证明[例1] 如图,在四棱锥P ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点,求证:(1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ; (3)平面BEF ⊥平面PCD .1.如图,在四棱锥P ABCD 中,平面P AB ⊥平面ABCD ,AD ∥BC ,P A ⊥AB ,CD ⊥AD ,BC =CD =12AD .求证:(1)P A ⊥CD ; (2)平面PBD ⊥平面P AB .2.如图,四边形ABCD 与四边形ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .考点三 平面图形中的折叠问题[例2] 如图①,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图②.在图②所示的几何体D ABC 中.(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F BCE 的体积.1.如图①,在矩形ABCD 中,AB =3,BC =4,E ,F 分别在线段BC ,AD 上,EF ∥AB ,将矩形ABEF 沿EF 折起,记折起后的矩形为MNEF ,且平面MNEF ⊥平面ECDF ,如图②.(1)求证:NC ∥平面MFD ; (2)若EC =3,求证:ND ⊥FC ; (3)求四面体NEFD 体积的最大值.2.如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【课后专项练习】A组一、选择题1.设α为平面,a,b为两条不同的直线,则下列叙述正确的是()A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α2.设l是直线,α,β是两个不同的平面,则下列说法正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β3.如图,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE4.已知m,n是两条不同的直线,α,β是两个不同的平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β;②若m ⊥α,m ⊥β,则α∥β; ③若m ⊥α,n ⊥β,m ⊥n ,则α⊥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β. 其中正确的命题是( ) A .①② B .②③ C .①④ D .②④5.在长方体ABCD A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A .15B .56C .55D .226.如图,在矩形ABCD 中,AB =3,BC =1,将△ACD 沿AC 折起,使得D 折起后的位置为D 1,且D 1在平面ABC 上的射影恰好落在AB 上,在四面体D 1ABC 的四个面中,有n 对平面相互垂直,则n 等于( )A .2B .3C .4D .5二、填空题7.正方体ABCD A 1B 1C 1D 1的棱长为2,点M 为CC 1的中点,点N 为线段DD 1上靠近D 1的三等分点,平面BMN 交AA 1于点Q ,则线段AQ 的长为________.8.如图,∠ACB =90°,DA ⊥平面ABC ,AE ⊥DB 交DB 于点E ,AF ⊥DC 交DC 于点F ,且AD =AB =2,则三棱锥D AEF 体积的最大值为________.9.在长方体ABCD A 1B 1C 1D 1中,AB =AD =4,AA 1=2.过点A 1作平面α与AB ,AD 分别交于M ,N 两点,若AA 1与平面α所成的角为45°,则截面A 1MN 面积的最小值是________.三、解答题10.(2019·全国卷Ⅲ)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的四边形ACGD的面积.11.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE =2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.12.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB⊥平面ADC;(2)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为6,求点B到平面ADE 的距离.B组1.如图,三棱柱ABCA1B1C1中,底面ABC是等边三角形,侧面BCC1B1是矩形,AB =A1B,N是B1C的中点,M是棱AA1上的点,且AA1⊥CM.(1)证明:MN∥平面ABC;(2)若AB⊥A1B,求二面角ACMN的余弦值.2.如图,在四棱锥PABCD中,P A⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面P AC;(2)若∠ABC=60°,求证:平面P AB⊥平面P AE;(3)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.3.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1BCDE.(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1BCDE的体积为362,求a的值.4.(2019·天津高考)如图,在四棱锥PABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(2)求证:P A⊥平面PCD;(3)求直线AD与平面P AC所成角的正弦值.第3讲立体几何中的向量方法*[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019二面角的正弦值的求解·T18二面角的正弦值的求解·T17二面角的大小的求解·T192018线面角的正弦值的求解·T18(2)二面角、线面角的正弦值的求解·T20(2)二面角的正弦值的求解·T19(2)2017二面角的余弦值的求解·T18(2)二面角的余弦值的求解·T19(2)二面角的余弦值的求解·T19(2)高考对此部分的命题较为稳定,一般为解答题,多出现在第18或19题的第二问的位置,考查利用空间向量求异面直线所成的角、线面角或二面角,难度中等偏上.考点一利用空间向量证明空间位置关系[例1]如图,在四棱锥PABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC =AP=2,AB=1,点E为棱PC的中点.证明:(1)BE⊥DC;(2)BE∥平面P AD;(3)平面PCD⊥平面P AD.在直三棱柱ABCA1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:(1)B1D⊥平面ABD;(2)平面EGF∥平面ABD.考点二 利用空间向量求空间角题型一 求直线与直线所成的角[例2] (1)已知△ABC 与△BCD 均为正三角形,且AB =4.若平面ABC ⊥平面BCD ,且异面直线AB 和CD 所成的角为θ,则cos θ=( )A .-154B .154C .-14D .14(2)(2017·全国卷Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)题型二 求直线与平面所成的角[例3] (2019·浙江高考)如图,已知三棱柱ABC A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.题型三 求二面角[例4] (2019·全国卷Ⅰ)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A MA 1N 的正弦值.1.(2019·江西省五校协作体试题)如图,圆锥的底面直径AB =4,高OC =22,D 为底面圆周上的一点,且∠AOD =2π3,则直线AD 与BC所成的角为( )A.π6B.π3C.5π12D.π22.(2019·天津高考)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F 的余弦值为13,求线段CF 的长.考点三 利用空间向量解决探索性问题[例5] 如图,四棱锥P ABCD 的底面ABCD 为矩形,P A ⊥平面ABCD ,点E 是棱PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若四边形ABCD 为正方形,探究在什么条件下,二面角C AF D 大小为60°?1.(2019·湖南省湘东六校联考)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明:直线BC ∥平面OEF ;(2)在线段DF 上是否存在一点M ,使得二面角M OE D 的余弦值是31313若不存在,请说明理由; 若存在,请求出M 点所在的位置.2.如图,在三棱锥P ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ; (2)求二面角C EM N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.【课后专项练习】1.(2019·全国卷Ⅱ)如图,长方体ABCD A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B EC C 1的正弦值.2.如图,在四棱柱ABCD A 1B 1C 1D 1中,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0),侧棱AA 1⊥底面ABCD .(1)证明:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成的角的正弦值为67,求k 的值.3.已知四棱锥P ABCD 中,底面ABCD 是梯形,BC ∥AD ,AB ⊥AD ,且AB =BC =1,AD =2,顶点P 在平面ABCD 内的射影H 在AD 上,P A ⊥PD .(1)求证:平面P AB ⊥平面P AD ;(2)若直线AC 与PD 所成角为60°,求二面角A PC D 的余弦值.4.(2019·安徽五校联盟第二次质检)如图,在五面体ABCDFE中,底面ABCD为矩形,EF∥AB,BC⊥FD,过BC的平面交棱FD于P,交棱F A于Q.(1)证明:PQ∥平面ABCD;(2)若CD⊥BE,EF=EC,CD=2EF,BC=tEF,求平面ADF与平面BCE所成锐二面角的大小.5.(2019·东北四市联合体模拟(一))如图,等腰梯形ABCD中,AB∥CD,AD=AB=BC =1,CD=2,E为CD的中点,将△ADE沿AE折到△APE的位置.(1)证明:AE⊥PB;(2)当四棱锥PABCE的体积最大时,求二面角APEC的余弦值.6.(2019·广州市综合检测(一))如图,在三棱锥ABCD中,△ABC是等边三角形,∠BAD =∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=6,且二面角ABDC为120°,求直线AD与平面BCD所成角的正弦值.7.(2019·长沙市统一模拟考试)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE ∥CF,∠BCF=90°,AD=3,BE=3,CF=4,EF=2.(1)求证:AE∥平面DCF;(2)当AB的长为何值时,二面角AEFC的大小为60°?8.在平行四边形P ABC中,P A=4,PC=22,∠P=45°,D是P A的中点(如图1).将△PCD沿CD折起到图2中△P1CD的位置,得到四棱锥P1ABCD.(1)将△PCD沿CD折起的过程中,CD⊥平面P1DA是否成立?请证明你的结论.(2)若P1D与平面ABCD所成的角为60°,且△P1DA为锐角三角形,求平面P1AD和平面P1BC所成角的余弦值.9.(2018·全国卷Ⅱ)如图,在三棱锥PABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角MP AC为30°,求PC与平面P AM所成角的正弦值.。
5.3.2立体几何中的翻折问题及探索性问题关键能力学案突破热点一翻折问题1.翻折问题中空间关系的证明【例1】(2020陕西西安中学高三模拟,19)在平行四边形ABCD中,AB=3,BC=2,过点A作CD的垂线交CD的延长线于点E,AE=.连接EB交AD于点F,如图1,将△ADE沿AD折起,使得点E到达点P的位置,如图2.(1)证明:直线AD⊥平面BFP;(2)若G为PB的中点,H为CD的中点,且平面ADP⊥平面ABCD,求三棱锥G-BCH 的体积.解题心得解翻折问题的关键是辨析清楚“不变的位置关系和数量关系”以及“变的位置关系和数量关系”,转化为一般的立体几何问题解答.【对点训练1】(2020湖南怀化三模,18)图1是直角梯形ABCD,AB∥DC,∠D=90°,AB=2,DC=3,AD=,点E在DC上,CE=2ED,以BE为折痕将△BCE折起,使点C到达点C1的位置,且AC1=,如图2.(1)证明:平面BC1E⊥平面ABED;(2)求点B到平面AC1D的距离.2.求翻折问题中的空间角【例2】(2020北京顺义二模,17)如图1所示,四边形ABCD是边长为的正方形,沿BD将点C翻折到点C1位置(如图2所示),使得二面角A-BD-C1成直二面角.E,F分别为BC1,AC1的中点.(1)求证:BD⊥AC1;(2)求平面DEF与平面ABD所成的二面角的余弦值.解题心得平面图形翻折后成为空间图形,翻折后还在同一个平面上的线线关系不发生变化,不在同一个平面上的可能发生变化.解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值.【对点训练2】(2020山东济宁三模,18)如图1,四边形ABCD为矩形,BC=2AB,E为AD的中点,将△ABE,△DCE分别沿BE,CE折起得图2,使得平面ABE⊥平面BCE,平面DCE ⊥平面BCE.(1)求证:平面ABE⊥平面DCE;(2)若F为线段BC的中点,求直线FA与平面ADE所成角的正弦值.热点二探索性问题1.与空间位置关系有关的探索性问题【例3】(2020天津河西一模,17)在如图所示的几何体P-ABCDE中,△ABP和△AEP均为以A为直角顶点的等腰直角三角形,AB⊥AE,AB∥CE,AE∥CD,CD=CE=2AB=4,M为PD 的中点.(1)求证:CE⊥PE;(2)求二面角M-CE-D的大小;(3)在线段PE上是否存在点N,使得平面ABN∥平面MCE,若存在,求出线段AN的长;若不存在,请说明理由.解题心得1.对于空间位置关系中的存在性问题,解题思路是将假设存在所得的结论当作条件,据此条件以向量为工具,列出满足条件的方程或方程组把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.2.对于位置探索型问题,通常借助向量引入参数,综合条件和结论列方程或方程组,解出参数,从而确定位置.【对点训练3】(2020福建福州三模,19)如图,在多面体P-ABCD中,平面ABCD⊥平面PAD,AD∥BC,∠BAD=90°,∠PAD=120°,BC=1,AB=AD=PA=2.(1)求多面体P-ABCD的体积;(2)已知E是棱PB的中点,在棱CD上是否存在点F使得EF∥PD,若存在,请确定点F的位置;若不存在,请说明理由.2.与空间角有关的探索性问题【例4】(2020山东济南二模,19)如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,∠PAB=∠PBA=45°,∠ABC=2∠BAC=60°,D是棱AB的中点,点E在棱PB上,点G是△BCD的重心.(1)若E是PB的中点,证明GE∥平面PAC;(2)是否存在点E,使二面角E-CD-G的大小为30°,若存在,求的值;若不存在,请说明理由.解题心得利用空间向量求解探索性问题的策略(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论.(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解”“是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【对点训练4】(2020天津滨海新区高三四校联考,18)如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,CD∥AB,AD⊥AB,AD=AB=2,CF=CD=,PA=PB=,E,N分别为AB,PB的中点.(1)求证:CN∥平面PEF;(2)求二面角N-CD-A的余弦值;(3)在线段BC上是否存在一点Q,使NQ与平面PEF所成角的正弦值为,若存在,求出BQ的长;若不存在,说明理由.核心素养微专题(六)立体几何解答题中的条件选择问题【例题】(2020山东青岛二模,18)试在①PC⊥BD,②PC⊥AB,③PA=PC三个条件中选两个条件补充在下面的横线处,使得PO⊥平面ABCD成立,请说明理由,并在此条件下进一步解答该题.如图,在四棱锥P-ABCD中,AC∩BD=O,底面ABCD为菱形,若,且∠ABC=60°,异面直线PB与CD所成的角为60°,求二面角A-PB-C的余弦值.核心素养分析数学学科核心素养是数学课程目标的集中体现,新高考数学对核心素养的考查和渗透日趋加强.山东新高考创新性地出现了开放性的解答题,有利于立德树人,提升素养.本题首先需要理解题意,从数量关系、图形关系中抽象出数学问题,体现了数学抽象的核心素养;结合图形,理解直线、平面之间的位置关系,并进行推理证明,对直观想象和逻辑推理的核心素养有较高的要求;建立空间直角坐标系,根据向量坐标及相关公式,通过“数学运算”得出答案.【跟踪训练】(2020山东潍坊二模,19)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB⊥BC,②FC与平面ABCD所成的角为,③∠ABC=.如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA=AB=2,PD的中点为F.(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若,求二面角F-AC-D的余弦值.5.3.2 立体几何中的翻折问题及探索性问题关键能力·学案突破【例1】(1)证明如题图1,在Rt △BAE 中,AB=3,AE=,∴∠AEB=60°.在Rt △AED 中,AD=2,∴∠DAE=30°.∴BE ⊥AD.如题图2,PF ⊥AD ,BF ⊥AD ,PF ∩BF=F ,∴AD ⊥平面BFP. (2)解(方法一)∵平面ADP ⊥平面ABCD ,且平面ADP ∩平面ABCD=AD ,PF ⊂平面ADP ,PF ⊥AD ,∴PF ⊥平面ABCD.取BF 的中点为O ,连接GO ,则GO ∥PF ,∴GO ⊥平面ABCD ,即GO 为三棱锥G-BCH 的高,∴GO=PF=PA×sin30°=CH=DC=,∴S △BCH =CH·AE=V 三棱锥G-BCH =S △BCH ·GO=(方法二)∵平面ADP ⊥平面ABCD ,且平面ADP ∩平面ABCD=AD ,PF ⊂平面ADP ,PF ⊥AD ,∴PF ⊥平面ABCD.∵G 为PB 的中点,∴三棱锥G-BCH 的高等于PF.∵H 为CD 的中点,∴△BCH的面积是四边形ABCD的面积的三棱锥G-BCH的体积是四棱锥P-ABCD的体积的∵V P-ABCD=S四边形ABCD·PF=3,∴三棱锥G-BCH的体积为对点训练1(1)证明在图1中,连接AE,由已知得AE=2.∵CE∥BA,且CE=BA=AE,∴四边形ABCE为菱形.连接AC交BE于点F,∴CF⊥BE.在Rt△ACD中,AC==2∴AF=CF=在图2中,AC1=AF2+C1F2=A,∴C1F⊥AF.由题意知,C1F⊥BE,且AF∩BE=F,∴C1F⊥平面ABED,又C1F⊂平面BC1E,∴平面BC1E⊥平面ABED;(2)解如图2,取AD的中点N,连接FN,C1N和BD,设B到平面AC1D的距离为h.在直角梯形ABED中,FN为中位线,则FN⊥AD,FN=由(1)得C1F⊥平面ABED,AD⊂平面ABED,∴C1F⊥AD.又FN∩C1F=F,∴AD ⊥平面C1FN.又C1N⊂平面C1FN,∴C1N⊥AD,且C1N=在三棱锥C1-ABD中,,即AB×AD×C1F=AD×C1N×h,∴h=故点B到平面AC1D的距离为【例2】(1)证明取BD的中点O,连接AO,OC1.因为四边形ABCD是正方形,所以在三棱锥中,BD⊥AO,BD⊥OC1.因为AO∩OC1=O,AO,OC1⊂平面AOC1,所以BD⊥平面AOC1.又因为AC1⊂平面AOC1,所以BD⊥AC1.(2)解因为二面角A-BD-C1为直二面角,平面ABD∩平面BDC1=BD,且BD⊥AO,BD⊥OC1,AO∩OC1=O,所以∠C1OA=90°,即C1O⊥AO,所以AO,OC1,BD两两垂直.以O为原点,OA,OB,OC1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.易知AO=OC1=BD=1,所以O(0,0,0),B(0,1,0),D(0,-1,0),A(1,0,0),C1(0,0,1),F,0,E0,,则=0,,=,-,0.显然平面ABD的一个法向量m=(0,0,1).设平面DEF的法向量为n=(x,y,z),则取x=2,可得y=2,z=-6,所以平面DEF的一个法向量n=(2,2,-6),则|cos<m,n>|===,所以平面DEF与平面ABD所成的二面角的余弦值为对点训练2(1)证明在题图1中,BC=2AB,且E为AB的中点,∴AE=AB, ∴∠AEB=45°,同理∠DEC=45°,∴∠CEB=90°,∴BE⊥CE.又平面ABE⊥平面BCE,平面ABE∩平面BCE=BE,∴CE⊥平面ABE.又CE⊂平面DCE,∴平面ABE⊥平面DCE.(2)解以E为坐标原点,EB,EC所在的直线分别为x轴,y轴建立空间直角坐标系,设AB=1,则E(0,0,0),B(,0,0),C(0,,0),A,D,F设平面ADE的法向量为n=(x,y,z),由令z=1,得平面ADE的一个法向量为n=(-1,-1,1).又,设直线FA与平面ADE所成角为θ,则sinθ=|cos<,n>|=,故直线FA与平面ADE所成角的正弦值为【例3】解依题意得,△ABP和△AEP均为以A为直角顶点的等腰直角三角形, 则PA⊥AB,PA⊥AE,所以PA⊥面ABCDE.又因为AB⊥AE,可以建立以A为原点,分别以的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图),得A(0,0,0),B(2,0,0),C(4,2,0),D(4,6,0),E(0,2,0),P(0,0,2),M(2,3,1).(1)证明:由题意,=(-4,0,0),=(0,2,-2),因为=0,所以CE ⊥PE.(2)=(-2,-1,-1),=(2,-1,-1),设平面MEC的法向量为n=(x,y,z),则即不妨令y=1,可得平面MEC的一个法向量为n=(0,1,-1).平面DEC的一个法向量=(0,0,2),所以cos<n,>==-,由图可得二面角M-CE-D的平面角为锐角,所以二面角M-CE-D的大小为45°.(3)(方法一)存在.假设在线段PE上存在点N,使得平面ABN∥平面MCE.设=(λ∈[0,1]),N(x,y,z),所以(x,y,z-2)=λ(0,2,-2),所以N(0,2λ,2-2λ).因为平面ABN∥平面MCE,所以n,即n=0,解得λ=,即N为PE的中点,此时N(0,1,1),||=,所以线段AN的长为所以在线段PE上存在点N,使得平面ABN∥平面MCE,此时线段AN的长为(方法二)存在.假设在线段PE上存在点N,使得平面ABN∥平面MCE.设=(λ∈[0,1]),N(x,y,z),所以(x,y,z-2)=λ(0,2,-2),因此N(0,2λ,2-2λ).设平面ABN的法向量为m=(x,y,z),则即令y=λ-1,可得m=(0,λ-1,λ).因为平面ABN∥平面MCE,所以m∥n,解得λ=,此时N(0,1,1),||=,所以线段AN的长为所以在线段PE上存在点N,使得平面ABN∥平面MCE,此时线段AN的长为对点训练3解(1)如图,作PH⊥AD交DA的延长线于点H.因为平面ABCD⊥平面PAD,平面ABCD∩平面PAD=AD,且PH⊂平面PAD,所以PH⊥平面ABCD,所以PH为点P到平面ABCD的距离.因为∠PAD=120°,PA=2,所以PH=PA·sin60°=,又因为S四边形=(BC+AD)·AB=3,所以V P-ABCD=PH·S四边形ABCD=3=ABCD(2)不存在.理由如下:假设在棱CD上存在点F,使得EF∥PD.连接BD,取BD的中点M,连接EM,EF.在△BPD中,因为E,M分别为BP,BD的中点,所以EM∥PD.因为过直线外一点有且只有一条直线和已知直线平行,所以EM与EF重合.因为点F在线段CD 上,所以F=BD∩CD,又因为BD∩CD=D,所以F是BD与CD的交点D,即EF就是ED,而ED与PD相交,这与EF∥PD相矛盾,所以假设不成立,故在棱CD上不存在点F使得EF∥PD.【例4】(1)证明延长DG交BC于点F,连接EF,因为点G是△BCD的重心,故F为BC的中点.因为D,E分别是棱AB,BP的中点,所以DF∥AC,DE∥AP,又因为DF∩DE=D,所以平面DEF∥平面APC.又因为GE⊂平面DEF,所以GE∥平面PAC.(2)解存在.连接PD,因为∠PAB=∠PBA=45°,所以PA=PB.又因为D是AB的中点,所以PD⊥AB.因为平面PAB⊥平面ABC,而平面PAB∩平面ABC=AB,PD⊂平面PAB,所以PD⊥平面ABC.如图,以D为原点,垂直于AB的直线为x轴,DB,DP所在直线分别为y轴,z轴建立空间直角坐标系,设PA=PB=2,则AB=2,PD=CD=,所以D(0,0,0),B(0,,0),C,0,G,0,P(0,0,).假设存在点E,设=,λ∈(0,1],则+=(0,,0)+λ(0,-)=(0,(1-λ),),所以E(0,(1-λ),).又因为,设平面ECD的法向量为n1=(x,y,z),则令x=1,解得n1=1,-.又因为平面CDG的一个法向量n2=(0,0,1),而二面角E-CD-G的大小为30°,所以|cos<n1·n2>|==,即,解得λ=,所以存在点E,使二面角E-CD-G的大小为30°,此时对点训练4(1)证明取PE中点G,连接GN,FG,则GN∥BE,GN=BE=,即GN∥CF,GN=CF,所以GNCF为平行四边形,CN∥FG,CN⊄平面PEF,FG⊂平面PEF,所以CN∥平面PEF.(2)解因为PA=PB,点E为AB的中点,所以PE⊥AB.又因为侧面PAB⊥底面ABCD且侧面PAB∩底面ABCD=AB,所以PE⊥平面ABCD.分别以EB,EF,EP为x,y,z轴建立空间直角坐标系,如图,则P(0,0,2),C,D(-1,2,0),A(-1,0,0),B(1,0,0),N,平面CDA 的一个法向量m=(0,0,1),(0,-2,1).设平面CDN的法向量n=(x,y,z),则令y=1,得平面CDN的一个法向量n=(0,1,2).所以cos<m,n>=,因此二面角N-CD-A的余弦值为(3)解存在.假设存在点P,满足题意,连接NQ.设==-,2λ,0(λ∈[0,1]),则Q-+1,2λ,0,=-+,2λ,-1.因为平面PEF的一个法向量p=(1,0,0),所以|cos<,p>|=,解得λ=或λ=-9(舍),所以在线段BC上存在点Q满足题意,此时BQ=核心素养微专题(六)【例题】解若选②,由PO⊥平面ABCD知PO⊥AB,又因为PC⊥AB,所以AB⊥平面PAC,所以AB⊥AC,所以∠BAC=90°,BC>BA,这与底面ABCD为菱形矛盾,所以②必不选,故选①③.下面证明:PO⊥平面ABCD.因为四边形ABCD为菱形,所以AC⊥BD.因为PC⊥BD,PC∩AC=C,所以BD⊥平面APC.又因为PO⊂平面APC,所以BD ⊥PO.因为PA=PC,O为AC中点,所以PO⊥AC.又AC∩BD=O,所以PO⊥平面ABCD.因为PO⊥平面ABCD,以O为坐标原点,以的方向分别作为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系O-xyz.因为AB∥CD,所以∠PBA为异面直线PB与CD所成的角,所以∠PBA=60°.在菱形ABCD中,设AB=2,因为∠ABC=60°,所以OA=1,OB=,设PO=a,则PA=,PB=在△PBA中,由余弦定理得PA2=BA2+BP2-2BA·BP·cos∠PBA,所以a2+1=4+a2+3-2×2,解得a=所以A(0,-1,0),B(,0,0),C(0,1,0),P(0,0,).设平面ABP的法向量为n1=(x1,y1,z1),=(,1,0),=(0,1,),由可得令z1=1,得n1=(,-,1).设平面CBP的法向量为n2=(x2,y2,z2),=(,-1,0),=(0,-1,),由可得令z2=1,得n2=(,1).设二面角A-PB-C的平面角为θ,所以cosθ=,所以二面角A-PB-C的余弦值为跟踪训练解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示,设PC的中点为H,连接FH.∵FH∥CD,FH=CD,AG∥CD,AG=CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH.又GH⊂平面PGC,AF⊄平面PGC, ∴AF∥平面PGC.(2)方案一:选条件①.∵PA⊥平面ABCD,∴PA⊥BC,由题意知AB,AD,AP两两垂直,以AB,AD,AP分别为x轴,y轴,z轴,建立空间直角坐标系,如图.∵PA=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),=(0,1,1),=(-2,-1,1).设平面FAC的法向量为μ=(x,y,z),取y=1,得平面FAC的一个法向量μ=(-1,1,-1).又平面ACD的一个法向量为ν=(0,0,1),设二面角F-AC-D的平面角为θ,则cosθ=,∴二面角F-AC-D的余弦值为方案二:选条件②.∵PA⊥平面ABCD,取BC中点E,连接AE,取AD的中点M,连接FM,CM,则FM∥PA,且FM=1,∴FM⊥平面ABCD,FC与平面ABCD所成角为∠FCM,∴∠FCM=在Rt△FCM中,CM=,又CM=AE,∴AE2+BE2=AB2,∴BC⊥AE,∴AE,AD,AP两两垂直,以AE,AD,AP分别为x轴,y轴,z轴,建立空间直角坐标系,如图.∵PA=AB=2,∴A(0,0,0),B(,-1,0),C(,1,0),D(0,2,0),E(,0,0),F(0,1,1),P(0,0,2), =(0,1,1),=(-,0,1).设平面FAC的法向量为m=(x,y,z), 则取x=,得平面FAC的一个法向量m=(,-3,3).又平面ACD的一个法向量为n=(0,0,1),设二面角F-AC-D的平面角为θ,则cosθ=,∴二面角F-AC-D的余弦值为晨鸟教育方案三:选条件③.∵PA⊥平面ABCD,∴PA⊥BC,取BC中点E,连接AE,∵底面ABCD是菱形,∠ABC=,∴△ABC是正三角形.∵E是BC的中点,∴BC⊥AE,∴AE,AD,AP两两垂直,以AE,AD,AP分别为x轴,y轴,z轴,建立空间直角坐标系,如图.∵PA=AB=2,∴A(0,0,0),B (,-1,0),C (,1,0),D(0,2,0),E (,0,0),F(0,1,1),P (0,0,2), =(0,1,1),=(-,0,1),设平面FAC的法向量为m=(x,y,z),则取x=,得平面FAC的一个法向量m=(,-3,3).又平面ACD的法向量n=(0,0,1),设二面角F-AC-D的平面角为θ,则cosθ=,∴二面角F-AC-D 的余弦值为Earlybird。
专题07 立体几何立体几何的知识是高中数学的主干内容之一,它主要研究简单空间几何体的位置和数量关系.本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体的结构,三是空间向量与立体几何.在本专题中,我们将首先复习空间点、直线、平面之间的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题.§7-1 点、直线、平面之间的位置关系【知识要点】1.空间直线和平面的位置关系:(1)空间两条直线:①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交.②无公共点:平行或异面.平行,记作:a∥b.异面中特殊位置关系:异面垂直.(2)空间直线与平面:①有公共点:直线在平面内或直线与平面相交.直线在平面内,记作:a⊂α .直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交.②无公共点:直线与平面平行,记作:a∥α .(3)空间两个平面:①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交.②无公共点:平行,记作:α ∥β .2.空间作为推理依据的公理和定理:(1)四个公理与等角定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)空间中线面平行、垂直的性质与判定定理:①判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②性质定理:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. (3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图:【复习要求】1.了解四个公理与等角定理;2.理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. 【例题分析】例1 如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AA 1的中点. 求证:(Ⅰ)E 、C 、D 1、F 四点共面;(Ⅱ)CE 、DA 、D 1F 三线共点.【分析】对于(Ⅰ)中证明“E 、C 、D 1、F 四点共面”,可由这四点连接成两条直线,证明它们平行或相交即可;对于(Ⅱ)中证明“CE 、DA 、D 1F 三线共点”,可证其中两条相交直线的交点位于第三条直线上.证明:(Ⅰ)连接D 1C 、A 1B 、EF . ∵E ,F 分另是AB ,AA 1的中点,∴EF ∥A 1B ,,211B A EF =又A 1D 1∥BC ,A 1D 1=BC , ∴A 1D 1CB 是平行四边形. ∴A 1B ∥D 1C ,EF ∥D 1C , ∴E 、C 、D 1、F 四点共面. (Ⅱ)由(Ⅰ)得EF ∥CD 1,,211CD EF =∴直线CE 与直线D 1F 必相交,记CE ∩ D 1F =P , ∵P ∈D 1F ⊂平面A 1ADD 1,P ∈CE ⊂平面ABCD , ∴点P 是平面A 1ADD 1和平面ABCD 的一个公共点. ∵平面A 1ADD 1∩平面ABCD =AD , ∴P ∈AD ,∴CE 、DA 、D 1F 三线共点.【评述】1、证明多点共面、多点共线、多线共面的主要依据:(1)证明多点共面常用公理2及其推论;(2)证明多点共线常用公理3,即证明点在两个平面内,从而点在这两个平面的交线上; (3)证明多线共面,首先由其中两直线确定平面,再证其余直线在此平面内. 2、证明a ,b ,c 三线交于一点的主要依据:(1)证明a 与b 相交,c 与b 相交,再证明两交点重合; (2)先证明a 与b 相交于点P ,再证明P ∈c .例2 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面P AD .【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA = ∵E 是PD 的中点, ∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .又AE ⊂平面P AD ,MN ⊄平面P AD , ∴MN ∥平面P AD .方法二取CD 中点F ,连接MF ,NF . ∵MF ∥AD ,NF ∥PD , ∴平面MNF ∥平面P AD , ∴MN ∥平面P AD .【评述】关于直线和平面平行的问题,可归纳如下方法:111111【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.证明:连接AC1.∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥A B.①又AA1=AC,∴侧面A1ACC1是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC ⊥平面PBC.【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.证明:∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,且AB ⊥BC , ∴BC ⊥平面P AB , ∴AP ⊥BC . 又AP ⊥PB ,∴AP ⊥平面PBC , 又AP ⊂平面P AC ,∴平面P AC ⊥平面PBC .【评述】关于直线和平面垂直的问题,可归纳如下方法:例5 如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1. (2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB .∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC .练习7-1一、选择题:1.已知m ,n 是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是( ) (A)若m ∥α ,n ∥α ,则m ∥n (B)若m ⊥α ,n ⊥α ,则m ∥n (C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m ∥α ,m ∥β ,则α ∥β 2.已知直线m ,n 和平面α ,β ,且m ⊥n ,m ⊥α ,α ⊥β ,则( ) (A)n ⊥β (B)n ∥β ,或n ⊂β (C)n ⊥α (D)n ∥α ,或n ⊂α3.设a ,b 是两条直线,α 、β 是两个平面,则a ⊥b 的一个充分条件是( ) (A)a ⊥α ,b ∥β ,α ⊥β (B)a ⊥α ,b ⊥β ,α ∥β (C)a ⊂α ,b ⊥β ,α ∥β (D)a ⊂α ,b ∥β ,α ⊥β 4.设直线m 与平面α 相交但不垂直,则下列说法中正确的是( ) (A)在平面α 内有且只有一条直线与直线m 垂直 (B)过直线m 有且只有一个平面与平面α 垂直 (C)与直线m 垂直的直线不可能与平面α 平行 (D)与直线m 平行的平面不可能与平面α 垂直 二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面P AB ⊥平面ABC ,P A ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断: ①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______. 8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β , 上述四种位置关系中,不一定成立的结论的序号是______. 三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为P A ,BC 的中点.(Ⅰ)求MN 的长;(Ⅱ)求证:P A ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为F A ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .§7-2空间几何体的结构【知识要点】1.简单空间几何体的基本概念:(1)(2)特殊的四棱柱:(1)平行投影:①概念:如图,已知图形F,直线l与平面α 相交,过F上任意一点M作直线MM1平行于l,交平面α 于点M1,则点M1叫做点M在平面α 内关于直线l的平行投影.如果图形F上的所有点在平面α 内关于直线l的平行投影构成图形F1,则F1叫图形F在α 内关于直线l的平行投影.平面α 叫投射面,直线l叫投射线.②平行投影的性质:性质1.直线或线段的平行投影仍是直线或线段; 性质2.平行直线的平行投影是平行或重合的直线;性质3.平行于投射面的线段,它的投影与这条线段平行且等长; 性质4.与投射面平行的平面图形,它的投影与这个图形全等;性质5.在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比. (2)直观图:斜二侧画法画简单空间图形的直观图. (3)三视图:①正投影:在平行投影中,如果投射线与投射面垂直,这样的平行投影叫做正投影. ②三视图:选取三个两两垂直的平面作为投射面.若投射面水平放置,叫做水平投射面,投射到这个平面内的图形叫做俯视图;若投射面放置在正前方,叫做直立投射面,投射到这个平面内的图形叫做主视图;和直立、水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面内的图形叫做左视图.将空间图形向这三个平面做正投影,然后把三个投影按右图所示的布局放在一个水平面内,这样构成的图形叫空间图形的三视图.③画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”. 4.简单几何体的表面积与体积: (1)柱体、锥体、台体和球的表面积:①S 直棱柱侧面积=ch ,其中c 为底面多边形的周长,h 为直棱柱的高.②'=ch S 21正棱锥形面积,其中c 为底面多边形的周长,h '为正棱锥的斜高. ③''+=h c c S )(21正棱台侧面积,其中c ',c 分别是棱台的上、下底面周长,h '为正棱台的斜高.④S 圆柱侧面积=2πRh ,其中R 是圆柱的底面半径,h 是圆柱的高. ⑤S 圆锥侧面积=πRl ,其中R 是圆锥的底面半径,l 是圆锥的母线长. ⑥S 球=4πR 2,其中R 是球的半径. (2)柱体、锥体、台体和球的体积:①V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.②Sh V 31=锥体,其中S 是锥体的底面积,h 是锥体的高. ③)(31'+'+=S SS S h V 台体,其中S ',S 分别是台体的上、下底面的面积,h 为台体的高. ④3π34R V =球,其中R 是球的半径.【复习要求】1.了解柱、锥、台、球及其简单组合体的结构特征;2.会画出简单几何体的三视图,会用斜二侧法画简单空间图形的直观图; 3.理解球、棱柱、棱锥、台的表面积与体积的计算公式. 【例题分析】例1 如图,正三棱锥P -ABC 的底面边长为a ,侧棱长为b .(Ⅰ)证明:P A ⊥BC ;(Ⅱ)求三棱锥P -ABC 的表面积; (Ⅲ)求三棱锥P -ABC 的体积.【分析】对于(Ⅰ)只要证明BC (P A )垂直于经过P A (BC )的平面即可;对于(Ⅱ)则要根据正三棱锥的基本性质进行求解.证明:(Ⅰ)取BC 中点D ,连接AD ,PD . ∵P -ABC 是正三棱锥,∴△ABC 是正三角形,三个侧面P AB ,PBC ,P AC 是全等的等腰三角形. ∵D 是BC 的中点,∴BC ⊥AD ,且BC ⊥PD , ∴BC ⊥平面P AD ,∴P A ⊥BC .(Ⅱ)解:在Rt △PBD 中,,4212222a b BD PB PD -=-= ∴.442122a b a PD BC S PBC -==⋅∆ ∵三个侧面P AB ,PBC ,P AC 是全等的等腰三角形, ∴三棱锥P -ABC 的侧面积是.44322a b a- ∴△ABC 是边长为a 的正三角形,∴三棱锥P -ABC 的底面积是,432a∴三棱锥P -ABC 的表面积为⋅-+=-+)312(434434322222a b a aa b a a (Ⅲ)解:过点P 作PO ⊥平面ABC 于点O ,则点O 是正△ABC 的中心, ∴,63233131aa AD OD =⨯==在Rt △POD 中,,3332222a b OD PD PO -=-=∴三棱锥P -ABC 的体积为.3123334331222222a b a a b a -=-⨯⨯ 【评述】1、解决此问题要求同学们熟悉正棱锥中的几个直角三角形,如本题中的Rt△POD ,其中含有棱锥的高PO ;如Rt △PBD ,其中含有侧面三角形的高PD ,即正棱锥的斜高;如果连接OC ,则在Rt △POC 中含有侧棱.熟练运用这几个直角三角形,对解决正棱锥的有关问题很有帮助.例2 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1. 【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1,∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ⊂平面BEC 1,AB 1⊄平面BEC 1, ∴AB 1∥平面BEC 1.例3 在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面P AD ; (Ⅱ)求四棱锥P -ABCD 的体积.【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面P AD .证明:(Ⅰ)在△ABD 中,由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2. 故AD ⊥BD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面P AD ,又BD ⊂平面MBD ,故平面MBD ⊥平面P AD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面P AD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,又△P AD 是边长为4的等边三角形.因此.32423=⨯=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高,所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V例4 如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的主视图和左视图在下面画出(单位:cm)(Ⅰ)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积; (Ⅲ)在所给直观图中连结BC ',证明:BC '∥平面EFG .【分析】画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”,根据此原则及相关数据可以画出三视图.证明:(Ⅰ)该几何体三视图如下图:(Ⅱ)所求多面体体积).cm (32842)2221(316442=⨯⨯⨯⨯-⨯⨯=-=正三棱锥长方体V V V (Ⅲ)证明:在长方体ABCD -A'B'C'D'中,连结AD',则AD'∥BC'. 因为E ,G 分别为AA',A'D'中点, 所以AD'∥EG ,从而EG ∥BC '.又BC'⊄平面EFG , 所以BC'∥平面EFG .例5 有两个相同的直三棱柱,底面三角形的三边长分别是3a ,4a ,5a ,高为a2,其中a >0.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的一个是四棱柱,求a 的取值范围.解:直三棱柱ABC -A 1B 1C 1的三个侧面的面积分别是6,8,10,底面积是6a 2,因此每个三棱柱的表面积均是2×6a 2+6+8+10=12a 2+24.情形①:将两个直三棱柱的底面重合拼在一起,只能拼成三棱柱,其表面积为:2×(12a 2+24)-2×6a 2=12a 2+48.情形②:将两个直三棱柱的侧面ABB 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×8=24a 2+32.情形③:将两个直三棱柱的侧面ACC 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×6=24a 2+36.情形④:将两个直三棱柱的侧面BCC 1B 1重合拼在一起,只能拼成四棱柱,其表面积为:2×(12a 2+24)-2×10=24a 2+28在以上四种情形中,②、③的结果都比④大,所以表面积最小的情形只能在①、④中产生.依题意“表面积最小的一个是四棱柱”,得24a 2+28<12a 2+48,解得,352<a 所以a 的取值范围是⋅)315,0( 例6 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,求三棱锥F -A 1ED 1的体积.【分析】计算三棱锥F -A 1ED 1的体积时,需要确定锥体的高,即点F 到平面A 1ED 1的距离,直接求解比较困难.利用等积的方法,调换顶点与底面的方式,如1111EFD A ED A F V V --=,也不易计算,因此可以考虑使用等价转化的方法求解.解法1:取AB 中点G ,连接FG ,EG ,A 1G . ∵GF ∥AD ∥A 1D 1,∴GF ∥平面A 1ED 1,∴F 到平面A 1ED 1的距离等于点G 到平面A 1ED 1的距离.∴.8183313132111111111a a a D A S V V V EG A EG A D ED A G ED A F =⨯⨯====⋅∆---解法2:取CC 1中点H ,连接F A 1,FD 1,FH ,FC 1,D 1H ,并记FC 1∩D 1H =K .∵A 1D 1∥EH , A 1D 1=EH ,∴A 1,D 1,H ,E 四点共面.∵A 1D 1⊥平面C 1CDD 1,∴FC ⊥A 1D 1.又由平面几何知识可得FC 1⊥D 1H ,∴FC ⊥平面A 1D 1HE . ∴FK 的长度是点F 到平面A 1D 1HE (A 1ED 1)的距离. 容易求得.811053453131,1053321111a a a FK S V a FK ED A ED A F =⨯⨯===⋅∴∆- 练习7-2一、选择题:1.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) (A)2π (B)4π (C)8π (D)16π2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )(A)9π (B)10π (C)11π (D)12π3.有一种圆柱体形状的笔筒,底面半径为4 cm ,高为12 cm .现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计).如果所用涂料每0.5 kg 可以涂1 m 2,那么为这批笔筒涂色约需涂料( ) (A)1.23 kg (B)1.76 kg (C)2.46 kg (D)3.52 kg 4.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) (A)22(B)32(C)4(D)52二、填空题:5.如图,正三棱柱ABC -A 1B 1C 1的每条棱长均为2,E 、F 分别是BC 、A 1C 1的中点,则EF 的长等于______.6.将边长为1的正方形ABCD 沿对角线AC 折起,使得BD =1,则三棱锥D -ABC 的体积是______.7.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,则这个球的体积为______.8.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①:_______________________________________________________________;充要条件②:_______________________________________________________________.(写出你认为正确的两个充要条件)三、解答题:9.如图,在正四棱柱ABCD-A1B1C1D1中,E是DD1的中点.(Ⅰ)求证:BD1∥平面ACE;(Ⅱ)求证:平面ACE⊥平面B1BDD1.10.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(Ⅰ)求该几何体的体积V;(Ⅱ)求该几何体的侧面积S.11.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(Ⅰ)求证:E,B,F,D1四点共面;(Ⅱ)若点G 在BC 上,32=BG ,点M 在BB 1上,GM ⊥BF ,求证:EM ⊥面BCC 1B 1.习题7一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38(C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2 (B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______.9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ; (Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积. 14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.专题07 立体几何参考答案练习7-1一、选择题:1.B 2.D 3.C 4.B 二、填空题:5.10 6.AC ⊥BD (或能得出此结论的其他条件)7.②、③、④⇒①;或①、③、④⇒② 8.④ 三、解答题:9.(Ⅰ)解:连接MB ,MC .∵三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,∴23==MC MB ,且底面△ABC 也是边长为1的等边三角形. ∵N 为BC 的中点,∴MN ⊥BC . 在Rt △MNB 中,⋅=-=2222BN MB MN (Ⅱ)证明:∵M 是P A 的中点, ∴P A ⊥MB ,同理P A ⊥MC .∵MB ∩MC =M ,∴P A ⊥平面MBC , 又BC ⊂平面MBC ,∴P A ⊥BC .10.证明:(Ⅰ)∵E 、F 分别是AB 、BD 的中点,∴EF 是△ABD 的中位线,∴EF ∥AD .又EF ⊄平面ACD ,AD ⊂平面ACD ,∴直线EF ∥平面ACD .(Ⅱ)∵EF ∥AD ,AD ⊥BD ,∴EF ⊥BD .∵CB =CD ,F 是BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面CEF .∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .11.(Ⅰ)由题意知,FG =GA ,FH =HD ,∴GH ∥AD ,,21AD GH =又BC ∥AD ,AD BC 21=,∴GH ∥BC ,GH =BC , ∴四边形BCHG 是平行四边形. (Ⅱ)C ,D ,F ,E 四点共面.理由如下: 由BE ∥AF ,AF BF 21=,G 是F A 的中点, 得BE ∥FG ,且BE =FG .∴EF ∥BG .由(Ⅰ)知BG ∥CH ,∴EF ∥CH ,故EC ,FH 共面,又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面. (Ⅲ)连结EG ,由AB =BE ,BE ∥AG ,BE =AG 及∠BAG =90°,知ABEG 是正方形, 故BG ⊥EA .由题设知F A ,AD ,AB 两两垂直,故AD ⊥平面F ABE ,∴BG ⊥AD . ∴BG ⊥平面EAD ,∴BG ⊥ED . 又ED ∩EA =E ,∴BG ⊥平面ADF . 由(Ⅰ)知CH ∥BG ,∴CH ⊥平面ADE .由(Ⅱ)知F ∈平面CDE ,故CH ⊂平面CDE ,得平面ADE ⊥平面CDE .练习7-2一、选择题:1.B 2.D 3.D 4.C 二、填空题: 5.5 6.122 7.3π4 8.答案不唯一,如“两组相对侧面分别平行”;“一组相对侧面平行且全等”;“对角线交于一点”;“底面是平行四边形”等. 三、解答题:9.证明:(Ⅰ)设AC ∩BD =O ,连结OE .∵E 是DD 1的中点,O 是BD 的中点,∴OE ∥BD 1.又OE ⊂平面ACE ,BD 1⊄平面ACE ,∴BD 1∥平面ACE .(Ⅱ)∵ABCD -A 1B 1C 1D 1是正四棱柱,∴底面ABCD 是正方形, ∴AC ⊥BD .又D 1D ⊥平面ABCD ,∴AC ⊥D 1D ,∴AC ⊥平面B 1BDD 1, ∵AC ⊂平面ACE ,∴平面ACE ⊥平面B 1BDD 1.10.解:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥P -ABCD .(Ⅰ).644)68(3131=⨯⨯⨯==Sh V (Ⅱ)该四棱锥有两个侧面P AD 、PBC 是全等的等腰三角形,且BC 边上的高为:h 1=.24)28(422=+另两个侧面P AB 、PCD 也是全等的等腰三角形, AB 边上的高为,5)26(4222=-+=h因此.22440)582124621(2+=⨯⨯+⨯⨯=S11.(Ⅰ)证明:在DD 1上取一点N 使得DN =1,连接CN ,EN ,显然四边形CFD 1N 是平行四边形,∴D 1F ∥CN . 同理四边形DNEA 是平行四边形,∴EN ∥AD ,且EN =AD . 又BC ∥AD ,且BC =AD ,∴EN ∥BC ,且EN =BC , ∴四边形CNEB 是平行四边形,∴CN ∥BE , ∴D 1F ∥BE ,∴E ,B ,F ,D 1四点共面.(Ⅱ)∵GM ⊥BF ,∴△BCF ∽△MBG ,∴,CF BGBC MB =即,2323=MB ∴MB =1.∵AE =1,∴四边形ABME 是矩形,∴EM ⊥BB 1.又平面ABB 1A 1⊥平面BCC 1B 1,且EM ⊂平面ABB 1A 1,∴EM ⊥平面BCC 1B 1.习题7一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅n 且,011=⋅B n故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高,∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλ, 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0(ο>=<-=BM BA BA 故,60cos ||||.οBA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM AM ⊥⊥∴==⋅⋅∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. Θ,36||||),cos(-==MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
- 1 - 第3课时 立体几何中的翻折问题和探索性问题 [考情分析] 翻折问题和探索性问题是近年来高考立体几何中的常见题型.翻折是联结平面几何与立体几何的纽带,实现平面向空间的转化;探索性问题常以动点形式出现,是带着解析几何的味道出现在立体几何中的神秘杀手,让很多学生不知所措!对于这两类题目,破题的秘诀是“以静制动,静观其变!” 热点题型分析 热点1 翻折问题
1.处理好翻折问题的关键是抓住两图的特征关系,画好翻折前后的平面图形与立体图形,并弄清翻折前后哪些发生了变化,哪些没有发生变化,这些未变化的已知条件都是我们分析问题和解决问题的依据. 2.以翻折棱为基准,在同一个半平面内的几何元素之间的关系是不变的,分别位于两个半平面内的几何元素之间的关系一般是变化的.垂直于翻折棱的直线翻折后,仍然垂直于翻折棱. - 2 -
(2019·河北五校联考)如图1,在直角梯形ABCD中,∠ADC=90°,AB∥CD,AD=CD=12
AB=2,E为AC的中点,将△ACD沿AC折起,使折起后的平面ACD与平面ABC垂直,如图2.
在图2所示的几何体D-ABC中:
(1)求证:BC⊥平面ACD; (2)点F在棱CD上,且满足AD∥平面BEF,求几何体F-BCE的体积. 解 (1)证明:∵AC=AD2+CD2=22,∠BAC=∠ACD=45°,AB=4,∴在△ABC中,BC2=AC2+AB2-2AC×AB×cos45°=8,
∴AB2=AC2+BC2=16,∴AC⊥BC, ∵平面ACD⊥平面ABC,平面ACD∩平面ABC=AC,BC⊂平面ABC,∴BC⊥平面ACD. (2)∵AD∥平面BEF,AD⊂平面ACD,平面ACD∩平面BEF=EF,∴AD∥EF,∵E为AC的中点,∴EF为△ACD的中位线, - 3 -
由(1)知,VF-BCE=VB-CEF=13×S△CEF×BC, S△CEF=14S△ACD=14×12×2×2=12,
∴VF-BCE=13×12×22=23.
1.解决与翻折有关的问题的关键是搞清翻折前后的变和不变.一般情况下,线段的长度是不变的,而位置关系往往会发生变化,抓住不变量是解决问题的突破口. 2.在解决问题时,要综合考虑翻折前后的图形,既要分析翻折后的图形,也要分析翻折前的图形.
如图1,在矩形ABCD中,AB=3,BC=4,E,F分别在线段BC,AD上,EF∥AB,将矩形ABEF沿EF折起,记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF,如图2. - 4 -
(1)求证:NC∥平面MFD; (2)若EC=3,求证:ND⊥FC; (3)求四面体NEFD体积的最大值. 解 (1)证明:∵四边形MNEF和四边形EFDC都是矩形,
∴MN∥EF,EF∥CD,MN=EF=CD,∴MNCD. ∴四边形MNCD是平行四边形,∴NC∥MD. ∵NC⊄平面MFD,MD⊂平面MFD, ∴NC∥平面MFD. (2)证明:连接ED,
∵平面MNEF⊥平面ECDF,且NE⊥EF,平面MNEF∩平面ECDF=EF,NE⊂平面MNEF, ∴NE⊥平面ECDF. ∵FC⊂平面ECDF, - 5 -
∴FC⊥NE. ∵EC=CD,∴四边形ECDF为正方形, ∴FC⊥ED. 又∵ED∩NE=E,ED,NE⊂平面NED, ∴FC⊥平面NED. ∵ND⊂平面NED, ∴ND⊥FC. (3)设NE=x,则FD=EC=4-x,其中0由(2)得NE⊥平面FEC, ∴四面体NEFD的体积为
V四面体NEFD=13S△EFD·NE=12x(4-x).
∴V四面体NEFD≤12x+4-x22=2, 当且仅当x=4-x,即x=2时,四面体NEFD的体积最大,最大值为2. 热点2 探索性问题
立体几何中的探索性问题主要是对位置关系、角的大小以及点的位置的探究,对条件和结论不完备的开放性问题的探究.解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. - 6 -
(2019·成都诊断)如图,在四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使BE⊥EC.
(1)若BE=1,在折叠后的线段AD上是否存在一点P,使得CP∥平面ABEF?若存在,求出APPD的值;若不存在,说明理由; (2)求三棱锥A-CDF的体积的最大值,并求出此时点F到平面ACD的距离. 解 (1)线段AD上存在一点P,使得CP∥平面ABEF,
此时APPD=32. 理由如下: 当APPD=32时,APAD=35, - 7 -
过点P作PM∥FD交AF于点M,连接EM, 则有MPFD=APAD=35,由题意可得FD=5,故MP=3, 由题意可得EC=3,又MP∥FD∥EC,
∴, 故四边形MPCE为平行四边形, ∴CP∥ME, 又∵CP⊄平面ABEF,ME⊂平面ABEF, ∴CP∥平面ABEF成立. (2)设BE=x,∴AF=x(0
故VA-CDF=13×12×2·(6-x)·x=13(-x2+6x). ∴当x=3时,VA-CDF有最大值,且最大值为3, 此时EC=1,AF=3,FD=3,DC=22,FC=5,AC=14,AD=32,在△ACD中,由余弦定理得
cos∠ADC=AD2+DC2-AC22AD·DC=18+8-142×32×22=12.
∴sin∠ADC=32,S△ADC=12·DC·DA·sin∠ADC=33, 设点F到平面ADC的距离为h, 由于VA-CDF=VF-ACD,即3=13·h·S△ADC, ∴h=3,即点F到平面ADC的距离为3. - 8 -
1.对于存在型问题,解题时一般先假设其存在,把要成立的结论当作条件,据此列方程或者方程组,把“是否存在”问题转化为“是否有解”“是否在规定范围内有解”等问题. 2.对于位置探索型问题,通常是利用空间线、面位置关系,引入参数,综合条件和结论列方程,解出参数从而确定位置.
(2019·郑州模拟)在如图所示的五面体ABCDEF中,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF=2,EF∥AB,M为BC的中点. - 9 -
(1)求证:FM∥平面BDE; (2)若平面ADE⊥平面ABCD,求F到平面BDE的距离. 解 (1)证明:取BD的中点O,连接OM,OE,因为O,M分别为BD,BC的中点,所以OM
∥CD,且OM=12CD, 因为四边形ABCD为菱形,
所以CD∥AB,因为EF∥AB,所以CD∥EF,又AB=CD=2EF=2, 所以EF=12CD. 所以OM∥EF,且OM=EF, 所以四边形OMFE为平行四边形,所以FM∥OE. 又OE⊂平面BDE且FM⊄平面BDE,所以FM∥平面BDE. (2)由(1)得FM∥平面BDE,所以F到平面BDE的距离等于M到平面BDE的距离. 取AD的中点H,连接EH,BH, 因为EA=ED,所以EH⊥AD, 因为平面ADE⊥平面ABCD,且平面ADE∩平面ABCD=AD,EH⊂平面ADE, 所以EH⊥平面ABCD,因为BH⊂平面ABCD, 所以EH⊥BH. 因为四边形ABCD是菱形,所以AB=AD=2, 又∠BAD=60°,所以△ABD是等边三角形, 所以BD=2,BH=3.易得EH=3. 在Rt△EBH中,因为EH=BH=3, 所以BE=6, - 10 -
因为ED=BD=2,所以△BDE为等腰三角形, 所以S△BDE=12×6× 22-622=152, 设F到平面BDE的距离为h, 连接DM,
因为S△BDM=12×1×3=32, 所以由VE-BDM=VM-BDE,得 13×3×32=13×h×152,
解得h=155. 即F到平面BDE的距离为155.
专题作业 1.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求证:DC⊥平面PAC; (2)求证:平面PAB⊥平面PAC; (3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由. - 11 -
解 (1)证明:因为PC⊥平面ABCD,DC⊂平面ABCD,所以PC⊥DC. 又因为AC⊥DC,且PC∩AC=C,所以DC⊥平面PAC. (2)证明:因为AB∥CD,DC⊥AC,所以AB⊥AC. 因为PC⊥平面ABCD,AB⊂平面ABCD, 所以PC⊥AB. 又因为PC∩AC=C,所以AB⊥平面PAC. 又AB⊂平面PAB,所以平面PAB⊥平面PAC. (3)棱PB上存在点F,使得PA∥平面CEF. 理由如下:取PB的中点F,连接EF,CE,CF,又因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,且EF⊂平面CEF,所以PA∥平面CEF. 2.如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD是以AD为底的等腰三角形.