士兵军校考试大纲《数学》考点:函数(3)
- 格式:pdf
- 大小:49.38 KB
- 文档页数:1
2018年军队院校招收高中毕业生士兵文化科目《数学》考试大纲关键词:士兵军考士兵考军校张为臻高中毕业生士兵军考数学一、考核目标与要求重点考核考生对基本知识的了解、对基本定理的理解、对基本方法的应用,要求考生善于从本质上抓住数学知识之间深刻的内在联系,突出考核考生的空间想象能力、抽象概括能力、推理论证能力、运算求解能力以及应用意识和创新意识。
二、考试范围与要求1.集合了解集合的含义、元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义。
理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(&/M)图表达集合的关系及运算。
2.简单逻辑理解命题的概念;了解“若P,则形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;理解必要条件、充分条件与充要条件的意义;了解逻辑联结词“或”“且”“非”的含义;理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定。
3.函数了解构成函数的要素,会求一些简单函数(根式函数、分式函数、对数函数等)的定义域和值域;了解映射的概念;在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数;了解简单的分段函数,并能简单应用;理解函数的单调性、最大(小)值及其几何意义;会求简单函数的最大(小)值问题;结合具体函数,了解函数奇偶性的含义;会运用函数图像理解和研究函数的性质;理解幂函数、指数函数、对数函数的定义、图像和性质;结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
4.数列了解数列的概念和几种简单的表示方法(列表、图像、通项公式);了解数列是自变量为正整数的一类函数。
军考数学复习提纲第一章集合与简易逻辑一.基本概念1.集合,子集;2.集合的运算:交集,并集,补集;3.逻辑连结词:或,且,非;4.四种命题及其相互关系:原命题,逆命题,否命题,逆否命题;5.充分条件,必要条件,充要条件.第二章函数一.映射与函数1.基本概念:映射,函数,反函数,复合函数;2.函数的性质:1)单调性;2)奇偶性(注意判定奇偶性的前提是函数的定义域关于原点对称,否则即为非奇非偶函数);3)周期性(注意辨别周期与最小正周期).3.反函数的性质:1)互为反函数的两个函数的图像关于直线y=x对称;2)一个函数和它的反函数具有相同的单调性;3)奇函数的反函数仍为奇函数,偶函数则不确定.4.复合函数5.函数图像的平移变换:上加下减,左加下减.二.基本函数与方程1.二次函数(初中已掌握,此处略过);2.指数与指数函数3.对数与对数函数1.对数的性质1)零和负数没有对数;2)1的对数为0;3).4.指数方程1)一般形式的,两边同时取对数;2)含有常数的,换元.5.对数方程与指数方程相对应,可分别采取两边同时取指数式或换元的方法.第三章数列一.基本概念数列,首项,公差,公比,等差中项,等比中项,等差数列,等比数列.二.等差数列与等比数列的性质比较三.Sn与an的关系an=Sn-(Sn-1);a1=S1.四.错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。
形如An=Bn*Cn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
第四章三角函数一.基本知识弧度制,诱导公式,常用角的三角函数值二.两角和与差的三角函数(必须牢记)1.两角和与差的公式cos(α+β)=cosαcosβ-sinαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;sin(α+β)=sinαcosβ+cosαsinβ; sin(α-β)=sinαcosβ -cosαsinβ; tan(α+β)=(tanα+tanβ)/(1-tanαtanβ); tan(α-β)=(tanα-tanβ)/(1+tanαtanβ.2.二倍角公式3.半角公式4.三角函数的图像和性质定义域 RR值域 ]1,1[+-]1,1[+-R周期性 π2 π2π奇偶性奇函数偶函数 奇函数⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且xy tan =xy cos =x y sin =第五章 向量及其应用一.基本概念向量,向量的模.零向量,平行向量,法向量. 二.向量的运算1. 向量的加减法(平行四边形定则或三角形法则);2. 实数与向量的积设λ、μ是实数,那么满足如下运算性质: (λμ)a= λ(μa);(λ + μ)a= λa+ μa; λ(a ±b) = λa ± λb;(-λ)a=-(λa) = λ(-a). 3.向量的数量积1)数量积a ·b 的几何意义是:a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积;2)数量积具有以下性质: a ·a=|a|2≥0;a ·b =b ·a;k(a ·b )=(k a )b =a (k b );a ·(b +c )=a ·b +a ·c.4.平面向量1)平面向量基本定理如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底2)向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题3)两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔02121=+y y x x4)定比分点公式:如图所示,点P 分线段P 1P 2的比例为:P 1P/PP 2=γ,那么:5.空间向量(许多性质基本上可以由平面向量类推得到)第六章 不等式一.基本不等式( 当且仅当a=b 时,等号成立),变形 , (当且仅当a=b 时,等号成立);二.不等式证明的基本方法作差,作商(作商前要注意两项的符号). 三.不等式的解法1.一元一次,二次不等式;2.高次不等式(因式分解);3.分式不等式(化为一元一次,二次不等式或高次不等式);4.绝对值不等式(零点分段进行分类讨论或者两边平方);5.无理不等式(两边平方化成有理不等式);6.指数,对数不等式(进行指数或对数运算化为有理不等式).第七,八章解析几何一.直线方程1.斜率的定义;2.点到直线的距离公式点P(x0,y0)到直线Ax+By+C=0的距离:二.圆1.圆的定义与方程;2.点,直线.圆与圆的关系.三.圆锥曲线性质汇总与比较椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F1F2|<2a=点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程12222=+byax(ba>>0) 12222=-byax(a>0,b>0) pxy22=参数方程为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222(t 为参数) 范围 ─a ≤x ≤a ,─b ≤y ≤b |x| ≥ a ,y ∈R x ≥0 中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴; 长轴长2a,短轴长2b x 轴,y 轴;实轴长2a, 虚轴长2b. x 轴焦点F 1(c,0), F 2(─c,0)F 1(c,0), F 2(─c,0))0,2(p F 准 线 x=±ca 2准线垂直于长轴,且在椭圆外. x=±ca 2准线垂直于实轴,且在两顶点的内侧. x=-2p 准线与焦点位于顶点两侧,且到顶点的距离相等.焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e ace )1(>=e ace e=1第九章 平面,直线与简单几何体一.基本定义二.简单几何体 1.棱柱,棱锥;2.球 半径是R 的球的体积 计算公式是:. 半径是R 的球的表面积计算公式是:.三.正四面体的一些常用性质(自己多去尝试计算推导)当正四面体的棱长为a时,一些数据如下:1)高:√6a/3。
2020年大专毕业生士兵文化科目统一考试【高等数学】大纲:不定积分关键词:军校考试张为臻士兵军考军校考试辅导专升本考试军考大纲一、考试范围与要求1.理解函数的概念,会求函数的定义域及值域。
2.掌握极限的四则计算法则;理解两个重要极限,会用重要极限求相同类型函数的极限;掌握无穷小量与无穷大量的概念和性质,会利用等价无穷小求相关的函数的极限。
会利用洛必达法则求函数的极限。
3.理解函数连续的概念,了解闭区间上连续函数的性质。
4.掌握导数概念及其几何意义,会根据导数定义求函数在某点处的导数;掌握导数的四则运算及复合函数、隐函数的求导法则。
5.理解原函数及不定积分的概念;会利用换元积分法和分部积分法等求简单一元函数的不定积分。
6.理解定积分的概念、性质和几何意义;会用微积分基本公式求解简单函数的定积分;会用定积分计算简单平面图形的面积。
张为臻7.掌握罗尔定理、拉格朗日中值定理及其简单应用;掌握函数单调性和曲线凹凸性的判断方法及其应用;掌握简单函数的极值和最值的计算方法及其应用。
8.了解微分方程及其解的概念;掌握可分离变量的微分方程、一阶线性微分方程和二阶常系数齐次线性微分方程的解法。
二、2020年大专毕业生士兵军校考试需掌握“不定积分”的重点难点:1、在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。
2、不定积分和定积分间的关系由微积分基本定理确定。
其中F是f的不定积分。
3、性质(1)函数的和的不定积分等于各个函数的不定积分的和;即:设函数及的原函数存在,则(2)求不定积分时,被积函数中的常数因子可以提到积分号外面来。
即:设函数的原函数存在,非零常数,则4、求解设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
2017士兵军考大纲之军考数学:抛物线的解法关键词:士兵军考士兵考军校张为臻军考数学抛物线
1、二次函数的图像是抛物线,但抛物线不一定是二次函数。
开口向上或者向下的抛物
线才是二次函数。
抛物线是轴对称图形。
对称轴为直线。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
2、抛物线有一个顶点P,坐标为P 。
当时,P在y轴上;当时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
|a|越大,则抛物线的开口越小。
|a|越小,则抛物线的开口越大。
4、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。
(可巧记为:左同右异)
5、常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0, c)
6、抛物线与x轴交点个数:时,抛物线与x轴有2个交点。
时,抛物线与x轴有1个交点。
当时,抛物线与x轴没有交点。
当a>0时,函数在处取得最小值;在上是减函数,在上是增函数;抛物线的开口向上;函数的值域是。
张为臻博客
当a<0时,函数在处取得最大值;在上是增函数,在上是减函数;抛物线的开口向下;函数的值域是。
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0)。
解放军军校考试《数学》大纲:三角函数诱导公式(1)关键词:军校考试张为臻军考培训军考大纲士兵军考军考数学考点常用公式:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαsin(3π/2-α)=-cosαcos(3π/2+α)=sinαcos(3π/2-α)=-sinαtan(3π/2+α)=-cotαtan(3π/2-α)=cotαcot(3π/2+α)=-tanαcot(3π/2-α)=tanα。
2[原创]部队战士考学之数学基础训函数及其表示doc 高中数学1 . 2函数及其表示1. 2. 1函数的概念练习〔第19页〕1.求以下函数的定义域:1得该函数的定义域为 {x| 3x1}.1 •解:〔1〕要使原式有意义,那么 4x 7 0,即 得该函数的定义域为 {x|x〔2〕要使原式有意义,那么x 0,即3 02.函数 f(x) 3x 2 2x ,〔1〕求 f (2), f ( 2), f (2) f( 2)的值; 〔2〕求 f(a), f(a), f (a) f ( a)的值.2.解:〔1〕 由 f (x)3x 2 2x ,得 f (2)3 2218,〔2〕同理得f( 2) 3 (那么 f(2) f( 2) 即 f (2)18, f( 2)由 f(x) 3x 22x , 同理得f( a) 那么f (a) f ( a)即 f(a) 3a22) 2 ( 2) 18 8 26, 8, f (2) f(得 f(a)3 2) 26; a 2 2 a3a 2 2a ,a)2 2 ( a) 3a 2 2a , 2 2 2(3a2a) (3a 2a) 6a ,2 22a, f( a) 3a 2a, f (a) f ( a) 6a .练素材之高中课本题详细解析之函数及其表示 1. 2〔2〕f(x).,厂x1〕f(x) 4x 73 •判定以下各组中的函数是否相等,并讲明理由:〔1〕表示炮弹飞行高度 h 与时刻t 关系的函数〔2〕f(x) 1 和 g(x) x 0 •3•解:〔1〕不相等,因为定义域不同,时刻t〔2〕不相等,因为定义域不同, g(x)2 2h 130t 5t 和二次函数 y 130x 5x ;0 ;x (x 0) •1. 2. 2函数的表示法练习〔第23页〕1 •如图,把截面半径为 25cm 的圆形木头锯成矩形木料,假如矩形的一边长为xcm ,1 •解:明显矩形的另一边长为.502 x 2cm ,即 y x . 2500 x 2 (0 x 50) •2 •以下图中哪几个图象与下述三件事分不吻合得最好?请你为剩下的那个图象写出一件事.〔1〕我离开家不久,发觉自己把作业本忘在家里了,因此返回家里找到了作业本再上学;〔2〕我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时刻; 〔3〕我动身后,心情轻松,慢慢行进,后来为了赶时刻开始加速.〔A 〕 〔B 〕 〔C 〕 〔D 〕2.解:图象〔A 〕对应事件〔2〕,在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象〔B 〕对应事件〔3〕,刚刚开始慢慢行进,后来为了赶时刻开始加速; 图象〔D 〕对应事件〔1〕,返回家里的时刻,离开家的距离又为零;图象〔C 〕我动身后,以为要迟到,赶时刻开始加速,后来心情轻松,慢慢行进.3.画出函数y |x 2|的图象.x 2,x 2 上 「^一y |x 21x 2,x 2,图象如下所示.面积为ycm 2,把y 表示为x 的函数. y x 502 x 2 x 2500 x 2,且 0 x 50,x〔1〕f (x)2xx 1,g(x)1〔2〕f (x) x 2,g(x) ( x)4 ;4•设A {x|x 是锐角}, B {0,1},从A 到B 的映射是”求正弦'’,与 A 中元素60相对的B 中的元素是什么?与 B 中的元素上2相对应的A 中元素是什么?2解:因为sin 6。
军考大纲之数学考点:函数函数的性质1.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数。
2.函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,(1)若当x1<x2时,都有f(x1)<f(x2),则说f(x)在这个区间上是增函数;(2)若当x1<x2时,都有f(x1)>f(x2),则说f(x) 在这个区间上是减函数。
(3)若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数。
3函数的奇偶性:⑴偶函数:设()为偶函数上一点,则()也是图象上一点。
偶函数的判定:两个条件同时满足①定义域一定要关于轴对称,例如:在上不是偶函数。
②满足,或,若时,。
⑵奇函数:设()为奇函数上一点,则()也是图象上一点.奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:在上不是奇函数.②满足,或,若时,。
4.反函数反函数的定义设函数的值域是C,根据这个函数中x,y 的关系,用y 把x表示出,得到x=(y). 若对于y在C中的任何一个值,通过x=(y),x 在A中都有唯一的值和它对应,那么,x=(y)就表示y是自变量,x是自变量y 的函数,这样的函数x=(y) (y C)叫做函数的反函数,记作,习惯上改写成。
反三角函数:函数y=sinx,的反函数叫做反正弦函数,记作y=arcsinx,它的定义域是[-1,1],值域是。
函数y=cosx,(x∈[0,π])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[-1,1],值域是[0,π]。
函数y=tanx,的反函数叫做反正切函数,记作y=arctanx,它的定义域是(-∞,+∞),值域是。
军校考试大纲数学考点—函数的值域与定义域
关键词:军校考试张为臻军考大纲军校考试培训军考数学
定义域
指该函数的有效范围,其关于原点对称是指它有效值关于原点对称。
例如:函数y=2x+1,规定其定义域为-10,10,就是对称的。
求函数的定义域:
y=1/x分母不等于0;
y=sprx根号内大于等于0;张为臻博客
y=logaX对数底数大于0且不等于1,真数大于0;
值域
函数中,因变量的取值范围叫做函数的值域,在数学中是函数在定义域中应变量所有值的集合
常用的求值域的方法
(1)化归法;(2)图象法(数形结合)
(3)函数单调性法,
(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等。
[原创]部队战士考学之数学基础训练素材之高中课本题详细解析之函数及其表示1.2函数及其表示doc 高中数学1.2函数及其表示1.2.1函数的概念练习〔第19页〕1.求以下函数的定义域:〔1〕1()47f x x =+; 〔2〕()1f x =.1.解:〔1〕要使原式有意义,那么470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;〔2〕要使原式有意义,那么1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.函数2()32f x x x =+,〔1〕求(2),(2),(2)(2)f f f f -+-的值; 〔2〕求(),(),()()f a f a f a f a -+-的值.2.解:〔1〕由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,那么(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;〔2〕由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 那么222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判定以下各组中的函数是否相等,并讲明理由:〔1〕表示炮弹飞行高度h 与时刻t 关系的函数21305h t t =-和二次函数21305y x x =-; 〔2〕()1f x =和0()g x x =.3.解:〔1〕不相等,因为定义域不同,时刻0t >; 〔2〕不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习〔第23页〕1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,假如矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数. 1.解:明显矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<, 即22500(050)y x x x =-<<.2.以下图中哪几个图象与下述三件事分不吻合得最好?请你为剩下的那个图象写出一件事. 〔1〕我离开家不久,发觉自己把作业本忘在家里了,因此返回家里找到了作业本再上学;〔2〕我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时刻; 〔3〕我动身后,心情轻松,慢慢行进,后来为了赶时刻开始加速.2.解:图象〔A 〕对应事件〔2〕,在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象〔B 〕对应事件〔3〕,刚刚开始慢慢行进,后来为了赶时刻开始加速; 图象〔D 〕对应事件〔1〕,返回家里的时刻,离开家的距离又为零;图象〔C 〕我动身后,以为要迟到,赶时刻开始加速,后来心情轻松,慢慢行进. 3.画出函数|2|y x =-的图象.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:O离开家的距离时刻〔A 〕 O离开家的距离时刻〔B 〕 O离开家的距离时刻〔C 〕 O离开家的距离时刻〔D 〕4.设{|},{0,1}A x x B ==是锐角,从A 到B 的映射是〝求正弦〞,与A 中元素60相对应的B 中的元素是什么?与B 中的元素2相对应的A 中元素是什么?4.解:因为3sin 60=,因此与A 中元素60相对应的B因为2sin 45=,因此与B A 中元素是45. 1.2函数及其表示习题1.2〔第23页〕1.求以下函数的定义域:〔1〕3()4xf x x =-; 〔2〕()f x =〔3〕26()32f x x x =-+; 〔4〕()1f x x =-. 1.解:〔1〕要使原式有意义,那么40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;〔2〕x R ∈,()f x =即该函数的定义域为R ;〔3〕要使原式有意义,那么2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;〔4〕要使原式有意义,那么4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.以下哪一组中的函数()f x 与()g x 相等?〔1〕2()1,()1x f x x g x x=-=-; 〔2〕24(),()f x x g x ==;〔3〕326(),()f x x g x x ==.2.解:〔1〕()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;〔2〕2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;〔3〕关于任何实数,都有362x x =,即这两函数的定义域相同,切对应法那么相同,得函数()f x 与()g x 相等.3.画出以下函数的图象,并讲出函数的定义域和值域. 〔1〕3y x =; 〔2〕8y x=; 〔3〕45y x =-+; 〔4〕267y x x =-+. 3.解:〔1〕定义域是(,)-∞+∞,值域是(,)-∞+∞; 〔2〕定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;〔3〕定义域是(,)-∞+∞,值域是(,)-∞+∞;〔4〕定义域是(,)-∞+∞,值域是[2,)-+∞.4.函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,因此2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.函数2()6x f x x +=-, 〔1〕点(3,14)在()f x 的图象上吗? 〔2〕当4x =时,求()f x 的值; 〔3〕当()2f x =时,求x 的值. 5.解:〔1〕当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; 〔2〕当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;〔3〕2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.假设2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出以下函数的图象: 〔1〕0,0()1,0x F x x ≤⎧=⎨>⎩; 〔2〕()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,假如矩形的长为x ,宽为y ,对角线为d , 周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即22d x y =+,得22100(0)d x x x =+>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得22222()22220(0)l x y x y xy d d =+=++=+>, 即2220(0)l d d =+>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时刻ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2d x vt π=,即24vx t dπ=, 明显0x h ≤≤,即240vt h dπ≤≤,得204h d t v π≤≤,得函数的定义域为2[0,]4h d vπ和值域为[0,]h .10.设集合{,,},{0,1}A a b c B ==,试咨询:从A 到B 的映射共有几个?并将它们分不表示出来. 10.解:从A 到B 的映射共有8个.分不是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如下图. 〔1〕函数()r f p =的定义域是什么? 〔2〕函数()r f p =的值域是什么?〔3〕r 取何值时,只有唯独的p 值与之对应? 1.解:〔1〕函数()r f p =的定义域是[5,0][2,6)-; 〔2〕函数()r f p =的值域是[0,)+∞;〔3〕当5r >,或02r ≤<时,只有唯独的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.〔1〕假如平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?〔2〕将你的图象和其他同学的相比较,有什么差不吗?2.解:图象如下,〔1〕点(,0)x 和点(5,)y 不能在图象上;〔2〕省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=. 当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如下图,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.〔1〕假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t 〔单位:h 〕表示他从小岛到城镇的时刻,x 〔单位:km 〕表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.〔2〕假如将船停在距点P 4km 处,那么从小岛到城镇要多长时刻〔精确到1h 〕? 4.解:〔1〕驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即24125x xt +-=+,(012)x ≤≤. 〔2〕当4x =时,2441242583()55t h +-=+=+≈.。
士兵考军校数学基本常识军考考点解剖:函数关键词:军考 士兵考军校 京忠军考 基本常识 考点解剖 函数一、京忠军考考点解剖:函数(1)函数的定义:如果变量x 在某个变化范围内任意取定一个数值时,按照某个对应法则,变量y 都有唯一确定的值和它对应,那么y 就是x 的函数,其中x 叫做自变量,y 叫做因变量,x 的取值范围叫做函数的定义域,y 的取值范围叫做函数的值域,记作()y f x =(2)函数的三要素:定义域,值域和对应法则.同一函数的概念,当两个函数的定义域和对应法则相同时,它们就是同一函数,值域是由定义域和对应法则共同确定.(3)函数的表示方法:解析式,列表法,图像法.解析式注意有分段函数.(4)分段函数:根据自变量的划分区间,进行代入计算即可.二、京忠军考考点解剖:函数的单调性1.单调性定义:设函数()y f x =的定义域为,(,)D a b D ⊆,对于任意的12,(,)x x a b ∈:如果当时12x x <,都有12()()f x f x <,那么就说()f x 在区间(,)a b 内是增函数如果当时12x x <,都有12()()f x f x >,那么就说()f x 在区间(,)a b 内是减函数如果函数()y f x =在(,)a b 内是增函数或是减函数,就说函数()f x 在(,)a b 内具有单调性,或称()f x 是(,)a b 内的单调函数,(,)a b 叫函数的单调区间2.判断函数单调性的常用方法:(1)定义法 (适用于函数单调性的证明;分式和根式函数单调性的判断)设x1,x2是函数f(x)定义域上任意的两个数,且x 1<x 2,若f (x 1)<f (x 2),则此函数为增函数;反知,若f (x 1)>f (x 2),则此函数为减函数.利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:①任取x 1,x 2∈D,且x 1<x 2;②作差f(x 1)-f(x 2);③变形(通常是因式分解和配方);④定号(即判断差f(x 1)-f(x 2)的正负);⑤下结论(即指出函数f(x)在给定的区间D 上的单调性).特别提醒:求单调区间时,一是勿忘定义域,如若函数2()log (3)a f x x ax =-+在区间(,]2a -∞上为减函数,求a 的取值范围(答:) (2)同增异减法 (复合函数的单调性)复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下图:(3)导数法 (适用于对数函数,指数函数和幂函数的单调区间的求解)用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ).②令f ′(x ) ≥0解不等式,得x 的范围就是递增区间.③令f ′(x )≤0解不等式,得x 的范围,就是递减区间.三、京忠军考考点解剖:函数的奇偶性(1)定义:设函数()y f x =的定义域为D,其定义域关于原点对称,若对于定义域内的任何一个x,都有()()f x f x -=-,就称函数为奇函数;若对于定义域内的任何一个x,都有()()f x f x -=,就称函数为偶函数 (2) 函数奇偶性的性质:①奇函数的图像关于原点对称,偶函数的图像关于y 轴对称.奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.②如果奇函数有反函数,那么其反函数一定也是奇函数.⇔函数f (x )是奇函数;判断函数奇偶性的步骤:①判断定义域是否关于原点对称;②比较)(x f -与)(x f 的关系.③扣定义,下结论.⑵图象法:图象关于原点成中心对称的函数是奇函数;图象关于y 轴对称的函数是偶函数. ⑶运算法:几个与函数奇偶性相关的结论:①奇函数+奇函数=奇函数;偶函数+偶函数=偶函数;③若奇函数()f x 定义域中含有0,则必有(0)0f =.故(0)0f =是()f x 为奇函数的既不充分也不必要条件.(3)确定函数奇偶性的常用方法若所给函数的解析式较为复杂,应先化简,再判断其奇偶性:⑴定义法:对于函数()f x 的定义域内任意一个x ,都有()()x f x f =-〔或()()1=-x f x f ()()0=--x f x f 〕⇔函数f (x )是偶函数; 对于函数()f x 的定义域内任意一个x ,都有()()x f x f -=-〔或()()1-=-x f x f 或()()0=+-x f x f ②奇函数×奇函数=偶函数;奇函数×偶函数=奇函数.③若()f x 为偶函数,则()()(||)f x f x f x -==.四、京忠军考考点解剖:反函数1.反函数的定义:设函数()y f x =,它的定义域是D,值域是C,从式子()y f x =中求出x,得到式子()x y φ=.如果对于y 在C 中的每一个值,通过式子()x y φ=,x 在D 中都有唯一的它对应那么式子()x y φ=就可以表示以x 为因变量,以y 为自变量的函数,这个函数()x y φ=叫做函数()y f x =的反函数,记作1()x f y -=,即1()()x y y f x φ-==.在函数式子1()x f y -=中,y 为自变量,x 为因变量,但在习惯上一般以y 为因变量,以x为自变量.为此我们习惯把1()x fy -=改写为1()y f x -=2.反函数的性质: ①反函数的定义域是原函数的值域,反函数的值域是原函数的定义域;②函数()y f x =的图象与其反函数1()y f x -=的图象关于直线y x =对称.求反函数的一般步骤3.求反函数步骤:(1)求D,因为原函数的值域R是反函数的定义域,这定义域在结论中是必须指出的. (2)在原函数的解析式中反求x,写成x=g(y).(3)x, y互换,即将反函数写成y=g(x)因为习惯上通常将x作为自变量.(4)下结论(注意给出反函数定义域)(5)点(a,b)原函数上,则点(b,a)在反函数上.。
士兵军校考试大纲《数学》考点:函数(3)
关键词:军校考试张为臻军考培训军考大纲士兵军考军考数学考点
周期函数有以下性质:
(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)
(6)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(7)周期函数f(x)的定义域M必定是双方无界的集合。
连续性
在数学中,连续是函数的一种属性。
直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。
如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
张为臻博客。