不等式的基本性质--习题精选(一)
- 格式:pdf
- 大小:223.80 KB
- 文档页数:6
1.1.1 不等式的基本性质A 级 基础巩固一、选择题1.已知m ,n ∈R ,则1m >1n成立的一个充要条件是() A .m >0>n B .n >m >0C .m <n <0D .mn (m -n )<0 解析:1m >1n ⇔1m -1n >0⇔n -m mn>0⇔mn (n -m )>0⇔mn (m -n )<0. 答案:D2.已知a ,b ,c ,d 为实数,且c >d ,则“a >b ”是“a -c >b -d ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由⎩⎪⎨⎪⎧a -c >b -d ,c >d ⇒a >b ; 而当a =c =2,b =d =1时,满足⎩⎪⎨⎪⎧a >b ,c >d ,但a -c >b -d 不成立,所以“a >b ”是“a -c >b -d ”的必要不充分条件.答案:B3.已知实数a ,b ,c 满足c <b <a 且ac <0,那么下列选项中一定成立的是()A .ab >acB .c (b -a )<0C .ab 2>cb 2D .a (a -c )<0解析:由题意,知a >0,c <0,b 的符号不确定.不等式两端同乘以一个正数,不等号的方向不改变.答案:A4.设a ,b 为正实数,则“a <b ”是“a -1a <b -1b”成立的() A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件解析:若a <b 且a >0,b >0,则1a >1b ⇒-1a <-1b , 所以a -1a <b -1b. 若a -1a <b -1b, 且a >0,b >0⇒a 2b -b <ab 2-a ⇒a 2b -ab 2-b +a <0,ab (a -b )+(a -b )<0⇒(a -b )(ab +1)<0⇒a -b <0⇒a <b .答案:C5.已知x ,y ∈R ,且x >y >0,则()A.1x -1y >0 B .sin x -sin y >0 C.⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0 D .ln x +ln y >0 解析:函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上为减函数,所以当x >y >0时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0,故C 正确;函数y =1x 在(0,+∞)上为减函数,所以由x >y >0⇒1x <1y ⇒1x -1y <0,故A 错误;函数y =sin x 在(0,+∞)上不单调,当x >y >0时,不能比较sin x 与sin y 的大小,故B 错误;x >y >0xy >1 ln(xy )>0 ln x +ln y >0,故D 错误. 答案:C二、填空题6.已知0<a <1,则a ,1a,a 2的大小关系是________. 解析:因为a -1a =(a +1)(a -1)a<0, 所以a <1a. 又因为a -a 2=a (1-a )>0,所以a >a 2,所以a 2<a <1a. 答案:a 2<a <1a7.若1<a <3,-4<b <2,那么a -|b |的取值X 围是______.解析:因为-4<b <2,所以0≤|b |<4,所以-4<-|b |≤0.又1<a <3,所以-3<a -|b |<3.答案:(-3,3)8.设a >0,b >0,则b 2a +a 2b与a +b 的大小关系是________. 解析:b 2a +a 2b -(a +b )=(a +b )(a 2-ab +b 2)ab -(a +b )=(a +b )(a -b )2ab .因为a >0,b >0,所以a +b >0,ab >0,(a -b )2≥0.所以b 2a +a 2b ≥a +b .答案:b 2a +a 2b ≥a +b三、解答题9.已知1≤a +b ≤5,-1≤a -b ≤3,求3a -2b 的取值X 围.解:设3a -2b =x (a +b )+y (a -b ),则3a -2b =(x +y )a +(x -y )b .从而⎩⎪⎨⎪⎧x +y =3,x -y =-2,解得⎩⎪⎨⎪⎧x =12,y =52.所以3a -2b =12(a +b )+52(a -b ).因为1≤a +b ≤5,-1≤a -b ≤3,所以12≤12(a +b )≤52,-52≤52(a -b )≤152,所以-2≤3a -2b ≤10.10.已知a >b >0,比较a b 与a +1b +1的大小.解:a b -a +1b +1=a (b +1)-b (a +1)b (b +1)=a -bb (b +1).因为a >b >0,所以a -b >0,b (b +1)>0.所以a -bb (b +1)>0.所以a b >a +1b +1.B 级 能力提升1.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则()A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析:法一 由0<c <1知y =x c 在(1,+∞)上单调递增,故由a >b >1知a c >b c ,A 错;因为0<c <1,所以-1<-c <0,所以y =xc -1在x ∈(0,+∞)上是减函数,所以b c -1>a c -1,又ab >0,所以ab ·b c -1>ab ·a c -1,即ab c>ba c ,B 错; 易知y =log c x 是减函数,所以0>log c b >log c a ,所以log b c <log a c ,D 错; 由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,所以-a log b c >-b log a c >0,所以a log b c <b log a c ,故C 正确.法二 依题意,不妨取a =10,b =2,c =12.易验证A 、B 、D 均是错误的,只有C 正确. 答案:C2.若a ,b ∈R ,且a >b ,下列不等式:①b a >b -1a -1;②(a +b )2>(b +1)2;③(a -1)2>(b -1)2. 其中不成立的是________.解析:①b a -b -1a -1=ab -b -ab +a a (a -1)=a -b a (a -1). 因为a -b >0,a (a -1)的符号不确定,①不成立;②取a =2,b =-2,则(a +b )2=0,(b +1)2=1,②不成立;③取a =2,b =-2,则(a -1)2=1,(b -1)2=9,③不成立.答案:①②③3.已知c a >d b,bc >ad ,求证:ab >0. 证明:⎩⎪⎨⎪⎧c a >d b ,bc >ad ⇒⎩⎪⎨⎪⎧c a -d b >0, ①bc -ad >0. ②又bc >ad ,则bc -ad >0.由②得bc -ad >0.故ab >0.。
2 不等式的基本性质基础过关全练知识点1 不等式的基本性质1.(重庆期末)若a>b,则下列不等式不成立的是( )A.2a-5>2b-5B.-4a>-4bC.a+1>b+1D.-a2<−b22.(广西贵港中考)如果a<b,c<0,那么下列不等式中不成立的是( )A.a+c<b+cB.ac>bcC.ac+1>bc+1D.ac2>bc23.(安徽宿州泗县期中)下列说法错误的是( )A.若a-4>b-4,则a>bB.若a1+m2>b1+m2,则a>bC.若a<b,则am<bmD.若a>b,则a+5>b+54.【新独家原创】若点P(m-2,0)在x轴的负半轴上,且(m-2)x>(m-2)y,则x和y的大小关系为 .5.【新考向·阅读理解试题】(辽宁沈阳新民期中)阅读下列解题过程,再解决问题.已知m<n,试比较-2 023m+1与-2 023n+1的大小.解:因为m<n,①所以-2 023m<-2 023n,②故-2 023m+1<-2 023n+1.③(1)上述解题过程中,从第 步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.知识点2 用不等式的基本性质化简不等式6.(安徽合肥瑶海期末)下列说法正确的是( )A.如果-12x>1,那么x<-12B.如果-x>2,那么x<2C.如果2x<-2,那么x>-1D.如果-12x<0那么x>07.(2021山东滨州月考)根据要求,回答下列问题:(1)由2x>x-12,得2x-x>-12,依据是 ;(2)由13x >x−12,得2x>6x-3,依据是 .8.【教材变式·P140习题T2】根据不等式的基本性质,把下列不等式化成“x>(≥)a”或“x<(≤)a”的形式(在括号中注明使用的是不等式的哪条基本性质):(1)-6x<18; (2)2x ≤3x+6;(3)x>13x−2; (4)x -12>3x +14.能力提升全练9.(北京中考,4,★☆☆)已知a-1>0,则下列结论正确的是( )A.-1<-a<a<1B.-a<-1<1<aC.-a<-1<a<1D.-1<-a<1<a10.(山东济南莱芜期末,6,★★☆)若a-1<b-1,则下列各不等式中成立的是( )A.a+c>b+cB.-2a<-2bC.ac<bcD.a+1<b+311.(2021山东临沂中考,13,★★☆)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则1a <1b.其中正确的个数是( )A.1B.2C.3D.412.(山东济宁兖州期末,13,★★☆)已知x<y,请写出一个实数a,使得ax>ay.你所写的实数a是 .13.(2022江西萍乡月考,16,★★☆)江上某座桥桥头的限重标志如图所示,其中的“60 t”表示该桥梁限制载重后总质量超过60 t的车辆过桥梁.设一辆自重18 t的卡车,其载重的质量为x t.(1)若这辆卡车要通过这座桥,则x应满足的不等式为 ;(2)将(1)中所列的不等式化为“x<(≤)a”或“x>(≥)a”的形式.素养探究全练14.【推理能力】【新考向·代数推理】(陕西西安月考)【阅读】根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.反之也成立.这种比较大小的方法称为“作差法”.【理解】(1)若a-b+2>0,则a+1 b-1.(填“>”“=”或“<”)【运用】(2)若M=a2+3b,N=2a2+3b+1,试比较M,N的大小.【拓展】(3)请运用“作差法”解决下面这个问题.制作某产品有两种用料方案:方案一:用5块A型钢板,6块B型钢板.方案二:用4块A型钢板,7块B型钢板.每块A型钢板的面积比每块B型钢板的面积小.方案一的总面积记为S1,方案二的总面积记为S2,试比较S1,S2的大小.答案全解全析基础过关全练1.B A.∵a>b,∴2a>2b,∴2a-5>2b-5,故A不合题意;B.∵a>b,∴-4a<-4b,故B符合题意;C.∵a>b,∴a+1>b+1,故C不合题意;D.∵a>b,∴a2>b2,∴−a2<−b2,故D不合题意.故选B.2.D 由a<b,c<0得到a+c<b+c,ac>bc,ac+1>bc+1,ac2<bc2,故A,B,C中的不等式成立,D 中的不等式不成立,故选D.3.C A项,不等式两边都加上4,不等号的方向不变,故原变形正确;B项,易知1+m2>0,不等式两边都乘1+m2,不等号的方向不变,故原变形正确;C项,不等式两边都乘m,必须规定m>0,才有am<bm,原变形错误;D项,不等式两边都加上5,不等号的方向不变,故原变形正确.故选C.4.答案 x<y解析 ∵点P(m-2,0)在x轴的负半轴上,∴m-2<0,根据不等式的基本性质3,在不等式(m-2)x>(m-2)y的两边同时除以m-2,得x<y.5.解析 (1)②.(2)错误的原因是错误地运用了不等式的基本性质3,即不等式两边乘同一个负数,不等号的方向没有改变.(3)正确的解题过程如下:因为m<n,所以-2 023m>-2 023n,故-2 023m+1>-2 023n+1.6.D A 项,如果-12x>1,那么x<-2,故A 不合题意;B 项,如果-x>2,那么x<-2,故B 不合题意;C 项,如果2x<-2,那么x<-1,故C 不合题意;D 项,如果-12x<0,那么x>0,故D 符合题意.故选D.7.答案 (1)不等式的基本性质1 (2)不等式的基本性质28.解析 (1)∵-6x<18,∴-6x÷(-6)>18÷(-6),即x>-3(不等式的基本性质3).(2)∵2x ≤3x+6,∴2x-3x ≤3x+6-3x(不等式的基本性质1),∴-x ≤6,∴x ≥-6(不等式的基本性质3).(3)∵x>13x−2,∴x−13x >13x−2−13x(不等式的基本性质1),∴23x>-2,∴x>-3(不等式的基本性质2).(4)∵x−12>3x +14,∴2x-2>3x+1(不等式的基本性质2),∴2x-2-3x+2>3x+1-3x+2(不等式的基本性质1),∴-x>3,∴x<-3(不等式的基本性质3).能力提升全练9.B ∵a-1>0,∴a>1,∴-a<-1,∴-a<-1<1<a,故选B.10.D ∵a-1<b-1,∴a<b.A 项,不等式a<b 两边同时加上一个相同的数,不等号的方向不变,故不符合题意;B 项,不等式a<b 两边同时乘一个负数,不等号方向改变,故不符合题意;C 项,若c=0,则ac=bc,若c<0,则ac>bc,故不符合题意;D 项,∵a<b,∴a+1<b+1,∴a+1<b+1+2,∴a+1<b+3,故符合题意.故选D.11.A ∵a>b,∴当a>0时,a 2>ab,当a=0时,a 2=ab,当a<0时,a 2<ab,故结论①错误;∵a>b,∴当|a|>|b|时,a 2>b 2,当|a|<|b|时,a 2<b 2,当|a|=|b|时,a 2=b 2,故结论②错误;∵a>b,b<0,∴a+b>2b,故结论③错误;∵a>b,b>0,∴a>b>0,∴1a <1b ,故结论④正确.∴正确的个数是1.故选A.12.答案 -2(答案不唯一)解析 由题意可知不等式x<y两边同时乘a后,不等号的方向发生改变,因此a是负数,∴所写的实数a可以是-2.(答案不唯一)13.解析 (1)18+x≤60.(2)18+x≤60,不等式的两边同时减去18,得x≤60-18,∴x≤42.素养探究全练14.解析 (1)∵a+1-(b-1)=a+1-b+1=a-b+2>0,∴a+1>b-1.故答案为>.(2)∵M=a2+3b,N=2a2+3b+1,∴M-N=a2+3b-(2a2+3b+1)=a2+3b-2a2-3b-1=-a2-1,∵-a2-1<0,∴M<N.(3)设每块A型钢板的面积为a,每块B型钢板的面积为b,∵方案一的总面积记为S1,方案二的总面积记为S2,∴S1=5a+6b,S2=4a+7b,∴S1-S2=5a+6b-(4a+7b)=5a+6b-4a-7b=a-b,∵每块A型钢板的面积比每块B型钢板的面积小,即a<b,∴a-b<0,∴S1<S2.。
运算题卡1:不等式的基本性质一、解答题1.利用不等式的性质填空:(1)若a b >,要使ac bc <,则c ________0.(2)若,0a b c <>,则ac c +________bc c +.(3)若33a b >,则a ________b . (4)若x y <,试比较大小:28x -________28y -.(5)若a b >,则20202a -________20202b -.(6)若22ac bc >,则a ________b .(7)由122x x >-得122x x ->-,其依据是________; (8)由1132x x >-得263x x >-,其依据是________; (9)若25x +>,则x ________3,其依据是________;(10)若314x -<-,则x ________43,其依据是________. 2.根据不等式的性质,将下列不等式化成“x a >”或“x a <”的形式.(1)435x x >+;(2)217x -<;(3)106x -<-; (4)123x ->-; (5)12x x -+;(6)1017x x ->.参考答案1.答案:(1)< (2)< (3)> (4)< (5)< (6)>(7)不等式的基本性质1(8)不等式的基本性质2(9)> 不等式的基本性质1(10)> 不等式的基本性质32.答案:见解析解析:(1)根据不等式的基本性质1,两边都减3x ,得5x >.(2)根据不等式的基本性质3,两边都除以2-,得x >172-. (3)根据不等式的基本性质1,两边都加上10,得4x <.(4)根据不等式的基本性质3,两边都乘3-,得6x <.(5)根据不等式的基本性质1,两边都减1,得1x x -+, 根据不等式的基本性质1,两边都减x ,得21x -,根据不等式的基本性质3,两边都除以2-,得12x -. (6)根据不等式的基本性质1,两边都减7x ,得310x ->,根据不等式的基本性质1,两边都加上1,得31x >,根据不等式的基本性质2,两边都除以3,得13x >.。
不等式与不等式的基本性质训练题及答案一、选择题(共10小题;共30分)1. 下列不等式的解集中,不包括的是 ( )A. B. C. D.2. 据丽水气象台"天气预报"报道,今天的最低气温是,最高气温是,则今天气温的范围是 ( )A. B. C. D.3. 若,则下列不等式中错误的是 ( )A. B.C. D.4. 已知实数,,若,则下列结论正确的是 ( )A. B. C. D.5. 设,,表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是A. B. C. D.6. 不等式的解集在数轴上表示为 ( )A. B.C. D.7. 下列数值中不是不等式的解的是 ( )A. B. C. D.8. 由得的条件是 ( )A. B. C. D.9. 如图所示,,两点在数轴上表示的数分别是,,则下列式子中成立的是A. B.C. D.10. 王芳同学到文具店购买中性笔和笔记本,中性笔每支元,笔记本每本元,王芳同学花了元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于元) ( )A. B. C. D.二、填空题(共6小题;共18分)11. 如图,身高为的号同学与身高为的号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成(用“ ”或“ ”填空).12. 若,,则.13. 如果且是负数,那么的取值范围是.14. 若不等式的解集是,则的取值范围是.15. 用不等式表示下列数量关系:(1)是非负数:;(2)与的差是负数:;(3)不小于:;(4)与的差的绝对值大于:;(5)的倍与的和大于:;(6)不小于:.16. 若不等式的解集为,则的取值范围是.三、解答题(共6小题;共52分)17. 写出如图所示的数轴上表示的关于的不等式的解集:(1)(2)18. 利用不等式的性质解不等式.19. 用""或""填空(1) 如果,那么;(2) 如果,那么.(1) 写出不等式的所有正整数解;(2) 写出不等式的所有负整数解;(3) 写出不等式的所有非负整数解.21. 阅读下列材料:解答“已知,且,,试确定的取值范围”有如下解法:解,又,..又,同理得:由得,的取值范围是.请按照上述方法,完成下列问题:(1) 已知,且,,则的取值范围是.(2) 已知,,若成立,求的取值范围(结果用含的式子表示).22. 现有不等式的性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等式的方向改变.请解决以下两个问题:(1) 利用性质①比较与的大小();(2) 利用性质②比较与的大小().答案第一部分1. C2. D3. B4. D5. A6. C7. D8. C9. C 10. B第二部分11.12.13.14.15. (1);(2);(3);(4);(5);(6)16.第三部分17. (1) .17. (2) .18. (1) 根据不等式性质3,不等式两边乘,不等号方向改变,所以..19. (1)19. (2) ;20. (1) ,,.20. (2) ,,.20. (3) ,,,.21. (1)21. (2) ,,,,,,同理得由得,的取值范围是.22. (1) 时,,即;时,,即.22. (2) 时,,得,即;时,,得,即.。
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b,那么 a+c____b+c, a-c____b-c.不等式的基本性质2:如果a>b,并且c>0,那么ac_____bc.不等式的基本性质3:如果a>b,并且c<0,那么ac_____bc.2.设a”填空.(1)a-1____b-1;(2)a+1_____b+1;(3)2a____2b;(4)-2a_____-2b;
5)-_____-;(6)____.a2b2a2b2
3.根据不等式的基本性质,用“<”或“>”填空.(1)若a-1>b-1,则a____b;(2)若a+3>b+3,则a____b;(3)若2a>2b,则a____b;
(4)若-2a>-2b,则a___b.4.若a>b,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m;(2)a+n___b+n;(3)m-a___m-b;(4)an____bn;
(5)____;(6)_____;ambmanbn
5.下列说法不正确的是( )A.若a>b,则ac>bc(c0)B.若a>b,则bb,则-a>-b22
D.若a>b,b>c,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a或x>a的形式:
(1)x-3>1;(2)-x>-1;(3)3x<1+2x;(4)2x>4.3
2
[学科综合]7.已知实数a、b、c在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( ) n their being are good for soA.bc>ab B.ac>ab C.bca+b8.已知关于x的不等式(1-a)x>2变形为x<,则1-a是____数.21-a
9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是( )A.3b[创新思维](一)新型题10.若m>n,且amA.a>0 B.a<0 C.a=0 D.a0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是( )
A.由4x-1>2,得4x>1 B.由5x>3,得x> C.由>0,得x>235x2
D.由-2x<4,得x<-2(三)易错题
12.若a>b,且m为有理数,则am____bm.2213.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?
(四)难题巧解题
14.若方程组的解为x,y,且32x+y=k+1x+2y=-1
(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果 s in their being are good for s在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.
(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]
18.命题:a,b是有理数,若a>b,则a>b.(1)若结论保持不变,那么怎样改变条22件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.
[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x
(1)>-3; (2)-2x<6.1x
2
解:(1)不等式的两边都乘以2,不等式的方向不变,所以,得x>-6.1x2>-32
2
(2)不等式两边都除以-2,不等式方向改变,所以,得x>-3.-2x6>
-2-2
上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践] and All things
21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m
A.m-9-n C. D.>111>nmmn
23.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是( )
A.a>b B.ab>0 C.>0 D.-a>-bab
[奥赛赏析]24.要使不等式…<<…成立,有理数a的取值范围是( )753246a
A.01[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.
答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.
6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4; (2)-x>-1, -x·(-)<-1·(-),(根据不等式的基本性质3)23233232
x<;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;32
(4)2x>4,,(根据不等式的基本性质2)x>2.2x4>
22
7.A 8.负 9.D 10.B 11.B 12.错解:am>bm22错因分析:m应为大于或等于0的数,忽略了m等于0的情况2正解::ambm2213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.
错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.
正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.
14.1<6,1
15.解法
1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>
-2-2
,x>3.
解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,,362x<
22
x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.
17.解:(1)若到甲商店购买,买20本共需10+170%10=17(元),到乙商店购买 20本,共需10.85220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.
(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).
(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(10.85)≈28(本).30>28,故小明最多哥 买30本.
18.解:(1)a,b是有理数,若a>b>0,则22a>b
(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.
20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.
21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b
22.C 23.D
24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且…,246a
则这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.