不等式的基本性质
- 格式:doc
- 大小:104.00 KB
- 文档页数:5
不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。
那么网友们知道不等式的基本性质是什么吗?对于不知情的网友们,下面一起来了解一下吧。
1如果XY,那么YX;如果YX,那么XY;
2如果XY,YZ;那么XZ;
3如果XY,而Z为任意实数或整式,那么X+ZY+Z,即不等式两边同时加或减去同一个整式,不等号方向不变;
4如果XY,Z0,那么XZYZ,即不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;
5如果XY,Z0,那么XZYZ,即不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变;
6如果XY,MN,那么X+MY+N;
7如果XY0,MN0,那么XMYN;
8如果XY0,那么X的N次幂Y的N次幂(N为正数),X的N次幂Y的N次幂(N 为负数)。
以上就是对于不等式的基本性质是什么的全部内容。
不等式的基本性质不等式是数学中常见的一种数值关系表示方法,它可以描述数字之间的大小关系。
与等式不同,不等式中的符号可以表示大于、小于、大于等于或小于等于的关系。
本文将介绍不等式的基本性质,包括不等式的性质、解不等式的方法以及一些常见不等式的应用。
一、1. 传递性:如果a>b且b>c,那么a>c。
这意味着如果不等式的两个数之间有大小关系,那么这种关系可以传递给第三个数。
2. 加法性:如果a>b,那么a+c>b+c。
这表示在不等式两边同时加上相同的数,不等式的方向不改变。
3. 减法性:如果a>b,那么a-c>b-c。
这表示在不等式两边同时减去相同的数,不等式的方向不改变。
4. 乘法性:如果a>b且c>0,那么ac>bc。
对于两个正数的乘法和两个负数的乘法,不等式的方向不改变。
5. 除法性:如果a>b且c>0,那么a/c>b/c。
对于两个正数的除法和两个负数的除法,不等式的方向不改变。
这些基本性质在解不等式及推导数学证明中有重要的应用,帮助我们简化运算和判断。
二、解不等式的方法要解决不等式,我们需要找出满足不等式条件的数值范围。
以下是常见的解不等式的方法:1. 加减法解不等式:通过加减法改变不等式两边的值,将未知数分离出来,并确定不等式方向。
2. 乘除法解不等式:通过乘除法改变不等式两边的值,将未知数分离出来,并确定不等式方向。
需要注意的是,若乘除以负数,则需要反转不等式的方向。
3. 绝对值不等式的解法:当不等式中含有绝对值时,需要分情况讨论。
通常,将绝对值分为正数和负数两种情况,分别解出不等式。
4. 求解复合不等式:当不等式中存在多个不等关系时,需要将其分解为多个简单的不等式,并找出它们的交集或并集。
解不等式的过程中,保持不等式的严格性是很重要的。
当遇到平方、开方等操作时,需注意方程根与不等式的关系。
三、常见不等式的应用1. 一次不等式:一次不等式是指变量的指数为1的不等式,如ax+b>0。
不等式的概念和基本性质:
概念:不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。
基本性质:
如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
如果x>y,y>z;那么x>z;(传递性)
如果x>y,而z为任意实数或整式,那么x±z>y±z,即不等式两边同时加或减去同一个整式,不等号方向不变;
如果x>y,z>0,那么x*(/)z>y*(/)z ,即不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;
如果x>y,z<0,那么x*(/)z<y*(/)z, 即不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变;
如果x>y,m>n,那么x+m>y+n;
如果x>y>0,m>n>0,那么xm>yn;
如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
不等式的基本性质有哪些基本性质:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。
不等式的基本性质有哪些1不等式8个基本性质如果x>y,那么y<x;如果y<x,那么x>y;如果x>y,y>z;那么x>z;如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;如果x>y,z>0,那么xz>yz,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;如果x>y,z<0,那么xz<yz,即不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变;如果x>y,m>n,那么x+m>y+n;如果x>y>0,m>n>0,那么xm>yn;如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
2不等式定理口诀解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图、建模、构造法。
3基本不等式两大技巧“1”的妙用。
题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。
如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
调整系数。
有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
不等式的基本性质【知识要点】1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式.2.不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb ). 3.不等式的解与解集:4.一元一次不等式:一元一次不等式的标准形式:)0(≠><a b ax b ax 或一元一次不等式的步骤:①去分母;②去括号;③移项变号;④合并同类项;⑤系数化为1. 【典型例题】例1 指出下面变形根据的是不等式的哪一条基本性质.(1)由5a >4,得a >54; (2)由a +3>0,得a >-3; (3)由-2a <1,得a >-21; (4)由3a >2a +1,得a >1.例2 用“<”“=”“>”号填空.(1)如果a >b ,那么a -b __________0;(2)如果a =b ,那么a -b __________0;(3)如果a <b ,那么a -b __________0.例3 指出下列各题中不等式变形的依据.(1)由21a >3,得a >6.(2)由a -5>0,得a >5.(3)由-3a <2,得a >-32.例4 根据不等式性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9(2)6x <5x -3 (3)51x <52(4)-32x >-1例5 如果a >ab ,且a 是负数,那么b 的取值范围是什么?* 例6 已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.【大展身手】1.填空:(1)若3x>4,两边都除以3,得__________,依据是____________.(2)若x+6≤5,两边都减6,得__________,依据是_____________.(3)若-4y≥1,两边都除以-4,得__________,依据是____________.(4)若-23y<-2,两边都乘-32,得___________,依据是____________. 2.若a<b ,用不等号填空: (1)a -5_______b -5;(2)a+m_______b+m ; (3)-2a ______-2b ; (4)6-a_______6-b ;(5)-1+2a_______-1+2b ;(6)ac 2_______bc 2.3.(1)已知a<b ,b<c ,则a_______c ;(2)已知a<b ,则b________a .4.若a <b ,则-3a +1________-3b +1.5.若-35x >5,则x ________-3. 6.若a >b ,c ≤0,则ac ________bc .7.若ba b a --||=-1,则a -b ________0. 8.若ax >b ,ac 2<0,则x ________ab . 9.若a +3>b +3,则下列不等式中错误的是( )A.-55b a -<B.-2a <-2bC.a -2<b -2D.-(-a )>-(-b )10.若a >b ,c <0,则下列不等式成立的是( )A.ac >bcB.c b c a <C.a -c <b -cD.a +c <b +c11.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )A.b -a >0B.ab >0C.c -b <c -aD.a b 11>图112.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-aA.①②B.①③C.②③D.①②③13.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5 14.已知x>y ,则下列不等中不成立的是( )A .x -4>y -4B .-2x>-2yC .33x y >D .-13x<-13y 15.下列不等式的变形中,正确的是( )A .∵-3x>4,∴x>-43B .∵-3x>4,∴x>-34C .∵-3x>4,∴x<-43D .∵-3x>4,∴x<-3416.已知x<y ,要使mx>my 成立,则( )A .m>0B .m<0C .m=0D .m 是任意实数17.如果x<3,则下列不等式错误..的是( ) A .x -3<0 B .2x<6 C .-x>-3 D .x+2008>018.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 19.不等式3(x -2)≤x +4的非负整数解有几个.( )A.4B.5C.6D.无数个 20.不等式4x -41141+<x 的最大的整数解为( ) A.1 B.0 C.-1 D.不存在21.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-622.用不等式的基本性质,试将下列不等式化为x>a或x<a的形式:(1)x-1>3;(2)4x<6;(3)-2x>8.23.如果a<b,则下列不等式必定成立的是()A.am>bm B.am<bm C.am2<bm2D.am2≤bm2 24.如果a<0,则不等式ax>2可化为()A.x<2aB.x>2aC.x<-2aD.x>-2a25.已知关于x的不等式x>32a,表示在数轴上知图,则a的值为()A.1 B.2 C.-1 D.-226.已知a>b,比较12-3a与12-3b的大小.27.试比较a与2a的大小.。
第二章一元一次不等式与一元一次不等式组
2.不等式的基本性质
一、学生知识状况分析
本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。
学生已经掌握等式的基本性质,同时经历了解一元一次方程、二元一次方程组的研究过程及方法,为进一步学习不等式的基本性质奠定了基础。
学习时可以类比七年级上册学习的等式的基本性质。
二、教学任务分析
不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。
本节课教学目标:
(1)知识与技能目标:
①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
(2)过程与方法目标:
①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。
③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
(3)情感与态度目标:
①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。
②尊重学生的个体差异,关注学生对问题的实质性认识与理解。
三、教学过程分析
本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。
第一环节:情景引入,提出问题
活动内容:利用班上同学站在不同的位置上比高矮。
请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。
问题1:怎样比才公平?
活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。
活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。
第二环节:活动探究,验证明确结论
活动内容:参照教材与多媒体课件提出问题:
(1)还记得等式的基本性质吗?请用字母表示它。
不等式有类似的性质吗?先猜一猜。
(2)用等号或不等号完成下面的填空。
如果2 < 3;那么
2 × 5
3 × 5;
2 ×
3 ×;
2 × (-1)
3 × (- 1);
2 × (- 5)
3 × (- 5);
2 × (-)
3 × (-).
(3) 验证你的结论,用字母表示你所发现的结论。
(4) 与同伴交流你的结论,并展示。
生1:等式的基本性质1用字母可以表示为:c b c a b a ±=±∴=, , 类似地得到,如果在不等式的两边都加上或都减去同一个整式,结果不等号方向不变。
字母表示为:∵a >b ,∴a ±c >b ±c ;或∵a >b ,∴a ±c <b ±c 。
生2:对于等式的基本性质2,用字母可以表示为: c b c a c b c a b a ÷=÷⨯=⨯∴=,, ,其中0≠c 。
经过前面的探索,可类似地得到:
如果不等式两边同时乘以(或除以)同一个正数,不等号方向不变;如果不等式两边同时乘以(或除以)同一个负数,不等号的方向要发生改变。
字母表示如下:
c b c a c b c a c b a ÷>÷⨯>⨯∴>>,,0,
c b c a c b c a c b a ÷<÷⨯<⨯∴><,,0,
c b c a c b c a c b a ÷<÷⨯<⨯∴<>,,0,
c b c a c b c a c b a ÷>÷⨯>⨯∴<<,,0,
活动目的:通过等式的基本性质对比不等式的基本性质,由特殊的数值到字母代表数,从中归纳出一般性结论。
进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
活动实际效果:以问题的形式引导学生从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。
因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。
这时,学生对于由自己推导出性质应该感到非常兴奋。
第三环节:例题讲解及运用巩固
活动内容:
1、在上一节课中,我们猜想,无论绳长l 取何值,圆的面积总大于正方形的面积,即16
42
2l l >π。
你相信这个结论吗?你能利用不等式的基本性质解释这一结论吗?
2、将下列不等式化成“a x >”或“a x <”的形式:
(1)15->-x (2)32>-x
练习设计:
1、将下列不等式化成“a x >”或“a x <”的形式:
(1)21>-x (2)65<-x (3)32
1≤x 2、已知y x >,下列不等式一定成立吗?
(1)66-<-y x (2)y x 33<
(3)y x 22-<- (4)1212+>+y x 3、小明做这样一题:已知2x>3x,求x 的范围。
结果小明两边同时除以x ,得到2>3。
你知道他错在哪?
活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。
随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。
活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。
第四环节:课堂小结
活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。
活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。
教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性
认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。
活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。
第五环节:布置作业
习题2.2
四、教学反思
本节课通过复习等式的基本性质,类比得出不等式的基本性质雏形。
教学中问题的设置通过与等式的基本性质相对比,引导学生自己先猜想不等式基本性质、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。
在接下来的讲解例题与练习的过程中,每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。
在整个教学过程中,学生始终处于主导地位,不等式的基本性质主要由学生自己推导得出。