2012(秋)《线性代数A》期末试题B卷及参考解答
- 格式:pdf
- 大小:157.72 KB
- 文档页数:5
2012 至 2013 学年第二学期 试题答案及评分标准课程名称: 线性代数 (B )卷 考试形式:( 闭 卷 )年级: 2011 专业: ; 层次:(本)一. 选择题(每题4分,共20分)1.(A);2. (D) ;3.(B );4.(A )5. (A )二. 填空题(每题4分,共20分)1.1≠x 且2≠y ;2. 3;3. 0; (4) 12-; (5)14k k =-=或。
三、综合题1.解:11213141112131411234143111321432-+++=-+-=-M M M M A A A A ………………(2分)1234066501020666--………………………………………………………………(6分)6656651021026666001--=--= ……………………………………(8分)2.解 由2AB =A +B ,得()2-=A E B A …………………………(2分)101211010012-=-=-≠ A E 2∴-A E 可逆()12-=-B A E A ………………………(5分)()1013012110110012014⎛⎫⎪-=- ⎪⎪⎝⎭ A E A 213210*********1001223r r r r ⎛⎫- ⎪---- ⎪+ ⎪-⎝⎭100522010*********--⎛⎫⎪-- ⎪ ⎪-⎝⎭即 522432223--⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭B …………………………(10分)3.解:1121112112101423110464a a b b --⎛⎫⎛⎫ ⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A …………………………(2分) 1121014202220a a b -⎛⎫ ⎪→- ⎪ ⎪++⎝⎭…………………………(4分) 由于()2R =A ,所以1,2a b =-=-。
…………………………(6分)4.解 1231110(,,,)1113111λλλλ+⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭αααβ r 1110300(3)(1)(3)λλλλλλλλλ+⎛⎫ ⎪-- ⎪ ⎪-+-+⎝⎭………………………(.6分) (1)当0λ≠且3λ≠-时,()123123,,(,,,)3R R ==ααααααβ,β可由123,,ααα线性表示且表达式唯一; …………………………….(8分)(2)当3λ=-时,()123123,,(,,,)2R R ==ααααααβ,β可由123,,ααα线性表示且表达式不唯一; …………………………….(10分)(3)当0λ=时,()123,,1R =ααα,123(,,,)2R =αααβ,β不能由123,,ααα线性表示且表达式不唯一 …………………………….. (12分)5.解: 记()12345,,,,=αααααA ,对矩阵A 施行初等行变换12102032210003100000r --⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭A , ………………………………(4分) (1)()R A 3= ……………………(6分)(2)A 的列向量组的最大无关组含3个向量,124,,ααα就是A 的列向量组的一个最大线性无关组。
线性代数试题(附答案)一、填空题(每题2分,共20分)1.行列式0005002304324321= 。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。
3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。
4.A 为n n ⨯阶矩阵,且ο=+-E A A 232,则1-A 。
5. 321,,ξξξ和321,,ηηη是3R 的两组基,且32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。
7.设=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(,111012111,321212113AB tr AB B A 之迹则 。
8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--⨯A A 。
9.二次型x x x x x x f 23222132123),,(--=的正惯性指数为 。
10.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1042024λλA 为正定矩阵,则λ的取值范围是 。
二、单项选择(每小题2分,共12分)1.矩阵()==≠≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。
A 、1B 、2C 、3D 、4 2. 齐次线性方程组⎩⎨⎧=--=++-02023214321x x x x x x x 的基础解系中含有解向量的个数是( )A 、1B 、2C 、3D 、43.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( )A 、-1B 、-2C 、0D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( )A 、B=EB 、A=EC 、A=BD 、AB=BA5.已知=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或26.下列矩阵中与矩阵合同的是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-5000210002( ) A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200020001 B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-500020003 C 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020002三、计算题(每小题9分,共63分)1.计算行列式),2,1,0(0000002211210n i a a c a c a c b b b a i nnnΛΛΛΛΛΛΛΛΛΛ=≠其中2.当⎪⎪⎩⎪⎪⎨⎧=+++=-++=+++=+++ax x x x x x x x x x x x x x x x a 4321432143214321710535105363132,线性方程组取何值时有解?在方程组有解时,用其导出组的基础解系表示方程组的通解。
线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,<)不是初等矩阵。
<A )001010100 (B>100000010 (C>10002001(D>100012012.设向量组123,,线性无关,则下列向量组中线性无关的是<)。
<A )122331,,<B )1231,,<C )1212,,23<D)2323,,23.设A 为n 阶方阵,且250AA E。
则1(2)A E <)(A> A E (B>EA (C>1()3A E (D>1()3A E 4.设A 为n m 矩阵,则有<)。
<A )若n m,则b Ax 有无穷多解;<B )若n m,则0Ax 有非零解,且基础解系含有m n个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax 有唯一解;<D )若A 有n 阶子式不为零,则0Ax仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似<B )AB ,但|A-B|=0<C )A=B<D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。
每小题2分,共10分>1.A 是n 阶方阵,R ,则有A A。
< )2.A ,B 是同阶方阵,且0AB ,则111)(A B AB 。
< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
( >4.若B A,均为n 阶方阵,则当B A 时,B A,一定不相似。
( >5.n 维向量组4321,,,线性相关,则321,,也线性相关。
< )三、填空题<每小题4分,共20分)1.0121n n。
2.A 为3阶矩阵,且满足A3,则1A=______,*3A。
线性代数B 期末试题解答一、判断题(正确填√,错误填×。
每小题2分,共10分)1.A 是n 阶方阵,且|A |≠0,则n 元方程组AX =b 有唯一解。
(√ ) 2.A ,B 是同阶相似方阵,则A 与B 有相同的特征值。
(√ )3.如果X 1 与X 2 皆是AX =b 的解,则X 1 +X 2 也是AX =b 的解。
( × ) 4.若A 为n 阶方阵,其秩r < n ,那么A 任意r 个行向量线性无关。
( × ) 5.从A 中划去一行得到矩阵B ,则A 的秩≥B 的秩。
(√ )二、单项选择题(每小题3分,共15分)1.设A 是n 阶矩阵,其伴随矩阵为A *,E 为单位矩阵。
则A A *为 ( A ) (A )|A |E (B) E (C) A * (D) 不能乘2.设A 、B 、C 同为n 阶方阵,且满足ABC =E ,则必有( C )。
(A )ACB =E (B )CBA =E (C )BCA = E (D )BAC =E 3.设A 为n 阶方阵,且|A |=5,则|(3A -1)T |=( C )(A)n53 (B) n 35 (C)3n ·51(D) 3·5n4.设n 元齐次线性方程组的系数矩阵的秩r <n ,则方程组( C )。
(A )其基础解系可由r 个解组成;(B )有r 个解向量线性无关; (C )有n –r 个解向量线性无关;(D )无解。
5.n 阶矩阵A 有n 个不同的特征值,是A 与对角阵相似的( B ) (A )充分必要条件 (B )充分而非必要 (C )必要而非充分条件 (D )既非充分也非必要三、填空题(每小题5分,共25分)1.g fkj ep h s b c d a 0000=(ab-cd)(pg-ef)。
2.A 为3阶矩阵,且满足=A 6,则1-A =__1/6__,*3A =33·62=972 。
线性代数B期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)C. \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)D. \(\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}\)答案:C2. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(A^2 = I\),则\(A\) 一定是:A. 正交矩阵B. 斜对称矩阵C. 单位矩阵D. 对角矩阵答案:A3. 线性方程组 \(\begin{cases} x + 2y - z = 1 \\ 3x - 4y + 2z = 2 \\ 5x + 6y + 3z = 3 \end{cases}\) 的解的情况是:A. 有唯一解B. 有无穷多解C. 无解D. 不能确定答案:B4. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(\det(A) = 0\),则 \(A\) 的秩:A. 等于3B. 小于3C. 等于0D. 大于等于3答案:B二、填空题(每题5分,共20分)1. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的行列式\(\det(A) = 2\),则 \(A\) 的伴随矩阵 \(\text{adj}(A)\) 的行列式是 _______。
答案:82. 若 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的特征值为1,2,3,则 \(A\) 的迹数 \(\text{tr}(A)\) 等于 _______。
线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。
左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。
线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。
答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。
答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。
答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。
答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。
答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。
2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。
3. 说明矩阵的相似对角化的条件。
答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。
四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。
答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。
线代A期末考试题及答案一、单项选择题(每题3分,共30分)1. 向量组α1,α2,α3线性无关的充分必要条件是()。
A. 由α1,α2,α3构成的矩阵的行列式不等于0B. 由α1,α2,α3构成的矩阵的行列式等于0C. 由α1,α2,α3构成的矩阵的秩为3D. 由α1,α2,α3构成的矩阵的秩小于3答案:C2. 矩阵A可逆的充分必要条件是()。
A. |A|≠0B. |A|=0C. A的秩等于A的阶数D. A的秩小于A的阶数答案:C3. 矩阵A和B等价的充分必要条件是()。
A. A和B的秩相等B. A和B的行列式相等C. A和B的迹相等D. A和B的转置矩阵相等答案:A4. 向量组α1,α2,α3线性相关的充分必要条件是()。
A. 由α1,α2,α3构成的矩阵的行列式不等于0B. 由α1,α2,α3构成的矩阵的行列式等于0C. 由α1,α2,α3构成的矩阵的秩小于3D. 由α1,α2,α3构成的矩阵的秩等于3答案:C5. 设A为n阶方阵,若A的行列式|A|=0,则()。
A. A可逆B. A不可逆C. A的秩小于nD. A的秩等于n答案:B6. 设A为n阶方阵,若A的行列式|A|≠0,则()。
A. A可逆B. A不可逆C. A的秩小于nD. A的秩等于n答案:A7. 设A为n阶方阵,若A的秩r(A)=n,则()。
A. A可逆B. A不可逆C. A的行列式|A|=0D. A的行列式|A|≠0答案:D8. 设A为n阶方阵,若A的秩r(A)<n,则()。
A. A可逆B. A不可逆C. A的行列式|A|=0D. A的行列式|A|≠0答案:C9. 设A为n阶方阵,若A的行列式|A|≠0,则A的秩()。
A. r(A)<nB. r(A)=nC. r(A)>nD. r(A)=0答案:B10. 设A为n阶方阵,若A的行列式|A|=0,则A的秩()。
A. r(A)<nB. r(A)=nC. r(A)>nD. r(A)=0答案:A二、填空题(每题4分,共20分)11. 若矩阵A的秩为2,则A的行列式|A|=______。
线性代数期末考试题及答案一、单项选择题(每题3分,共30分)1. 向量组的线性相关性是指()。
A. 至少有一个向量可以由其他向量线性表示B. 所有向量都为零向量C. 所有向量线性无关D. 向量组中存在非零向量答案:A2. 矩阵A的行列式为0,则矩阵A()。
A. 可逆B. 不可逆C. 行向量线性无关D. 行向量线性相关答案:B3. 齐次线性方程组有非零解的充分必要条件是()。
A. 系数矩阵的行列式为0B. 系数矩阵的秩小于未知数的个数C. 系数矩阵的秩等于未知数的个数D. 系数矩阵的秩大于未知数的个数答案:B4. 矩阵A和矩阵B相乘,结果为零矩阵,则()。
A. A和B中至少有一个是零矩阵B. A和B都是零矩阵C. A和B的行列式都为0D. A和B的行列式乘积为0答案:A5. 向量组的秩是指()。
A. 向量组中线性无关向量的最大个数B. 向量组中向量的最大个数C. 向量组中向量的最小个数D. 向量组中向量的平均个数答案:A6. 矩阵A的转置矩阵记作()。
A. A'B. A^TC. A^HD. A^答案:B7. 矩阵A的特征值是指()。
A. 矩阵A的对角线元素B. 矩阵A的非零特征向量C. 满足|A-λI|=0的λ值D. 矩阵A的行列式答案:C8. 矩阵A和矩阵B相似的充分必要条件是()。
A. A和B的行列式相等B. A和B的秩相等C. A和B的特征值相同D. A和B的迹相等答案:C9. 矩阵A的逆矩阵记作()。
A. A'B. A^TC. A^-1D. A^H答案:C10. 向量组的正交性是指()。
A. 向量组中任意两个向量的数量积为0B. 向量组中任意两个向量的长度相等C. 向量组中任意两个向量的长度之和为1D. 向量组中任意两个向量的长度之积为1答案:A二、填空题(每题4分,共20分)11. 矩阵A的秩是指矩阵A的______。
答案:行向量或列向量线性无关的最大个数12. 矩阵A的迹是指矩阵A的______。
线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。