北京市海淀区2018届中考复习《反比例函数》专题复习练习含答案
- 格式:doc
- 大小:115.00 KB
- 文档页数:4
课时训练(十一) 反比例函数(限时:40分钟)|夯实基础|1.[2018·朝阳一模]如图K11-1,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,-8),M(-2,-12),N,48中,在该函数图象上的点有()图K11-1A.4个B.3个C.2个D.1个2.[2018·丰台期末]如图K11-2,点A为函数y=(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为()图K11-2A.1B.2C.3D.43.[2018·燕山期末]若点(x1,y1),(x2,y2)都是反比例函数y=图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2B.x1<x2C.y随x的增大而减小D.两点有可能在同一象限4.已知反比例函数y=-的图象上有两点A(x1,y1),B(x2,y2),若y1>y2,则x1-x2的值是 ()A.正数B.负数C.非正数D.不能确定5.如图K11-3,A,B两点在双曲线y=上,分别过A,B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()图K11-3A.3B.4C.5D.66.如图K11-4,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()图K11-4A.2≤k≤B.6≤k≤10C.2≤k≤6D.2≤k≤7.[2018·平谷期末]请写出一个过点(1,1),且与x轴无交点的函数表达式.8.下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在第二、四象限内.其中正确的是(填序号即可).9.对于反比例函数y=-,当x<2时,y的取值范围是.10.[2018·门头沟期末]如图K11-5,在平面直角坐标系xOy中有一矩形,顶点坐标分别为(1,1),(4,1),(4,3),(1,3),有一反比例函数y=(k≠0),它的图象与此矩形没有交点,该表达式可以为.图K11-511.[2018·门头沟初三综合练习]如图K11-6,在平面直角坐标系xOy中,一次函数y=x与反比例函数y=(k≠0)的图象相交于点A(,a).(1)求a,k的值;(2)直线x=b(b>0)分别与一次函数y=x、反比例函数y=的图象相交于点M,N,当MN=2时,画出示意图并直接写出b的值.图K11-6|拓展提升|12.[2018·东城期末]如图K11-7,在平面直角坐标系xOy中,已知A(8,0),C(0,6),矩形OABC的对角线交于点P,点M 在经过点P的函数y=(x>0)的图象上运动,k的值为,OM长的最小值为.图K11-713.[2018·海淀期末]如图K11-8,函数y=(x<0)与y=ax+b的图象交于点A(-1,n)和点B(-2,1).(1)求k,a,b的值;(2)直线x=m与y=(x<0)的图象交于点P,与y=-x+1的图象交于点Q,当∠PAQ>90°时,直接写出m的取值范围.图K11-814.[2018·海淀一模]在平面直角坐标系xOy中,已知点P(2,2),Q(-1,2),函数y=.(1)当函数y=的图象经过点P时,求m的值并画出直线y=x+m;(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组(m>0),求m的取值范围.图K11-9参考答案1.B2.D3.B4.D5.D6.A[解析] 反比例函数的图象和三角形有交点的第一个临界点是交点A,∵过点A(1,2)的反比例函数的解析式为y=,∴k≥2.随着k的增大,反比例函数的图象必须和直线BC有交点才能满足题意,经过B(2,5),C(6,1)的直线的函数解析式为y=-x+7,由得x2-7x+k=0,根据Δ≥0,得k≤.综上可知2≤k≤.7.答案不唯一,如:y=8.①②9.y<-4或y>010.答案不唯一,满足k<0或0<k<1或k>12均可11.解:(1)∵直线y=x与双曲线y=(k≠0)相交于点A(,a).∴a=,∴A(,),∴=,解得k=3.(2)画图略.b=3或1.12.12213.解:(1)∵函数y=(x<0)的图象经过点B(-2,1),∴=1,得k=-2.∵函数y=(x<0)的图象还经过点A(-1,n), ∴n==2,点A的坐标为(-1,2).∵函数y=ax+b的图象经过点A和点B,∴解得(2)-2<m<0且m≠-1.14.解:(1)∵函数y=的图象经过点P(2,2), ∴2=,即m=4.图象如图所示.(2)当点P(2,2)满足(m>0)时,解不等式组得0<m<4.当点Q(-1,2)满足(m>0)时,解不等式组得m>3.∵P,Q两点中恰有一个点的坐标满足(m>0), ∴m的取值范围是:0<m≤3或m≥4.。
2018中考冲刺--《反比例函数》综合测试题一、选择题(共8小题,满分24分,每小题3分)1.如图,⊙P过O、A(0,4)、C(2,0),半径PB⊥PA,双曲线恰好经过B点,则k=()A.﹣1 B.﹣1.5 C.﹣2 D.﹣2.5第1题第2题2.已知如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=(x>0)经过线段DC的中点E,若BD=4,则AG的长为()A.B.+2 C.2+1 D.+13.函数y=和y=在第一象限内的图象如图所示,点P是y=的图象上一动点,作PC⊥x轴于点C,交y=的图象于点A,作PD⊥y轴于点D,交y=的图象于点B,给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④PA=3AC,其中正确的结论序号是()A.①②③B.②③④C.①③④D.①②④第3题第4题4.如图,四边形OABC放置在平面直角坐标系中,AB∥CO,OA所在直线为x轴,OC所在直线为y轴,反比例函数y=的图象经过AB的中点D,并且与CB交于点E,已知.则AB的长等于()A.2.5 B.2 C.1.5 D.15.如图,正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,反比例函数y=(k≠0)的图象经过点B、C和边EF的中点M.若S=2,则正方形DEFG的面积为()正方形ABCDA.B.C.4 D.第5题第7题6.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A. B.C.D.7.如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x >0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6第7题第8题8.已知:如图,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=2OC,直线y=x+b过点C,并且交对角线OB于点E,交x轴于点D,反比例函数过点E且交AB于点M,交BC于点N,连接MN、OM、ON,若△OMN的面积是,则a、b的值分别为()A.a=2,b=3 B.a=3,b=2 C.a=﹣2,b=3 D.a=﹣3,b=2二、填空题(共8小题,满分24分,每小题3分)9.如图,已知动点A在反比例函数y=(x>0)图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA到点D,使AD=AB,延长BA到点E,使AE=AC,直线DE分别交x、y轴于点P、Q,当=时,则△ACE与△ADB面积之和等于.第9题第10题10.如图,直线y=﹣x+8与双曲线y=相交于A,B两点,与y轴交于点C,点P是线段BC上的动点(点P不与点B,C重合),过P作y轴的平行线,交双曲线于点D,连接CD,若点A的横坐标为﹣1,则△PDC的面积的最大值为.11.如图,已知双曲线y=与直线y=k2x(k1,k2都为常数)相交于A,B两点,在第一象限内双曲线y=上有一点M(M在A的左侧),设直线MA,MB分别与x轴交于P,Q两点,若MA=m•AP,MB=n•QB,则n﹣m的值是.第11题第12题12.如图,已知⊙P与x轴交于A和B(9,0)两点,与y轴的正半轴相切与点C(0,3),作⊙P的直径BD,过点D作直线DE⊥BD,交x轴于E点,若点P在双曲线y=上,则直线DE的解析式为.13.如图,直线y=2x与反比例函数y=的图象交于点A(3,m),点B是线段OA的中点,点E(n,4)在反比例函数的图象上,点F在x轴上,若∠EAB=∠EBF=∠AOF,则点F的横坐标为.第13题第14题14.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,m)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.15.如图,等腰直角△ABC位于第二象限,BC=AC=3,直角顶点C在直线y=﹣x上,且点C的横坐标为﹣4,边BC、AC分别平行于x轴、y轴.若双曲线y=与△ABC的边AB有2个公共点,则k的取值范围为.第15题第16题16.如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,若S1﹣S2的值最大为1,则k的值为.三、解答题(共4小题,满分52分,每小题13分)17.(13分)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.第17题18.(13分)如图,正比例函数y=ax与反比例函数y=(x>0)的图象交于点M(,).(1)求这两个函数的表达式;(2)如图1,若∠AMB=90°,且其两边分别于两坐标轴的正半轴交于点A、B.求四边形OAMB的面积.(3)如图2,点P是反比例函数y=(x>0)的图象上一点,过点P作x轴、y轴的垂线,垂足分别为E、F,PF交直线OM于点H,过作x轴的垂线,垂足为G.设点P的横坐标为m,当m>时,是否存在点P,使得四边形PEGH为正方形?若存在,求出P点的坐标;若不存在,请说明理由.第18题19.(13分)如图,在平面直角坐标系xOy中,直线y=x与反比例函数y=在第一象限内的图象相交于点A(m,3).(1)求该反比例函数的关系式;(2)将直线y=x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB⊥OA,求tan∠AOB的值;(3)在(2)的条件下,在射线OA上存在一点P,使△PAB∽△BAO,求点P 的坐标.第19题20.(13分)如图,直线y=2x+2与y轴交于点A,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求反比例函数表达式;(2)在y轴上是否存在点P,使以点P、A、H、M为顶点的四边形是平行四边形?如果存在,直接写出P点坐标;如果不存在,请说明理由.(3)点N(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点Q,使得QM+QN的值最小?若存在,请求出点Q的坐标;若不存在,请说明理由.第20题2018中考冲刺--《反比例函数》综合测试题答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.如图,⊙P过O、A(0,4)、C(2,0),半径PB⊥PA,双曲线恰好经过B点,则k=()A.﹣1 B.﹣1.5 C.﹣2 D.﹣2.5【解析】过点P作PM⊥x轴于M,PN⊥y轴于N,过点B作BG⊥PM于点G,设B(x,),结合题意,∵O(0,0)、A(0,4)、C(2,0),∴P(1,2),∴PA=,∵∠APB=∠NPG=90°,∴∠APN=∠BPG,在△ANP和△PGB中,,∴△ANP≌△PGB,∴BG=AN=2,∴BG﹣PN=2﹣1=1,∴点B的横坐标为:﹣1,∴PG=PN=1,∴GM=2﹣1=1,∴点B(﹣1,1),∴k=﹣1.故选:A.2.已知如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=(x>0)经过线段DC的中点E,若BD=4,则AG的长为()A.B.+2 C.2+1 D.+1【解析】过E作y轴和x的垂线EM,EN,设E(b,a),∵反比例函数y=(x>0)经过点E,∴ab=,∵四边形ABCD是菱形,∴BD⊥AC,DO=BD=2,∵EN⊥x,EM⊥y,∴四边形MENO是矩形,∴ME∥x,EN∥y,∵E为CD的中点,∴DO•CO=4,∴CO=2,∴tan∠DCO==,∴∠DCO=30°,∵四边形ABCD是菱形,∴∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=2,∵DF⊥AB,∴∠2=30°,∴DG=AG,设DG=r,则AG=r,GO=2﹣r,∵AD=AB,∠DAB=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠3=30°,在Rt△DOG中,DG2=GO2+DO2,∴r2=(2﹣r)2+22,解得:r=,∴AG=,故选:A.3.函数y=和y=在第一象限内的图象如图所示,点P是y=的图象上一动点,作PC⊥x轴于点C,交y=的图象于点A,作PD⊥y轴于点D,交y=的图象于点B,给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④PA=3AC,其中正确的结论序号是()A.①②③B.②③④C.①③④D.①②④【解析】设点P的坐标为(m,)(m>0),则A(m,),C(m,0),B(,),D(0,).①S△ODB=×1=,S△OCA=×1=,∴△ODB与△OCA的面积相等,①成立;②PA=﹣=,PB=m﹣=,令PA=PB,即=,解得:m=2.∴当m=2时,PA=PB,②不正确;=S矩形OCPD﹣S△ODB﹣S△OCA=4﹣﹣=3.③S四边形PAOB∴四边形PAOB的面积大小不会发生变化,③正确;④∵PA=﹣=,AC=﹣0=,∵=3×,∴PA=3AC,④正确.综上可知:正确的结论有①③④.故选C.4.如图,四边形OABC放置在平面直角坐标系中,AB∥CO,OA所在直线为x轴,OC所在直线为y轴,反比例函数y=的图象经过AB的中点D,并且与CB交于点E,已知.则AB的长等于()A.2.5 B.2 C.1.5 D.1【解析】如图所示:过点E作EF⊥OA于点F,BN⊥CO于点N,DM⊥CO于点M,∵反比例函数y=的图象经过AB的中点D,∴设AD=a,AO=3b,则AB=2a,可得EF∥CO,则△BEV∽△BCN,∵=,CO=,∴==,∴NV=b,由题意可得:CN=﹣2a,==,则=,解得:EV=﹣a,故EF=﹣a+2a=+a,∴E(b,+a),D(3b,a),故b(+a)=3ab,解得:a=1,则AB=2a=2.故选:B.5.如图,正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,反比例函数y=(k≠0)的图象经过点B、C和边EF的中点M.若S=2,则正方形DEFG的面积为()正方形ABCDA.B.C.4 D.【解析】作BH⊥y轴于H,连结EG交x轴于N,如图,∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,∴∠EDF=45°,∴∠ADO=45°,∴∠DAO=∠BAH=45°,∴△AOD和△ABH都是等腰直角三角形,∵S=2,正方形ABCD∴AB=AD=,∴OD=OA=AH=BH=×=1,∴B点坐标为(1,2),把B(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=,设DN=a,则EN=NF=a,∴E(a+1,a),F(2a+1,0),∵M点为EF的中点,∴M点的坐标为(,),∵点M在反比例函数y=的图象上,∴•=2,整理得3a2+2a﹣8=0,解得a1=,a2=﹣2(舍去),∴正方形DEFG的面积=2•EN•DF=2•••=.故选A.6.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A. B.C.D.【解析】∵矩形OABC,∴CB∥x轴,AB∥y轴,∵点B坐标为(6,4),∴D的横坐标为6,E的纵坐标为4,∵D,E在反比例函数y=的图象上,∴D(6,1),E(,4),∴BE=6﹣=,BD=4﹣1=3,∴ED==,连接BB′,交ED于F,过B′作B′G⊥BC于G,∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF•ED=BE•BD,即BF=3×,∴BF=,∴BB′=,设EG=x,则BG=﹣x,∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴()2﹣(﹣x)2=()2﹣x2,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=﹣.故选B.7.如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x >0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【解析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)8.已知:如图,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=2OC,直线y=x+b过点C,并且交对角线OB于点E,交x轴于点D,反比例函数过点E且交AB于点M,交BC于点N,连接MN、OM、ON,若△OMN的面积是,则a、b的值分别为()A.a=2,b=3 B.a=3,b=2 C.a=﹣2,b=3 D.a=﹣3,b=2【解析】过点E作EH⊥AO,垂足为H,如图,∵直线y=x+b与y轴交于点C,交x轴于点D,∴点C(0,b),点D(﹣b,0).∴OC=OD=b.∵四边形OABC是矩形,OA=2OC,∴BC=OA=2b,AB=OC=b,BC∥OA.∴△BEC∽△OED.∴==2.∴=3.∵EH⊥OA,∠COA=90°,∴∠EHA=∠COA=90°.∴EH∥OC.∴△DOC∽△DHE.∴===3.∴EH=,DH=.∴OH=OD﹣DH=b﹣=.∴点E的坐标为(﹣,).∵点E在反比例函数上,∴﹣×=a.∴2b2=﹣9a.∵反比例函数图象交AB于点M,交BC于点N,∴点M的坐标为(﹣2b,),点N的坐标为(,b).∴S△BMN=BM•BN=(b﹣)[2b﹣(﹣)]=××==﹣a.∴S△OMN=S矩形OABC﹣S△AMO﹣S△OCN﹣S△BMN=2b2﹣(﹣)﹣(﹣)﹣(﹣a)=﹣9a+a+a=﹣a=.解得:a=﹣2.∴2b2=﹣9a=﹣9×(﹣2)=18.∴b=±3.∵b>0,∴b=3.故选:C.二.填空题(共8小题,满分24分,每小题3分)9.如图,已知动点A在反比例函数y=(x>0)图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA到点D,使AD=AB,延长BA到点E,使AE=AC,直线DE分别交x、y轴于点P、Q,当=时,则△ACE与△ADB面积之和等于.【解析】作DF⊥x轴于点F,EG⊥y轴于G,∴△QEG∽△DPF,∴==,设EG=4t,则PF=9t,∴A(4t,),∵AE=AC,AD=AB,∴AE=2t,AD=,DF=,PF=9t,∵△ADE∽△FPD,∴AE:DF=AD:PF,即2t:=:9t,即t2=,△ACE与△ADB面积之和=×2t×4t+××=.故答案为:.10.如图,直线y=﹣x+8与双曲线y=相交于A,B两点,与y轴交于点C,点P是线段BC上的动点(点P不与点B,C重合),过P作y轴的平行线,交双曲线于点D,连接CD,若点A的横坐标为﹣1,则△PDC的面积的最大值为.【解析】把x=﹣1代入y=﹣x+8,得y=1+8=9,则A的坐标是(﹣1,9).把(﹣1,9)代入y=得k=﹣9.设P的横坐标是m,把x=m代入y=﹣x+8,得y=﹣m+8,则P的坐标是(m,﹣m+8).把x=m代入y=﹣得y=﹣,则PD=﹣m+8+.则△PDC的面积y=(﹣m+8+)m,即y=﹣m2+4m+=﹣(m﹣4)2+则y的最大值是.故答案是:.11.如图,已知双曲线y=与直线y=k2x(k1,k2都为常数)相交于A,B两点,在第一象限内双曲线y=上有一点M(M在A的左侧),设直线MA,MB分别与x轴交于P,Q两点,若MA=m•AP,MB=n•QB,则n﹣m的值是2.【解析】作MH⊥y轴,AN⊥y轴,BI⊥y轴分别于点H、N、I,则MH∥AN∥BI.∵反比例函数是中心对称图形,∴ON=OI.∵MH∥AN∥BI,MA=m•AP,MB=n•QB∴m==,n===,又∵ON=OI,∴n==+2=m+2,∴n﹣m=2.故答案是:2.12.如图,已知⊙P与x轴交于A和B(9,0)两点,与y轴的正半轴相切与点C(0,3),作⊙P的直径BD,过点D作直线DE⊥BD,交x轴于E点,若点P在双曲线y=上,则直线DE的解析式为y=x+.【解析】连接PC.AD,过P作PE⊥AB于E,∵C(0,3),B(9,0),∴OB=9,OC=3,∵⊙P与y轴的正半轴相切与点C,∴PC⊥y轴,∴四边形OEPC是矩形,∴PE=OC=3,把y=3代入y=得,x=5,∴P(5,3),∴PC=5,BD=10,∵BD是⊙P的直径,∴AD⊥x轴,∴PE∥AD,∵P是BD的中点,∴AD=6,∴AB=8,∴OA=1,∴D(1,6),∵DE⊥BD,∴∠EDA+∠BDA=∠AED+∠EDA=90°,∴∠AED=∠ADB,∴△ADE∽△ABD,∴,∴AE=,∴E(﹣,0),设直线DE的解析式为y=kx+b,∴,∴,∴直线DE的解析式为y=x+.故答案为:y=x+.13.如图,直线y=2x与反比例函数y=的图象交于点A(3,m),点B是线段OA的中点,点E(n,4)在反比例函数的图象上,点F在x轴上,若∠EAB=∠EBF=∠AOF,则点F的横坐标为.【解析】∵直线y=2x与反比例函数y=的图象交于点A(3,m),∴m=2×3=6,∴点A(3,6),∴6=,得k=18,∵点B是线段OA的中点,点E(n,4)在反比例函数的图象上,∴点B(1.5,3),4=,得n=4.5,∴点E(4.5,4),∴AB=,AE==OB=,∵∠EAB=∠EBF=∠AOF,∠ABE+∠EAB+∠AEB=180°,∠ABE+∠EBF+∠OBF=180°,∴∠AEB=∠OBF,∵∠EAB=∠BOF,∴△ABE∽△OFB,∴,即,解得,OF=,即点F的横坐标是,故答案为:.14.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,m)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.【解析】设反比例函数解析式为y=,一次函数解析式为y=ax+b,将点A(1,12)代入y=中,得k=12,∴反比例函数解析式为y=,∴B(6,2)将点A(1,12)、B(6,2)代入y=ax+b中,得,解得,∴一次函数解析式为y=﹣2x+14.设点P的坐标为(m,14﹣2m),=S矩形OCPD﹣S△OCM﹣S△ODN=S矩形OCPD﹣|k|=m(14﹣2m)﹣12=﹣则S四边形PMON2m2+14m﹣12=﹣2(m﹣)2+,∵﹣2<0,∴m=时,四边形PMON面积的最大,最大值是.故答案为.15.如图,等腰直角△ABC位于第二象限,BC=AC=3,直角顶点C在直线y=﹣x上,且点C的横坐标为﹣4,边BC、AC分别平行于x轴、y轴.若双曲线y=与△ABC的边AB有2个公共点,则k的取值范围为﹣<k≤﹣4.【解析】由题意C(﹣4,4),A(﹣4,1),B(﹣1,4),直线OC与AB的交点坐标为E(﹣,),反比例函数图象经过A或B时,k=﹣4,反比例函数图象经过点E时,k=﹣,观察图象可知,双曲线y=与△ABC的边AB有2个公共点,则k的取值范围为﹣<k≤﹣4.故答案为﹣<k≤﹣4.16.如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S 2,若S1﹣S2的值最大为1,则k的值为4+4.【解析】如图连接BC、O′C,作CH⊥x轴于H.由题意⊙O′与反比例函数图象均关于直线y=x对称,∴点A、C关于直线y=x对称,设A(m,2m)则C(2m,m),∴BO′=CH=m,BO′∥CH,∴四边形BHCO′是平行四边形,∵BH=CH,∠BHC=90°,∴四边形BHCO′是正方形.∴∠ABC=45°,∴△ACB是等腰直角三角形,∵S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,∴△DBC的面积最大时,S1﹣S2的值最大,∴当DO′⊥BC时,△DBC 的面积最大,∴•m•(m+m)﹣•2m•m=1,∴m2=2(+1),∵k=2m2,∴k=4+4,故答案为4+4.三.解答题(共4小题,满分52分,每小题13分)17.(13分)如图,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.(1)若点C在反比例函数y=的图象上,求该反比例函数的解析式;(2)点P(2,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD 与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.【解析】(1)在y=﹣x+1中,令y=0可解得x=,令x=0可得y=1,∴A(,0),B(0,1),∴tan∠BAO===,∴∠BAO=30°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠CAO=90°,在Rt△BOA中,由勾股定理可得AB=2,∴AC=2,∴C(,2),∵点C在反比例函数y=的图象上,∴k=2×=2,∴反比例函数解析式为y=;(2)∵P(2,m)在第一象限,∴AD=OD﹣OA=2﹣=,PD=m,当△ADP∽△AOB时,则有=,即=,解得m=1,此时P点坐标为(2,1);当△PDA∽△AOB时,则有=,即=,解得m=3,此时P点坐标为(2,3);把P(2,3)代入y=可得3≠,∴P(2,3)不在反比例函数图象上,把P(2,1)代入反比例函数解析式得1=,∴P(2,1)在反比例函数图象上;综上可知P点坐标为(2,1).18.(13分)如图,正比例函数y=ax与反比例函数y=(x>0)的图象交于点M(,).(1)求这两个函数的表达式;(2)如图1,若∠AMB=90°,且其两边分别于两坐标轴的正半轴交于点A、B.求四边形OAMB的面积.(3)如图2,点P是反比例函数y=(x>0)的图象上一点,过点P作x轴、y轴的垂线,垂足分别为E、F,PF交直线OM于点H,过作x轴的垂线,垂足为G.设点P的横坐标为m,当m>时,是否存在点P,使得四边形PEGH为正方形?若存在,求出P点的坐标;若不存在,请说明理由.【解析】(1)将点M(,)分别带入y=ax与y=得:=a,=,解得:a=1,k=6.∴这两个函数的表达式分别为:y=x,y=.(2)如图1中,过点M分别做x轴、y轴的垂线,垂足分别为C、D.则∠MCA=∠MDB=90°,∠AMC=∠BMD=90°﹣∠AMD,MC=MD=,∴△AMC≌△BMD,=S四边形OAMB=6.∴S四边形OCMD(3)设P点坐标为(x,),则PE=HG=GE=,OE=x,∵∠MOE=45°,∴OG=GH=,∴OE=OG+GH=,∴x=,解得x=2,∴P点坐标为(2,).19.(13分)如图,在平面直角坐标系xOy中,直线y=x与反比例函数y=在第一象限内的图象相交于点A(m,3).(1)求该反比例函数的关系式;(2)将直线y=x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB⊥OA,求tan∠AOB的值;(3)在(2)的条件下,在射线OA上存在一点P,使△PAB∽△BAO,求点P 的坐标.【解析】(1)∵点A(m,3)在直线y=x上∴3=m,∴m=3,∴点A(3,3),∵点A(3,3)在反比例函数y=上,∴k=3×3=9,∴y=;(2)直线向上平移8个单位后表达式为:y=x+8∵AB⊥OA,直线AB过点A(3,3)∴直线AB解析式:y=﹣x+12,∴x+8=﹣x+12,∴x=.∴B(,9),∴AB=4在Rt△AOB中,OA=6,∴tan∠AOB=(3)如图,∵△APB∽△ABO,∴,由(2)知,AB=4,OA=6即∴AP=8,∵OA=6,∴OP=14,过点A作AH⊥x轴于H∵A(3,3),∴OH=3,AH=3,在Rt△AOH中,∴tan∠AOH===,∴∠AOH=30°过点P作PG⊥x轴于G,在Rt△APG中,∠POG=30°,OP=14,∴PG=7,OG=7∴P(7,7).20.(13分)如图,直线y=2x+2与y轴交于点A,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求反比例函数表达式;(2)在y轴上是否存在点P,使以点P、A、H、M为顶点的四边形是平行四边形?如果存在,直接写出P点坐标;如果不存在,请说明理由.(3)点N(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点Q,使得QM+QN的值最小?若存在,请求出点Q的坐标;若不存在,请说明理由.【解析】(1)由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在反比例函数y=(x>0)的图象上,∴k=1×4=4,∴该反比例函数表达式是;(2)存在,如图所示:当四边形P1AHM为平行四边形时,P1A=MH=4,∴P1A+AO=4+2=6,即P1(0,6);当四边形AP2HM为平行四边形时,MH=AP2=4,∴OP2=AP2﹣OA=4﹣2=2,此时P2(0,﹣2),综上,P点坐标为(0,6)或(0,﹣2);(3)∵点N(a,1)在反比例函数y=上,∴a=4,即点N的坐标为(4,1),过点N作N关于x轴的对称点N1,连接MN1,交x轴于Q,此时QM+QN最小,∵N与N1关于x轴的对称,N点坐标为(4,1),∴N1的坐标为(4,﹣1),设直线MN1的解析式为y=kx+b,由,解得:,∴直线MN1的解析式为y=﹣x+,令y=0,得x=,∴Q点坐标为(,0).。
第16课时反比例函数(70分)一、选择题(每题4分,共24分)1.对于函数y=6x,下列说法错误的是(C)A.它的图象分布在第一、三象限B.它的图象是中心对称图形C.当x>0时,y的值随x的增大而增大D.当x<0时,y的值随x的增大而减小2.[2017·自贡]一次函数y1=k1x+b和反比例函数y2=k2x(k1k2≠0)的图象如图16-1所示,若y1>y2,则x的取值范围是(D)图16-1A.-2<x<0或x>1B.-2<x<1C.x<-2或x>1D.x<-2或0<x<1【解析】观察函数图象可知,当x<-2或0<x<1时,直线y1=k1x+b在反比例函数y2=k2x的图象上方,即若y1>y2,则x的取值范围是x<-2或0<x<1.3.[2016·杭州]设函数y=kx(k≠0,x>0)的图象如图16-2所示,若z=1y,则z关于x的函数图象可能为(D)图16-2【解析】 ∵y =k x (k ≠0,x >0),∴z =1y =xk (k ≠0,x >0). ∵反比例函数y =kx (k ≠0,x >0)的图象在第一象限内, ∴k >0,∴1k >0.∴z 关于x 的函数图象为第一象限内,且不包括原点的正比例的函数图象. 4.[2016·孝感]“科学用眼,保护视力”是青少年珍爱健康的具体表现.科学证实:近视眼镜的度数y (度)与镜片焦距x (m)成反比例.如果500度近视眼镜镜片的焦距为0.2 m ,则表示y 与x 函数关系的图象大致是( B )5.[2017·兰州]如图16-3,反比例函数y =k x (x <0)与一次函数y =x +4的图象交图16-3点A ,B 的横坐标分别为-3,-1,则关于x 的不等式kx <x +4(x <0)的解集为( B )A .x <-3B .-3<x <-1C .-1<x <0D .x <-3或-1<x <06.[2017·潍坊]一次函数y=ax+b与反比例函数y=a-bx,其中ab<0,a,b为常数,它们在同一坐标系中的图象可以是(C)【解析】∵ab<0,∴a,b异号.选项A中由一次函数的图象可知a>0,b <0,则a>b,由反比例函数的图象可知a-b<0,即a<b,产生矛盾,故A 错误;选项B中由一次函数的图象可知a<0,b>0,则a<b,由反比例函数的图象可知a-b>0,即a>b,产生矛盾,故B错误;选项C中由一次函数的图象可知a>0,b<0,则a>b,由反比例函数的图象可知a-b>0,即a >b,与一次函数一致,故C正确;选项D中由一次函数的图象可知a<0,b <0,则ab>0,这与题设矛盾,故D错误.二、填空题(每题4分,共24分)7.[2017·淮安]若反比例函数y=-6x的图象经过点A(m,3),则m的值是__-2__.【解析】把A(m,3)代入y=-6x,得3=-6m,解得m=-2.8.[2016·山西]已知(m-1,y1),(m-3,y2)是反比例函数y=mx(m<0)图象上的两点,则y1__>__y2(选填“>”“<”或“=”).9.[2017·眉山]已知反比例函数y=2x,当x<-1时,y的取值范围为__-2<y<0__.【解析】当x=-1时,y=-2,∵x<0时,y随x的增大而减小,图象位于第三象限,∴y的取值范围为-2<y<0.10.[2017·菏泽]直线y=kx(k>0)与反比例函数y=6x的图象交于A(x1,y1)和B(x2,y2)两点,则3x1y2-9x2y1的值为__36__.【解析】由图象可知点A(x1,y1),B(x2,y2)关于原点对称,∴x1=-x2, y1=-y2,把A(x1,y1)代入双曲线y=6x,得x1y1=6,∴3x1y2-9x2y1=-3x1y1+9x1y1=-18+54=36.11.[2017·漳州]如图16-4,A,B是反比例函数y=6x上的点,分别过点A,B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为__8__.图16-4第11题答图【解析】由A,B为反比例函数图象上的两点,利用比例系数k的几何意义,求出矩形ACOG与矩形BEOF的面积,再由阴影DGOF的面积求出空白矩形面积之和.如答图,∵A,B是反比例函数y=6x图象上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ADFC+S矩形BDGE=6+6-2-2=8. 12.[2017·扬州]已知点A是反比例函数y=-2x的图象上的一个动点,连结OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为__y=2x__.图16-5第12题答图【解析】如答图,分别过点A、点B作x轴的垂线,垂足分别为G和H,很容易发现这是一个“K”字型全等三角形,根据反比例函数比例系数k的几何意义可以知道△AOG的面积是1,于是△BOH的面积也始终为1,再结合点B在第一象限的位置,可以知道动点B在反比例函数的图象上,且k=2,所以点B所在图象的函数表达式为y=2x.三、解答题(共22分)13.(10分)[2017·常德]如图16-6,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数y =kx 的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.图16-6解:(1)∵反比例函数y =kx 的图象经过点A (4,m ),AB ⊥x 轴于点B ,△AOB 的面积为2,∴12OB ×AB =2,12×4×m =2,∴AB =m =1, ∴A (4,1),∴k =xy =4,∴反比例函数的表达式为y =4x ,即k =4,m =1; (2)由(1)知反比例函数为y =4x .∵k =4>0,∴当-3≤x ≤-1时,y 随x 的增大而减小, ∵点C (x ,y )也在反比例函数的图象上,∴当 x =-3时,y 取最大值,y max =-43;当x =-1时,y 取最小值,y min =-4,∴y 的取值范围为-4≤y ≤-43.14.(12分)[2017·内江]如图16-7,已知A (-4,2),B (n ,-4)两点是一次函数y =kx +b 和反比例函数y =mx 图象的两个交点.图16-7(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b -mx >0的解集. 解:(1)把 A (-4,2)代入y =mx ,得m =2×(-4)=-8, ∴反比例函数的表达式为y =-8x .把B (n ,-4)代入y =-8x ,得-4n =-8,解得n =2.把A (-4,2)和B (2,-4)代入y =kx +b ,得⎩⎨⎧-4k +b =2,2k +b =-4,解得⎩⎨⎧k =-1,b =-2, ∴一次函数的表达式为y =-x -2;(2)在y =-x -2中,令y =0,则x =-2,即直线y =-x -2与x 轴交于点 C (-2,0),∴OC =2.∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6;(3)由图可得,不等式kx +b -mx >0的解集为x <-4或0<x <2.(20分)15.(6分))[2017·威海]如图16-8,正方形ABCD 的边长为5,点A 的坐标为 (-4,0),点B 在y 轴上,若反比例函数y =kx (k ≠0)的图象经过点C ,则该反比例函数的表达式为( A )A .y =3xB .y =4xC .y =5xD .y =6x图16-8 第15题答图【解析】 ∵如答图,过点C 作CE ⊥y 轴于E ,则△BCE ≌△ABO ,∴CE =OB =3,BE =AO =4,OE =1,则点C 坐标为(3,1),∴k =3,反比例函数表达式为y =3x .16.(6分)[2017·温州]如图16-9,矩形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA ′B ′D 与四边形OABD 关于直线OD 对称(点A ′和A ,B 和B ′分别对应),若AB =1,反比例函数y =kx (k ≠0)的图象恰好经过点A ′,B ,则k 的值为__433__.【解析】 由点B 在反比例函数上且AB =1,可得OA =k ,由对称性质可知OA ′=OA =k ,∠AOA ′=2∠AOD =60°,∴点A ′的坐标为⎝ ⎛⎭⎪⎫12k ,32k ,∵点A ′在反比例函数上, ∴12k ×32k =k ,∴k =433.17.(8分)[2016·宁波]如图16-10,A 为函数y =9x (x >0)图象上一点,连结OA ,交函数y =1x (x >0)的图象于点B ,C 是x 轴上一点,且AO =AC ,则△ABC 的面积为__6__.图16-10【解析】 设点A 的坐标为⎝ ⎛⎭⎪⎫a ,9a ,点B 的坐标为⎝ ⎛⎭⎪⎫b ,1b , ∵C 是x 轴上一点,且AO =AC , ∴点C 的坐标是(2a ,0),设过点O (0,0),A ⎝ ⎛⎭⎪⎫a ,9a 的直线的表达式为y =kx ,∴9a =k ·a ,解得k =9a 2,又∵点B ⎝ ⎛⎭⎪⎫b ,1b 在y =9a 2x 上,图16-9∴1b =9a 2·b ,解得a b =3或ab =-3(舍去), ∴S △ABC =S △AOC -S △OBC =2a ·9a 2-2a ·1b 2=9-3=6.(10分)18.(10分)[2016·湖州]已知点P 在一次函数y =kx +b (k ,b 为常数,且k <0,b >0)的图象上,将点P 向左平移1个单位,再向上平移2个单位得到点Q ,点Q 也在该函数y =kx +b 的图象上. (1)k 的值是__-2__;(2)如图16-11,该一次函数的图象分别与x 轴,y 轴交于A ,B 两点,且与反比例函数y =-4x 的图象交于C ,D 两点(点C 在第二象限内),过点C 作CE ⊥x 轴于点E ,记S 1为四边形CEOB 的面积,S 2为△OAB 的面积,若S 1S 2=79,则b 的值是.图16-11【解析】 (1)设点P 的坐标为(m ,n ),则点Q 的坐标为(m -1,n +2),代入y =kx +b ,得⎩⎨⎧n =km +b ,n +2=k (m -1)+b , 解得k =-2;(2)∵BO ⊥x 轴,CE ⊥x 轴, ∴BO ∥CE , ∴△AOB ∽△AEC .又∵S 1S 2=79,∴S △AOB S △AEC =97+9=916.令一次函数y=-2x+b中,x=0,则y=b,∴BO=b,令一次函数y=-2x+b中,y=0,则0=-2x+b,解得x=b2,即AO=b2.∵△AOB∽△AEC,且S△AOBS△AEC=916,∴AOAE=BOCE=34.∴AE=43AO=23b,CE=43BO=43b,OE=AE-AO=16b.∵OE·CE=|-4|=4,即29b2=4,解得b=32或-32(舍去).。
2018年中考真题训练反比例函数答案一、选择题1、在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )AA .k >3B .k >0C .k <3D . k <0 2、某反比例函数的图像过点M (2-,1),则此反比例函数 表达式为( )BA .2y x =B .2y x =-C .12y x =D .12y x=-3、已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。
AA 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定4、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ).C A .不小于54m 3 B .小于54m 3C .不小于45m 3 D .小于45m 35、反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( )D (A)2 (B)-2 (C)4 (D)-4 6、对于反比例函数2y x=,下列说法不正确...的是( )C A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小7、已知反比例函数2y x=,则这个函数的图象一定经过( )A A . (2,1) B . (2,-1) C . (2,4) D . (-12,2) 8、在下图中,反比例函数xk y 12+=的图象大致是( )D9、若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )D A .b 1<b2B .b 1 = b2C .b 1>b 2D .大小不确定10、反比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )CA.第一、二象限 B.第一、三象限 C.第二、四角限D.第三、四象限11、已知反比例函数8y x=-的图象经过点P (a+1,4),则a=_____.-3 12、若反比例函数1y x=-的图象上有两点1(1)A y ,,2(2)B y ,,则1y ______2y (填“>”或“=”或“<”). < 13、如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位. 1014、在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 .B 三、解答题15、如图6,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.解:(1) ∵ 点A (-4,2)和点B (n ,-4)都在反比例函数y =xm的图象上, ∴2,44.m m n ⎧=⎪⎪-⎨⎪-=⎪⎩解得8,2.m n =-⎧⎨=⎩图6又由点A (-4,2)和点B (2,-4)都在一次函数y =kx +b 的图象上, ∴42,2 4.k b k b -+=⎧⎨+=-⎩ 解得1,2.k b =-⎧⎨=-⎩∴ 反比例函数的解析式为8y x=-,一次函数的解析式为y =-x -2 .(2) x 的取值范围是x >2或-4<x <0 .16、如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.解:(1)∵点(21)A -,在反比例函数my x =的图象上, (2)12m =-⨯=-∴.∴反比例函数的表达式为2y x =-.∵点(1)B n ,也在反比例函数2y x=-的图象上,2n =-∴,即(12)B -,. 把点(21)A -,,点(12)B -,代入一次函数y kx b =+中,得 212k b k b -+=⎧⎨+=-⎩,,解得11k b =-⎧⎨=-⎩,.∴一次函数的表达式为1y x =--. (2)在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(10)C -,. ∵线段OC 将AOB △分成AOC △和BOC △,1113111212222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=+=△△△∴.17.(6分)将油箱注满k 升油后,轿车科行驶的总路程S (单位:千米)与平均耗油量a (单位:升/千米)之间是反比例函数关系S =(k 是常数,k ≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式); (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米? 解答: 解:(1)由题意得:a =0.1,s =700, 代入反比例函数关系S =中, 解得:k =sa =70, 所以函数关系式为:s =;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;18.(2014•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入,,时,19.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;解:(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.20.(10分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.,=,==1=的图象上.。
中考数学总复习《反比例函数》专题测试卷及答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关的图象一定经过的点是( )1.反比例函数y=-10xA.(1,10)B.(-2,5)C.(2,5)D.(2,8)的图象如图所示,以下结论中正确的是( )2.反比例函数y=mxA.常数m<-2B.若A(-1,h),B(2,k)在图象上,则h<kC.y随x的增大而减小D.若P(x,y)在图象上,则P'(x,-y)也在图象上(x<0)的图象上的一点,过点A作平行四边形ABCD,3.如图,点A是反比例函数y=kx使点B,C在x轴上,点D在y轴上.已知平行四边形ABCD的面积为6,则k 的值为( )A.6B.-6C.3D.-34.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A.函数表达式为I=13RB.蓄电池的电压是18 VC.当R=6 Ω时,I=4 AD.当I≤10 A时,R≥3.6 Ω5.已知点A(-4,y1),B(-2,y2),C(3,y3),D(4,-1)都在反比例函数y=kx的图象上,则y1,y2,y3的大小关系为( )A.y3<y2<y1B.y1<y3<y2C.y3<y1<y2D.y2<y3<y16.反比例函数y=abx与一次函数y=ax+b在同一坐标系中的大致图象可能是( )7.双曲线C1:y=k1x 和C2:y=k2x如图所示,点A是C1上一点,分别过点A作AB⊥x轴,AC⊥y轴,垂足分别为点B、点C,AB,AC与C2分别交于点D、点E,若四边形ADOE的面积为4,则k1-k2=.8.(2024·内江中考)如图,一次函数y=ax+b的图象与反比例函数y=kx的图象相交于A,B两点,其中点A的坐标为(-2,3),点B的坐标为(3,n).(1)求这两个函数的表达式;(2)根据图象,直接写出关于x的不等式的解集.ax+b<kxB层·能力提升(k为常数)的图象上,若x1<0<x2,9.点M(x1,y1)和点N(x2,y2)在反比例函数y=k2-2k+3x则y1,y2,0的大小关系为( )A.y1<y2<0B.y1>y2>0C.y1<0<y2D.y1>0>y2(x<0)的图象10.如图,在平面直角坐标系xOy中,点A,B都在反比例函数y=kx上,且△OAB是等边三角形,若AB=6,则k的值为( )A.-8B.-9C.-6√3D.-12交于A,B两点,11.如图,在平面直角坐标系中,直线y=kx(k>0)与双曲线y=2xAC⊥x轴于点C,连接BC交y轴于点D,结合图象判断下列结论:①点A与点B 关于原点对称;②点D是BC的中点;③在y=2x的图象上任取点P(x1,y1)和点Q(x2,y2),如果y1>y2,那么x1>x2;④S△BOD=12.其中正确结论的个数是( )A.1B.2C.3D.412.如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是.13.如图,把一个等腰直角三角形ACB放在平面直角坐标系中∠ACB=90°,点C(-2,0),点B在反比例函数y=kx的图象上,且y轴平分∠BAC,则k的值是.C层·素养挑战14.如图,反比例函数y=kx (k>0)的图象与正比例函数y=23x的图象交于A,B两点(点A在第一象限).(1)当点A的横坐标为2时,求点A的坐标以及k的值;(2)若点A的横坐标为3时,点C为y轴正半轴上一点,∠ACB=90°,求△ACB 的面积;(3)在(2)的条件下,平面直角坐标系内是否存在点D,使得以A,B,C,D为顶点构成平行四边形,若存在,求出D的坐标,若不存在,请说明理由.参考答案A层·基础过关的图象一定经过的点是(B)1.反比例函数y=-10xA.(1,10)B.(-2,5)C.(2,5)D.(2,8)的图象如图所示,以下结论中正确的是(B)2.反比例函数y=mxA.常数m<-2B.若A(-1,h),B(2,k)在图象上,则h<kC.y随x的增大而减小D.若P(x,y)在图象上,则P'(x,-y)也在图象上3.如图,点A是反比例函数y=k(x<0)的图象上的一点,过点A作平行四边形ABCD,x使点B,C在x轴上,点D在y轴上.已知平行四边形ABCD的面积为6,则k 的值为(B)A.6B.-6C.3D.-34.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是(D)A.函数表达式为I=13RB.蓄电池的电压是18 VC.当R=6 Ω时,I=4 AD.当I≤10 A时,R≥3.6 Ω5.已知点A(-4,y1),B(-2,y2),C(3,y3),D(4,-1)都在反比例函数y=kx的图象上,则y1,y2,y3的大小关系为(C)A.y3<y2<y1B.y1<y3<y2C.y3<y1<y2D.y2<y3<y16.反比例函数y=abx与一次函数y=ax+b在同一坐标系中的大致图象可能是(D)7.双曲线C1:y=k1x 和C2:y=k2x如图所示,点A是C1上一点,分别过点A作AB⊥x轴,AC ⊥y 轴,垂足分别为点B 、点C ,AB ,AC 与C 2分别交于点D 、点E ,若四边形ADOE 的面积为4,则k 1-k 2= -4 .8.(2024·内江中考)如图,一次函数y =ax +b 的图象与反比例函数y =kx 的图象相交于A ,B 两点,其中点A 的坐标为(-2,3),点B 的坐标为(3,n ).(1)求这两个函数的表达式;(2)根据图象,直接写出关于x 的不等式 ax +b <kx 的解集.【解析】(1)∵一次函数y =ax +b 的图象与反比例函数y =kx的图象相交于A ,B 两点,其中点A 的坐标为(-2,3),点B 的坐标为(3,n ) ∴k =-2×3=3×n ,∴k =-6,n =-2 ∴反比例函数表达式为y =-6xA (-2,3),B (3,-2)在一次函数y =ax +b 的图象上{-2a +b =33a +b =-2,解得{a =-1b =1一次函数表达式为y =-x +1.(2)由图象可知,关于x 的不等式ax +b <kx的解集为:-2<x <0或x >3.B 层·能力提升9.(2024·滨州中考)点M (x 1,y 1)和点N (x 2,y 2)在反比例函数y =k 2-2k+3x(k 为常数)的图象上,若x1<0<x2,则y1,y2,0的大小关系为(C)A.y1<y2<0B.y1>y2>0C.y1<0<y2D.y1>0>y210.如图,在平面直角坐标系xOy中,点A,B都在反比例函数y=k(x<0)的图象x上,且△OAB是等边三角形,若AB=6,则k的值为(B)A.-8B.-9C.-6√3D.-12交11.(2024·新疆中考)如图,在平面直角坐标系中,直线y=kx(k>0)与双曲线y=2x 于A,B两点,AC⊥x轴于点C,连接BC交y轴于点D,结合图象判断下列结的图象上任取点论:①点A与点B关于原点对称;②点D是BC的中点;③在y=2xP(x1,y1)和点Q(x2,y2),如果y1>y2,那么x1>x2;④S△BOD=1.其中正确结论的个数2是(C)A.1B.2C.3D.412.(2024·博山二模)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是y=18.x13.(2024·沂源一模)如图,把一个等腰直角三角形ACB放在平面直角坐标系中∠ACB=90°,点C(-2,0),点B在反比例函数y=kx的图象上,且y轴平分∠BAC,则k的值是-4√2.C层·素养挑战14.如图,反比例函数y=kx (k>0)的图象与正比例函数y=23x的图象交于A,B两点(点A在第一象限).(1)当点A的横坐标为2时,求点A的坐标以及k的值;(2)若点A的横坐标为3时,点C为y轴正半轴上一点,∠ACB=90°,求△ACB 的面积;(3)在(2)的条件下,平面直角坐标系内是否存在点D,使得以A,B,C,D为顶点构成平行四边形,若存在,求出D的坐标,若不存在,请说明理由.【解析】(1)∵点A的横坐标为2∴当x=2时,y=23×2=43∴点A的坐标为(2,43)∵点A在反比例函数y=kx (k>0)的图象上,∴k=2×43=83;(2)∵点A的横坐标为3∴当x=3时,y=23×3=2∴点A坐标为(3,2)由图象的对称性得,点B(-3,-2)∴AO=BO=√32+22=√13又∵∠ACB=90°∴CO=AO=BO=√13,∵点C在y轴上∴点C(0,√13)∴S△ACB=S△AOC+S△BOC=12×√13×3+12×√13×3=3√13;(3)存在.设点D坐标为(m,n)由(2)知,A(3,2),B(-3,-2),C(0,√13)①若AB为对角线,则四边形ACBD是平行四边形,∴AB与CD互相平分∴12(-3+3)=12(0+m),12(-2+2)=12(n+√13)∴m=0,n=-√13,∴点D(0,-√13);②若AC为对角线,则四边形ABCD是平行四边形,∴AC与BD互相平分∴12(3+0)=12(-3+m),12(2+√13)=12(-2+n),∴m=6,n=4+√13∴点D(6,4+√13);③若BC为对角线,则四边形ACDB是平行四边形,∴BC与AD互相平分∴12(3+m)=12(-3+0),12(2+n)=12(-2+√13),∴m=-6,n=-4+√13∴点D(-6,-4+√13)综上所述:点D坐标为(0,-√13)或(6,4+√13)或(-6,-4+√13).第11页共11页。
2018年中考初三反比例函数训练D三.解答题(共4小题)9.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P 为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.10.已知A=(a,b≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.11.如图,在平面直角坐标系中,菱形OBCD的边OB 在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.12.如图,在平面直角坐标系xOy中,一次函数y=﹣ax+b 的图象与反比例函数y=的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数和一次函数的表达式;(2)求点C的坐标及△AOB的面积.2017年中考初三反比例函数训练参考答案与试题解析一.选择题(共5小题)1.(2016•绥化)当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A.B.C.D.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.【点评】本题考查了反比例函数与一次函数图象的知识,解答本题的关键在于通过k>0判断出函数所经过的象限.2.(2016•淄博)反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.3【分析】①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积﹣(三角形ODB面积+面积三角形OCA),解答可知;③连接OM,点A是MC的中点可得△OAM和△OAC 的面积相等,根据△ODM的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.【解答】解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA 的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;故选:D.【点评】本题考查了反比例函数y=(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.3.(2016•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.【点评】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.4.(2016•菏泽)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S ﹣S△BAD为()△OACA.36 B.12 C.6 D.3【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S △OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.5.(2016•本溪)如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB 于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为()A.4 B.6 C.﹣4 D.﹣6【分析】设点C的坐标为(m,),则点E(m,),A(m,),根据三角形的面积公式可得出S △AEC=﹣k=,由此即可求出k值.【解答】解:设点C的坐标为(m,),则点E(m,),A(m,),∵S △AEC=BD•AE=(m﹣m)•(﹣)=﹣k=,∴k=﹣4.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C的坐标,利用点C的横坐标表示出A、E点的坐标.本题属于基础题,难度不大,解决该题型题目时,利用反比例函数图象上点的坐标特征表示出点的坐标是关键.二.填空题(共3小题)6.(2016•宁波)如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为6.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S △ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.7.(2016•滨州)如图,已知点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是3.【分析】设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标,根据线段AB、CD的长度结合AB与CD间的距离,即可得出y1、y2的值,连接OA、OB,延长AB交y轴于点E,通过计算三角形的面积结合反比例函数系数k的几何意义即可得出结论.【解答】解:设点A、B的纵坐标为y1,点C、D的纵坐标为y2,则点A(,y 1),点B(,y1),点C(,y2),点D (,y 2).∵AB=,CD=,∴2×||=||,∴|y1|=2|y2|.∵|y1|+|y2|=6,∴y1=4,y2=﹣2.连接OA、OB,延长AB交y轴于点E,如图所示.S △OAB=S△OAE﹣S△OBE=(a﹣b)=AB•OE=××4=,∴a﹣b=2S△OAB=3.故答案为:3.【点评】本题考查了反比例函数系数k的几何意义以及反比例函数的性质,解题的关键是找出a﹣b=2S△OAB.本题属于中档题,难度不大,解决该题型题目时,利用反比例函数系数k的几何意义结合三角形的面积求出反比例函数系数k是关键.8.(2016•漳州)如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为8.【分析】由A,B为双曲线上的两点,利用反比例系数k 的几何意义,求出矩形ACOG与矩形BEOF面积,再由阴影DGOF面积求出空白面积之和即可.【解答】解:∵点A、B是双曲线y=上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=8,故答案为:8【点评】此题考查了反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解本题的关键.三.解答题(共4小题)9.(2016•恩施州)如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.【分析】(1)根据∠ACB=60°,求出tan60°==,设点A(a,b),根据点A,C,P均在反比例函数y=的图象上,求出A点的坐标,从而得出C点的坐标,然后即可得出点B的坐标;(2)先求出AQ、PF的长,设点P的坐标是(m,n),则n=,根据点P在反比例函数y=的图象上,求出m 和S△OPF,再求出S长方形DEFO,最后根据S四边形AOPE=S长方形DEFO﹣S△AOD ﹣S△OPF,代入计算即可.【解答】解:(1)∵∠ACB=60°,∴∠AOQ=60°,∴tan60°==,设点A(a,b),则,解得:或(不合题意,舍去)∴点A的坐标是(2,2),∴点C的坐标是(﹣2,﹣2),∴点B的坐标是(2,﹣2),(2)∵点A的坐标是(2,2),∴AQ=2,∴EF=AQ=2,∵点P为EF的中点,∴PF=,设点P的坐标是(m,n),则n=∵点P在反比例函数y=的图象上,∴=,S △OPF=|4|=2,∴m=4,∴OF=4,∴S 长方形DEFO=OF•OD=4×2=8,∵点A在反比例函数y=的图象上,∴S △AOD=|4|=2,∴S 四边形AOPE=S长方形DEFO﹣S△AOD﹣S△OPF=8﹣2﹣2=4.【点评】此题主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.10.(2016•广州)已知A=(a,b≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.【分析】(1)利用完全平方公式的展开式将(a+b)2展开,合并同类型、消元即可将A进行化解;(2)由点P在反比例函数图象上,即可得出ab的值,代入A化解后的分式中即可得出结论.【解答】解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.【点评】本题考查了分式的化解求值以及反比例函数图象上点的坐标特征,解题的关键是:(1)将原分式进行化解;(2)找出ab值.本题属于基础题,难度不大,解决该题型题目时,先将原分式进行化解,再代入ab求值即可.11.(2016•贵阳)如图,在平面直角坐标系中,菱形OBCD 的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和双曲线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A 点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).【点评】本题考查了反比例函数图象上的点的特点、待定系数法确定反比例函数的解析式等知识,解题的关键是能够根据点C的坐标确定点B的坐标,从而确定直线的解析式.12.(2016•甘孜州)如图,在平面直角坐标系xOy中,一次函数y=﹣ax+b的图象与反比例函数y=的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数和一次函数的表达式;(2)求点C的坐标及△AOB的面积.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出k值,从而得出反比例函数表达式,再由点B的坐标和反比例函数表达式即可求出m值,结合点A、B的坐标利用待定系数法即可求出一次函数表达式;(2)令一次函数表达式中x=0求出y值即可得出点C 的坐标,利用分解图形求面积法结合点A、B的坐标即可得出结论.【解答】解:(1)∵点A(﹣4,﹣2)在反比例函数y=的图象上,∴k=﹣4×(﹣2)=8,∴反比例函数的表达式为y=;∵点B(m,4)在反比例函数y=的图象上,∴4m=8,解得:m=2,∴点B(2,4).将点A(﹣4,﹣2)、B(2,4)代入y=﹣ax+b中,得:,解得:,∴一次函数的表达式为y=x+2.(2)令y=x+2中x=0,则y=2,∴点C的坐标为(0,2).∴S △AOB=OC×(x B﹣x A)=×2×[2﹣(﹣4)]=6.【点评】本题考查了反比例函数与一次函数的交点坐标、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)利用待定系数法求函数表达式;(2)利用分割图形求面积法求出△AOB的面积.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.。
中考专题-----反比例函数测试题。
一基础过关。
1.如图,点A 为反比例函数y =-4x图象上的一点,过A 作AB ⊥x 轴于点B ,连接OA ,则△ABO 的面积为( )A .-4B .4C .-2D .22.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是( )A .y =3xB .y =3xC .y =-1xD .y =x 23.(“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜片的焦距为0.2 m ,则表示y 与x 的函数关系的图象大致是( )4.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y=kx -k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.在反比例函数y =1-3mx 图象上有两点A(x 1,y 1)、B(x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( )A .m >13B .m <13C .m ≥13D .m ≤136.已知点P(3,-2)在反比例函数y =kx(k ≠0)的图象上,则k =( ).7.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标( ).8.如图所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D ,若矩形OAB C 的面积为8,则k 的值为( ).9.已知反比例函数的图象经过点P(2,-3).(1)求该函数的解析式;(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使得点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.10.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y(2)若商场计划每天的销售利润为3 000元,则其单价应定为多少元?11.如图,直线AB与坐标轴分别交于A(-2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.12.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=mx(m为常数,且m≠0)的图象交于点A(-2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.二经典题型13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=kx(k≠0,x>0)的图象过点B,E.若AB=4,则k的值为().14.如图,点A在函数y=4x(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为().15.如图,在函数y =8x (x>0)的图象上有点P 1,P 2,P 3,…,P n ,P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1,P 2,P 3,…,P n ,P n +1分别作x 轴,y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1,S 2,S 3,…,S n ,则S 1=4,S n =( ).(用含n 的代数式表示)16.如图,若双曲线y =kx 与边长为5的等边△AOB 的边OA ,AB 分别相交于C ,D 两点,且OC =3BD ,则实数k的值为( )三易错易混题17.如图,直线y =mx 与双曲线y =k x 相交于A ,B 两点,A 点的坐标为(1,2),根据图象直接写出当mx >kx 时,x的取值范围是( )参考答案1.如图,点A 为反比例函数y =-4x图象上的一点,过A 作AB ⊥x 轴于点B ,连接OA ,则△ABO 的面积为( D )A .-4B .4C .-2D .22.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是( B )A .y =3xB .y =3xC .y =-1xD .y =x 23.(“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜片的焦距为0.2 m ,则表示y 与x 的函数关系的图象大致是( B )4.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y=kx -k 的图象不经过( B )A .第一象限B .第二象限C .第三象限D .第四象限5.在反比例函数y =1-3mx 图象上有两点A(x 1,y 1)、B(x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( B )A .m >13B .m <13C .m ≥13D .m ≤136.已知点P(3,-2)在反比例函数y =kx(k ≠0)的图象上,则k =-6.7.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标答案不唯一,如:(-3,1).8.如图所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D ,若矩形OAB C 的面积为8,则k 的值为2.9.已知反比例函数的图象经过点P(2,-3).(1)求该函数的解析式;(2)若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移n(n>0)个单位得到点P′,使得点P′恰好在该函数的图象解:(1)设反比例函数的解析式为y =kx .将点P 的坐标代入解析式,得k =2×(-3)=-6.∴该函数的解析式为y =-6x .(2)由题意,点P′的横坐标为-1. ∵点P′恰好在该函数的图象上, ∴y P ′=-6-1=6. 故n =6-(-3)=9,且点P 沿y 轴平移的方向是向上.10.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x ,y (2)若商场计划每天的销售利润为3 000元,则其单价应定为多少元? 解:(1)由表中数据得xy =6 000,∴y =6 000x. ∴y 是x 的反比例函数,且函数关系式为y =6 000x. (2)由题意,得(x -120)y =3 000, 将y =6 000x 代入,得(x -120)·6 000x=3 000. 解得x =240.经检验,x =240是原方程的根.答:若商场计划每天的销售利润为3 000元,则其单价应定为240元.11.如图,直线AB 与坐标轴分别交于A(-2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.解:设一次函数的解析式为y =kx +b.把A(-2,0),B(0,1)代入一次函数解析式,得⎩⎪⎨⎪⎧-2k +b =0,b =1.解得⎩⎪⎨⎪⎧k =12,b =1.∴一次函数的解析式为y =12x +1.把C(4,n)代入一次函数解析式,得n =3, ∴C(4,3).m∴反比例函数的解析式为y =12x. 12.如图,在平面直角坐标系xOy 中,一次函数y 1=ax +b(a ,b 为常数,且a ≠0)与反比例函数y 2=mx (m 为常数,且m ≠0)的图象交于点A(-2,1)、B(1,n). (1)求反比例函数和一次函数的解析式; (2)连接OA 、OB ,求△AOB 的面积;(3)直接写出当y 1<y 2<0时,自变量x 的取值范围.解:(1)由题意,点A(-2,1)在反比例函数图象上, ∴1=m-2,m =-2.∴反比例函数解析式为y 2=-2x .又∵点B(1,n)也在反比例函数图象上, ∴n =-21=-2.∴B(1,-2).∵点A ,B 在一次函数y 1=ax +b 的图象上,∴⎩⎪⎨⎪⎧1=-2a +b ,-2=a +b.解得⎩⎪⎨⎪⎧a =-1,b =-1. ∴一次函数解析式为y 1=-x -1.(2)设线段AB 交y 轴于C ,∴OC =1.分别过点A ,B 作AE ,BF 垂直于y 轴. ∴S △AOB =S △AOC +S △BOC =12OC·AE +12OC·BF =12×1×2+12×1×1 =32. (3)当y 1<y 2<0时,x >1.13.如图,在平面直角坐标系xOy 中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C在边DE 上,反比例函数y =kx(k ≠0,x >0)的图象过点B ,E.若AB =4,则k 的值为14.如图,点A 在函数y =4x(x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为15.如图,在函数y =8x (x>0)的图象上有点P 1,P 2,P 3,…,P n ,P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1,P 2,P 3,…,P n ,P n +1分别作x 轴,y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1,S 2,S 3,…,S n ,则S 1=4,S n =8n (n +1).(用含n 的代数式表示)16.如图,若双曲线y =kx 与边长为5的等边△AOB 的边OA ,AB 分别相交于C ,D 两点,且OC =3BD ,则实数k的值为 4解:17.如图,直线y =mx 与双曲线y =k x 相交于A ,B 两点,A 点的坐标为(1,2),根据图象直接写出当mx >kx 时,x的取值范围是-1<x <0或x >1.解:。
2018级中考数学专题复习—反比例函数与一次函数的综合1.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.2.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.3.如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.4.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?5.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.6.如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.7.已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.8.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.9.如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.10.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.12.已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.13.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(3)观察图象,直接写出y1>y2时x的取值范围.14.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.15.如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;16.如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.17.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.18.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.19.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.20.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数的图象交于点C,连接CO,过C作CD⊥x轴于D,已知tan∠ABO=,OB=4,OD=2.(1)求直线AB和反比例函数的解析式;(2)在x轴上有一点E,使△CDE与△COB的面积相等,求点E的坐标.21.如图,在平面直角坐标系中,点A是反比例函数y=(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,﹣2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.22.如图,已知一次函数y=k1x+b的图象分别x轴,y轴交于A、B两点,且与反比例函数y=交于C、E 两点,点C在第二象限,过点C作CD⊥x轴于点D,OD=1,OE=,cos∠AOE=(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.23.如图,一次函数y=x+2的图象与x轴交于点B,与反比例函数y=(k≠0)的图象的一个交点为A(2,m).(1)求反比例函数的表达式;(2)过点A作AC⊥x轴,垂足为点C,设点D在反比例函数图象上,且△DBC的面积等于6,请求出点D的坐标;(3)请直接写出不等式x+2<成立的x取值范围.24.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A(2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.25.如图,已知反比例函数y=(k<0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为2.(1)求k和m的值;(2)若一次函数y=ax+1的图象经过点A,并且与x轴的交点为点C,试求出△ABC的面积.26.如图,已知一次函数y=k1x+b的图象分别与x轴、y轴的正半轴交于A、B两点,且与反比例函数y=交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OA=OB=2,OD=1.(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.27.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.28.如图,直线y=﹣2和双曲线y=相交于A(b,1),点P在直线y=x﹣2上,且P点的纵坐标为﹣1,过P作PQ∥y轴交双曲线于点Q.(1)求Q点的坐标;(2)求△APQ的面积.29.如图,在一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)求△AOB的面积.30.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q (4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.2018级中考数学专题复习-反比例函数与一次函数的交点参考答案与试题解析一.解答题(共30小题)1.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.2.(2016•重庆)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【分析】(1)过点A作AE⊥x轴于点E,设反比例函数解析式为y=.通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可;(2)由点B在反比例函数图象上可求出点B的坐标,设直线AB的解析式为y=ax+b,由点A、B的坐标利用待定系数法求出直线AB的解析式,令该解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)求出直线AB的解析式.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.3.(2016•南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.4.(2014•资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【分析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.【解答】解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2010•成都)如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【分析】(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.(2010•泸州)如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=﹣,再求出B的坐标是(1,﹣2),利用待定系数法求一次函数的解析式;(2)在一次函数的解析式中,令x=0,得出对应的y2的值,即得出直线y2=﹣x﹣1与y轴交点C的坐标,从而求出△AOC的面积;(3)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围﹣2<x<0或x>1.【解答】解:(1)∵函数y1=的图象过点A(﹣2,1),即1=;∴m=﹣2,即y1=﹣,又∵点B(a,﹣2)在y1=﹣上,∴a=1,∴B(1,﹣2).又∵一次函数y2=kx+b过A、B两点,即.解之得.∴y2=﹣x﹣1.(2)∵x=0,∴y2=﹣x﹣1=﹣1,即y2=﹣x﹣1与y轴交点C(0,﹣1).设点A的横坐标为x A,∴△AOC的面积S△OAC==×1×2=1.(3)要使y1>y2,即函数y1的图象总在函数y2的图象上方.∴﹣2<x<0,或x>1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.7.(2008•甘南州)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.【分析】(1)反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点,把A点坐标代入反比例函数解析式,即可求出k,得到反比例函数的解析式.将B(n,﹣1)代入反比例函数的解析式求得B点坐标,然后再把A、B点的坐标代入一次函数的解析式,利用待定系数法求出一次函数的解析式;(2)根据图象,分别在第一、三象限求出反比例函数的值大于一次函数的值时x的取值范围.【解答】解:(1)∵A(1,3)在y=的图象上,∴k=3,∴y=.又∵B(n,﹣1)在y=的图象上,∴n=﹣3,即B(﹣3,﹣1)∴解得:m=1,b=2,∴反比例函数的解析式为y=,一次函数的解析式为y=x+2.(2)从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值.【点评】本类题目的解决需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,另外要学会利用图象,确定x的取值范围.8.(2008•南充)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y轴的交点运用分割法求得不规则图形的面积.9.(2007•资阳)如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【分析】(1)由A和B都在反比例函数图象上,故把两点坐标代入到反比例解析式中,列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A的坐标及反比例函数解析式,把确定出的A坐标及B的坐标代入到一次函数解析式中,得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出一次函数解析式;(2)令一次函数解析式中x为0,求出此时y的值,即可得到一次函数与y轴交点C的坐标,得到OC的长,三角形AOB的面积分为三角形AOC及三角形BOC面积之和,且这两三角形底都为OC,高分别为A和B的横坐标的绝对值,利用三角形的面积公式即可求出三角形ABC的面积;(3)根据图象和交点坐标即可得出结果.【解答】解:(1)∵m=﹣8,∴n=2,则y=kx+b过A(﹣4,2),B(n,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2;(2)由(1)得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6;(3)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有利用待定系数法求函数解析式,两函数交点坐标的意义,一次函数与坐标轴交点的求法,以及三角形的面积公式,利用了数形结合的思想.第一问利用的方法为待定系数法,即根据题意把两交点坐标分别代入两函数解析式中,得到方程组,求出方程组的解确定出函数解析式中的字母常数,从而确定出函数解析式,第二问要求学生借助图形,找出点坐标与三角形边长及边上高的关系,进而把所求三角形分为两三角形来求面积.10.(2005•四川)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【分析】(1)根据tan∠AOC=,且OA=,结合勾股定理可以求得点A的坐标,进一步代入y=中,得到反比例函数的解析式;然后根据反比例函数的解析式得到点B的坐标,再根据待定系数法求一次函数解析式;(2)三角形AOB的面积可利用,求和的方法即等于S△AOC+S△COB来求.【解答】解:(1)过点A作AH⊥x于点H.在RT△AHO中,tan∠AOH==,所以OH=2AH.又AH2+HO2=OA2,且OA=,所以AH=1,OH=2,即点A(﹣2,1).代入y=得k=﹣2.∴反比例函数的解析式为y=﹣.又因为点B的坐标为(,m),代入解得m=﹣4.∴B(,﹣4).把A(﹣2,1)B(,﹣4)代入y=ax+b,得,∴a=﹣2,b=﹣3.∴一次函数的解析式为y=﹣2x﹣3.(2)在y=﹣2x﹣3中,当y=0时,x=﹣.即C(,0).∴S△AOB=S△AOC+S△COB=(1+4)×=.【点评】此题综合考查了解直角三角形、待定系数法、和函数的基本知识,难易程度适中.11.(2016•乐至县一模)如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【分析】(1)把点A(﹣2,4),B(4,﹣2)代入一次函数y=kx+b即可求出k及b的值;(2)先求出C点的坐标,根据S△AOB=S△AOC+S△BOC即可求解;(3)由图象即可得出答案;【解答】解:(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|A x|,S△BOC=×OC×|B x|∴S△AOB=S△AOC+S△BOC=•OC•|A x|+•OC•|B x|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.【点评】本题考查了反比例函数与一次函数的交点问题,属于基础题,关键是掌握用待定系数法求解函数解析式.12.(2016•重庆校级模拟)已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.【分析】(1)先根据解直角三角形求得点D和点B的坐标,再利用C、D两点的坐标求得一次函数解析式,利用点B的坐标求得反比例函数解析式;(2)先根据解方程组求得两个函数图象的交点A的坐标,再将x轴作为分割线,求得△AOB的面积;(3)根据函数图象进行观察,写出一次函数图象在反比例函数图象下方时所有点的横坐标的集合即可.【解答】解:(1)∵∴直角三角形OCD中,=,即CD=OD又∵OC=1∴12+OD2=(OD)2解得OD=,即D(0,﹣)将C(1,0)和D(0,﹣)代入一次函数y=ax+b,可得,解得∴一次函数的解析式为y=x﹣过B作BE⊥x轴,垂足为E∵直角三角形BCE中,BC=5,∴BE=3,CE==4∴OE=4﹣1=3,即B(﹣3,﹣3)将B(﹣3,﹣3)代入反比例函数,可得k=9∴反比例函数的解析式为y=;(2)解方程组,可得,∴A(4,)∴S△AOB=S△AOC+S△COB=×1×+×1×3=+=;(3)根据图象可得,不等式的解集为:x<﹣3或0<x<4.【点评】本题主要考查了反比例函数与一次函数的交点问题,需要掌握待定系数法求函数解析式的方法,以及根据两个函数图象的交点坐标求有关不等式解集的方法.解答此类试题的依据是:①函数图象上点的坐标满足函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.13.(2016•重庆校级一模)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.【分析】(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.【解答】解:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点∴将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4∴将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+2;(2)在一次函数y1=﹣x+2中,当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6;(3)根据图象可得,当y1>y2时,x的取值范围为:x<﹣2或0<x<4【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握根据函数图象的交点坐标求一次函数解析式和有关不等式解集的方法.解答此类试题的依据是:①函数图象的交点坐标满足两个函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.14.(2016•重庆校级模拟)如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.【分析】(1)根据反比例函数图象上点的坐标特征求出m和n,利用待定系数法求出一次函数的解析式;(2)根据函数图象得到答案;(3)求出直线与x轴的交点坐标,根据三角形的面积公式计算即可.【解答】解:(1)∵反比例函数的图象经过A(2,3),∴m=2×3=6,∴反比例函数的解析式为:y=,∵反比例函数的图象经过于B(﹣3,n),∴n==﹣2,∴点B的坐标(﹣3,﹣2),由题意得,,解得,,∴一次函数的解析式为:y=x+1;(2)由图象可知,不等式kx+b>的解集为:﹣3<x<0或x>2;(3)直线y=x+1与x轴的交点C的坐标为(﹣1,0),则OC=1,则S△ABO=S△OBC+S△ACO=×1×2+×1×3=.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤是解题的关键,注意数形结合思想的运用.15.(2016•成华区模拟)如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)由B点的坐标根据待定系数法即可求得在反比例函数的解析式,代入A(﹣2,m)即可求得m,再由待定系数法求出一次函数解析式;(2)由直线解析式求得C点的坐标,从而求出△AOB的面积.【解答】解:(1)∵B(4,﹣2)在反比例函数y=的图象上,∴k=4×(﹣2)=﹣8,又∵A(﹣2,M)在反比例函数y=的图象上,∴﹣2m=﹣8,∴m=4,∴A(﹣2,4),又∵AB是一次函数y=ax+b的上的点,∴解得,a=﹣1,b=2,∴一次函数的解析式为y=﹣x+2,反比例函数的解析式y=﹣;(2)由直线y=﹣x+2可知C(2,0),所以△AOB的面积=×2×4+×2×2=6.【点评】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.16.(2016•重庆校级一模)如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得k,再把B点坐标代入可求得b,再利用待定系数法可求得一次函数解析式;(2)可先求得D点坐标,再利用三角形的面积计算即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,当x=2时,y=﹣1,即B点坐标为(2,﹣1),∵一次函数y=mx+n(m≠0)过A、B两点,∴把A、B两点坐标代入可得,解得,∴一次函数解析式为y=﹣x+1;(2)在y=﹣x+1中,当x=0时,y=1,∴C点坐标为(0,1),∵点D与点C关于x轴对称,∴D点坐标为(0,﹣1),∴CD=2,∴S△ABD=S△ACD+S△BCD=×2×1+×2×2=3.【点评】本题主要考查一次函数和反比例函数的交点,掌握两函数图象的交点坐标满足每一个函数解析式是解题的关键.。
北京市海淀区2018届中考复习《反比例函数》专题复习练习含答案
北京市海淀区普通中学2018届初三中考数学复习 反比例函数 专题复习练习题
1.下列函数中,y是x的反比例函数的是( )
A.y=1x2 B.xy=8 C.y=2x+5 D.y=3x+5
2.当x>0时,四个函数y=-x,y=2x+1,y=-1x,y=2x,其中y随x的增大而
增大的函数有( )
A.1个 B.2个 C.3个 D.4个
3.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其
深度h(m)之间的函数关系式为S=Vh(h≠0),这个函数的图象大致是图中的( )
4.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之
间的函数关系如图,如果以此蓄电池为电源的用电器限制电流不超过10 A,那么此
用电器的可变电阻为( )
A.不小于3.2 Ω B.不大于3.2 Ω C.不小于12 Ω D.不大于12 Ω
5.函数y=-ax+a与y=-ax(a≠0)在同一平面直角坐标系中的图象可能是( )
6.若函数y=2x+1与函数y=kx的图象相交于点(2,m),则下列各点不在函数y=
k
x
的图象上的是( )
A.(-2,-5) B.52,4 C.(-1,10) D.(5,2)
7.如图,双曲线y=kx(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若梯形
ODBC的面积为3,则双曲线的解析式为( )
A.y=1x B.y=2x C.y=3x D.y=6x
8. 已知y-2与x成反比例,当x=3时,y=1,则y与x之间的函数解析式为
_______________.
9. 反比例函数y=m+1x的图象经过(2,1),则m的值是________.
10.若A(a,b),B(a-2,c)两点均在函数y=1x的图象上,且a<0,则b与c的大
小关系为________.
11. 双曲线y=m-1x在每个象限内,函数值y随着x的增大而增大,则m的取值范围
是________.
12.已知点A(x1,y1),B(x2,y2)都在反比例函数y=9x的图象上,若x1x2=-3,则
y1y2的值为________.
13.一块长方体大理石板的A,B,C三个面上的边长如图,如果大理石板的A面向
下放在地上时地面所受压强为m帕,那么把大理石板的B面向下放在地上时,地面
所受压强是________帕.
14. 已知函数y=(n+3)xn2+2n-9是反比例函数,且在每一个象限内,y随x增大
而减小,求其函数解析式.
15. 由物理学知识知道,在力F(N)的作用下,物体会在力F的方向上发生位移s(m),
力F所做的功W(J)满足W=Fs,当W为定值时,F与s之间的函数图象如图所示.
(1)力F所做的功是多少?
(2)试确定F与s之间的函数解析式;
(3)当F=4 N时,s是多少?
答案:
1—7 BBCAC CB
8. y=-3x+2
9. 1
10. b<c
11. m<1
12. -27
13. 3m
14. 解:由题意得n2+2n-9=-1,n+3>0,
解得n=2,故函数解析式是y=5x.
15. 解:(1)W=Fs,把(2,7.5)代入,得
W=7.5×2=15(J).
(2)F=15s(s>0).
(3)当F=4 N时,s=154 m.