基于故障树数控机床故障诊断系统
- 格式:doc
- 大小:27.00 KB
- 文档页数:7
数控机床故障诊断与维修完整版教案第一章:数控机床概述1.1 数控机床的定义与发展历程1.2 数控机床的组成及工作原理1.3 数控机床的分类及应用领域1.4 数控机床的优缺点分析第二章:数控机床故障诊断与维修基本原理2.1 故障诊断与维修的概念2.2 故障诊断与维修的方法2.3 故障诊断与维修的一般流程2.4 故障诊断与维修的注意事项第三章:数控机床故障诊断与维修常用工具与设备3.1 测量工具与设备3.2 维修工具与设备3.3 故障诊断与维修软件及其应用3.4 安全防护设备及措施第四章:数控机床常见故障类型与诊断方法4.1 硬件故障与软件故障4.2 机械故障与电气故障4.3 故障诊断方法:直观诊断法、参数诊断法、信号诊断法、故障树分析法4.4 故障诊断实例分析第五章:数控机床主要部件的维护与维修5.1 数控装置的维护与维修5.2 伺服系统的维护与维修5.3 刀库与刀具系统的维护与维修5.4 数控机床导轨与丝杠的维护与维修第六章:数控机床的电气控制系统6.1 数控机床电气控制系统概述6.2 CNC装置的结构与功能6.3 伺服驱动系统的工作原理与维护6.4 数控机床电气故障诊断与维修第七章:PLC编程与故障诊断7.1 PLC概述及其在数控机床中的应用7.2 PLC编程基础与实例7.3 PLC故障诊断与维修方法7.4 PLC与数控机床故障案例分析第八章:数控机床的液压与气动系统8.1 数控机床液压系统的基本原理与结构8.2 数控机床气动系统的基本原理与结构8.3 液压与气动系统的维护与维修8.4 液压与气动系统的故障诊断与案例分析第九章:数控机床的冷却与润滑系统9.1 数控机床冷却系统的作用与结构9.2 冷却系统的维护与维修9.3 数控机床润滑系统的作用与结构9.4 润滑系统的维护与维修第十章:数控机床故障诊断与维修的综合实践10.1 故障诊断与维修的实践流程10.2 常见数控机床故障案例分析与维修方法10.3 故障诊断与维修的实训项目10.4 故障诊断与维修的技能考核与评价第十一章:数控机床维修案例分析11.1 数控机床维修案例的收集与整理11.2 故障现象的描述与原因分析11.3 维修方案的设计与实施11.4 维修效果的评估与总结第十二章:数控机床维修技术发展趋势12.1 数控机床技术发展的现状与趋势12.2 数控机床维修技术的发展方向12.3 先进维修理念与技术的应用12.4 维修技术培训与人才培育第十三章:数控机床的安全操作与维护13.1 数控机床安全操作规程13.2 数控机床的日常维护与保养13.3 安全防护设备的正确使用与维护13.4 事故预防与应急处理第十四章:数控机床维修成本控制与效益分析14.1 维修成本的构成与控制策略14.2 维修成本效益分析的方法与指标14.3 维修成本控制实例分析14.4 提高维修效益的途径与措施第十五章:数控机床故障诊断与维修的实训与考核15.1 实训项目的设计与实施15.2 实训过程中的指导与评价15.3 故障诊断与维修技能的考核方法至此,整个教案“数控机床故障诊断与维修完整版教案”已完成。
数控机床典型故障诊断与维修一、数控机床常见故障及其原因1. 通讯故障通讯故障是数控机床中比较常见的故障之一。
通讯故障的主要原因包括通讯电缆连接不良、通讯软件设置错误、通讯卡故障等。
这些原因导致的通讯故障会导致数控机床无法正常与上位机进行通讯,从而影响数控机床的工作效率。
2. 电气故障电气故障是数控机床常见的故障之一,主要原因包括电气元件老化、电气接线错误、电气元件损坏等。
电气故障会影响数控机床的正常电气供电,导致数控机床无法正常工作。
3. 传感器故障数控机床中的传感器故障也比较常见,主要原因包括传感器损坏、传感器灵敏度调整不当、传感器连接错误等。
传感器故障会导致数控机床无法准确感知工件位置或运动状态,从而影响数控机床的加工精度。
4. 润滑系统故障润滑系统故障是数控机床常见的故障之一,主要原因包括润滑油不足、润滑系统堵塞、润滑泵故障等。
润滑系统故障会导致数控机床在运行过程中出现摩擦增大、温升过高等问题,影响数控机床的工作效率和使用寿命。
5. 机械传动系统故障二、数控机床故障诊断方法硬件故障诊断是数控机床故障诊断的重要内容之一。
硬件故障诊断主要通过检查、测量、比对数控机床的各个硬件部件来发现故障原因。
比如通过检查通讯电缆连接状态、检测传感器输出信号、测量电气元件的电压电流等方法来诊断数控机床的硬件故障。
3. 综合故障诊断综合故障诊断是数控机床故障诊断的综合性方法,主要通过对数控机床的硬件、软件以及工艺加工情况进行综合分析,找出故障的根本原因。
综合故障诊断需要运用多种故障诊断方法,结合数控机床的实际工作情况进行综合分析,以确保找出故障的准确原因。
硬件故障维修是数控机床故障维修的重要内容之一。
硬件故障维修主要通过更换损坏的硬件部件、重新连接电气接线、调整机械传动系统等方法来修复数控机床的硬件故障。
数控机床故障诊断与维修是数控机床维护管理工作的重要内容,对于保证数控机床的正常工作、提高数控机床的使用寿命具有重要意义。
数控车床常见报警类故障诊断一、FANUC 0i系列数控系统的功能特点与系统配置本文研究载体为数控车床,配备FANUC Series 0i Mate TC 数控系统,该系统均属于FANUC数控系统0i Mate系列。
这是一款在21i一体型基础上开发的,具有高性价比且超薄的一体型CNC系统。
主运动驱动系统采用变频器驱动调速控制,最多可以控制1个主轴电机,进给伺服驱动可连接βi S伺服电机。
伺服接口采用FANUC 串行伺服总线FSSB控制技术,机床操作面板为系统标准配置。
该系列用于车床的FANUC Series 0i Mate TC为2轴2联动;用于铣床、加工中心的FANUC Series 0i Mate MC 为3轴3联动。
二、FANUC Series 0i Mate TC数控系统控制主板特点1、从CP1输入24V直流电源3、JA40为模拟主轴驱动器(一般为变频器)连接接口,JA7A 为主轴独立检测装置编码器的反馈信号接口。
4、采用光缆FSSB总线技术通过COP10A接口与进给伺服放大器连接,完成对进给坐标轴的控制。
5、JD1A作为与I/O模块通讯的接口。
6、JA3连接手摇脉冲发生器。
三、配置FANUC 0i系列数控系统的数控车床常见报警类故障诊断分析机床故障产生以后,会以无显示报警和有显示报警两种形式给用户。
比如:由于机械传动部件的磨损引起的加工精度故障,故障现象是加工零件的精度超差,但是机床无任何显示报警形式产生。
再比如:CK6132A型FANUC系统数控车床,Z轴靠近卡盘方向移动时产生超程报警“OVER TRAVEL。
-X”。
此时Z轴不动作,但同时系统在显示屏上显示系统报警号给用户。
具体案例分析如下:1、由于机床自身故障导致的数控车床常见系统报警号故障诊断分析案例一:故障现象:配置FAUNC系统数控车床,按下系统开机启动按钮,系统进入正常界面,但是显示屏显示报警代码:“BAT”。
故障原因分析:根据理论分析,该故障是系统后备存储器电池电压过低导致。
FTA故障树分析故障树分析(FTA)是一种系统性的、结构性的故障分析方法,通过分析系统中的可能性故障和相互之间的关系,确定导致系统故障的主要原因。
FTA是一种量化的方法,可以帮助工程师找出潜在的故障模式,预测系统的可靠性,从而采取预防措施,保证系统运行的稳定性和可靠性。
下面将对FTA的基本原理、步骤和应用进行详细介绍。
FTA的基本原理是基于逻辑关系的思想,通过建立一个树状结构图来描述系统中可能出现的故障和各种原因之间的逻辑关系。
故障树的根节点是系统的故障,树的其他节点是导致系统故障的基本事件或子系统故障。
每个节点之间通过逻辑门(如与门、或门、非门等)连接起来,表示它们之间的逻辑关系。
通过逻辑运算,可以计算出导致系统故障的可能性。
FTA的步骤主要包括:1.确定系统边界:首先要确定系统的边界,明确需要进行故障分析的系统范围。
2.确定系统故障:确定系统中可能出现的故障,这些故障可以是设备故障、人为错误、设计缺陷等。
3.确定基本事件:针对每种故障,确定导致这种故障的基本事件,也就是这种故障发生的最小单位。
4.建立故障树:根据基本事件之间的逻辑关系,建立故障树,将所有的基本事件和故障之间通过逻辑门相连接。
5.分析故障树:通过对故障树的逻辑运算和评估,计算出导致系统故障的可能性。
6.识别潜在故障模式:通过对故障树的分析,找出导致系统故障的主要原因,识别潜在的故障模式。
7.制定预防措施:根据故障树的分析结果,制定相应的预防措施,避免系统故障的发生。
FTA的应用范围非常广泛,可以应用于各种行业和领域的系统分析和故障预测中。
以下是FTA的一些应用场景:1.工业生产:在工业生产中,FTA可以用于分析生产系统中可能出现的故障,预测生产设备的可靠性,帮助企业提前发现潜在的故障隐患,确保生产线的正常运行。
2.航空航天:在航空航天领域,FTA可以用于分析飞机系统的故障原因,预测飞机的可靠性,提高航空器的安全性和可靠性。
3.核电站:在核电站领域,FTA可以用于分析核电站系统中可能出现的故障,评估核电站的安全性和可靠性,确保核电站的运行安全。
设备状态监测与故障诊断作业标题:故障树分析在故障诊断中的应用概述故障树分析在故障诊断中的应用概述摘要:在介绍故障树分析基本理论的基础上,分析和总结了故障树分析方法在故障诊断的应用现状,提出了目前故障树分析的主要发展方向。
关键词:故障树分析,故障诊断,模糊故障树ABSTRACT:Based on the introduction of the basic theory of fault tree analysis, the present situation of fault tree analysis in fault diagnosis is analyzed and summarized; the main developing direction of fault tree analysis is given.KEYWORDS:fault tree analysis(FTA), fault diagnosis, fuzzy fault tree前言故障树分析(Fault Tree Analysis,简称FTA)方法,利用故障树将系统故障原因自顶向下逐级进行分析,估计顶事件的发生概率和底事件重要度,是系统可靠性分析、故障检测与诊断常用的一种分析方法。
这种方法通过把系统可能发生或已经发生的事故(即顶事件)作为分析起点,将导致事故的原因事件按因果关系逐层列出,用树形图表示出来,构成一种逻辑模型。
找出事件发生的各种可能途径及发生概率,找出避免事故发生的各种方案并优选出最佳安全对策[1]。
故障树分析既可用定性模型也可以用定量模型。
故障树的果因关系清晰、形象,对导致事故的各种原因及逻辑关系能做出全面、简洁、形象地描述,因而在各行业故障诊断中得到广泛而重要的应用。
1故障树分析的基本理论1.1故障树分析的原理及步骤故障树(FT)模型是一个基于被诊断对象结构、功能特征的行为模型,是一种定性的因果模型,以系统最不希望事件为顶事件,以可能导致顶事件发生的其他事件为中间事件和底事件,并用逻辑门表示事件之间联系的一种倒树状结构。
故障树分析故障树分析(Fault Tree Analysis,简称FTA)是一种系统性、定量的故障分析方法,广泛应用于工程领域,有助于预测和预防系统故障的发生。
故障树分析将系统或者设备的故障看作是由一个或多个基本事件(Basic Event)的特定组合引起的,通过构建故障树来分析系统的故障演化过程,从而找出一系列可能导致故障的路径,提供预防、检测和修复的方法。
1.确定所要分析的系统:首先明确需要进行故障树分析的系统,并确定系统的功能、结构、输入和输出等重要参数。
2.确定故障模式:通过调研、数据收集等方式,确定系统可能出现的故障模式,包括组件失效、负载超限、环境因素等等。
3. 构建故障树:根据系统的功能和结构,确定顶事件(Top Event),即整个系统故障的最终结果,然后逐级地构建故障树,包括中间事件和基本事件。
中间事件是由一个或多个基本事件组合而成,表达了一系列故障发生的可能性。
4.确定事件发生概率:对于每个基本事件,通过分析历史数据、可靠性测试等方式,确定其发生概率。
5.分析故障路径:通过分析故障树,找出导致顶事件发生的可能路径,即从根事件到顶事件的所有组合。
6.评估系统可靠性:根据基本事件的发生概率和路径的组合方式,计算系统的失效概率,评估系统的可靠性。
7.提出预防和修复措施:根据故障树分析的结果,找出导致故障的根本原因,并提出相应的预防和修复措施,以提高系统的可靠性。
1.可定量分析:通过计算基本事件的发生概率和故障路径的组合方式,对系统的可靠性进行定量评估,提供了客观的数据支持。
2.易于理解和沟通:故障树结构清晰、简明,易于理解和沟通,使得各方能够共同参与故障分析工作。
3.发现故障原因:通过分析故障树,可以找出导致系统故障的根本原因,从而提出相应的预防和修复措施。
4.预防故障发生:通过分析系统的故障树,可以预测潜在的故障路径,及时采取措施,避免故障的发生。
然而,故障树分析也存在一些局限性:1.数据获取困难:确定基本事件的发生概率需要依赖可靠的数据,但是有时候数据获取困难,可能需要依赖经验估计。
数控机床的数控系统故障排查方法数控机床是现代化机械加工设备中的重要一环,它通过数控系统来控制机床的运动和加工过程。
然而,由于机床的复杂性和长时间的使用,数控系统可能会遇到各种故障。
本文将介绍数控机床的数控系统故障排查方法。
1. 故障分类与现象观察在排查数控机床的数控系统故障时,首先需要对故障进行分类和现象观察。
常见的故障分类包括硬件故障、软件故障和人为操作问题等。
观察故障现象的方式包括观察数控系统显示屏上的报警信息、机床的运动状态以及加工件的加工质量等。
2. 检查电源和连接线路当数控系统出现故障时,首先需要检查电源和连接线路是否正常。
查看电源线是否插紧,检查接地是否良好,并确保电压稳定。
排除电源和连接线路问题后,若故障依然存在,再深入进行其他排查。
3. 检查数控系统软件如果故障不是由电源或连接线路引起的,那么需要检查数控系统的软件。
可以尝试重新启动系统,看是否解决问题。
如果问题仍然存在,可以尝试进行软件的升级或重新安装,并注意备份重要的工艺参数和数据。
4. 检查数控系统硬件当软件排查无果时,需要检查数控系统的硬件部件。
首先检查数控系统的各个板卡和电路是否正常工作,是否存在损坏或松动的情况。
同时,还需检查与数控系统相关的电机、编码器和传感器等是否正常工作,是否存在损坏或接触不良等问题。
5. 检查数控系统参数设置数控机床的加工过程中,需要根据具体工件进行相应的参数设置。
因此,当数控系统出现故障时,需要检查参数设置是否正确。
逐一核对工件坐标、运动速度、切削速度、进给率等参数,确保其与工艺要求相符。
若发现错误或不匹配的设置,需要及时进行调整。
6. 检查人为操作问题有时候,数控系统故障可能是由于人为操作问题引起的。
这可能包括操作员操作失误、程序编写错误等。
在检查过硬件和软件后,需要仔细审查操作过程和编写的程序代码,确保其正确无误。
7. 参考故障代码和手册数控机床的数控系统通常会提供故障代码,这有助于快速定位和解决故障。
3个智能故障诊断方法
智能故障诊断的方法主要有以下三种:
1. 基于故障树的方法:这是一种图形演绎法,将系统故障与导致该故障的各种因素形象地绘成故障图表(故障树),能直观地反映故障、元部件、系统及原因之间的相互关系。
这种方法的优点是简单易行,缺点是对于复杂的系统,故障树可能会非常庞大而不适用,并且其依赖性较强。
2. 基于案例的推理方法:这种方法能通过修改相似问题的成功结果来求解新问题。
3. 基于模糊推理的方法:这种方法利用模糊集合论和模糊逻辑的思维,处理不确定或不精确的知识,从而推理出结论。
这三种方法在具体使用时需结合实际情况和诊断需求,必要时可以咨询专业人士。
python故障树算法
Python故障树算法是一种基于故障树理论和Python编程语言开发的故障诊断算法。
故障树理论是一种用于描述系统故障的方法,它将系统的故障视为事件,并用图形方式描述这些事件之间的逻辑关系,从而帮助人们分析和诊断系统故障的原因和根源。
Python编程语言则是一种简洁、优美、易学、易读且功能强大的编程语言,在科学计算、数据分析、人工智能等领域都有广泛应用,因此将故障树算法与Python编程语言相结合,可以使故障诊断更加高效、简便、可靠。
故障树算法主要分为以下几个步骤:
1.定义故障树结构:将系统的故障事件用逻辑运算符(如与、或、非)组合成故障树。
2.构建故障树模型:将故障树转化为可以计算的数学模型,例如布尔函数、概率模型等。
3.确定故障诊断规则:根据故障树模型的不同,确定不同的故障诊断规则,例如最小割集算法、ATP算法等。
4.实现故障诊断算法:使用Python编程语言实现故障诊断算法,可以
通过调用Python语言的库函数、写自定义函数等方式实现。
5.验证故障诊断算法:通过故障案例验证故障诊断算法的可靠性和精度。
总之,Python故障树算法是一种非常有用、实用的故障诊断算法,在工程实践中有着广泛的应用前景。
如果您想了解更多关于故障树算法
的知识,请联系我们的专业团队,我们将尽快为您提供帮助,让您轻
松掌握这一重要的技术。
基于故障树的数控机床故障诊断系统
摘要:数控机床的故障诊断不及时不准确,会给制造企业带来巨大的经济损失,因此,数控机床的故障诊断与维护一直是制造业研究的热点之一。
本文在分析数控机床特点的基础上,运用故障树分析法建立数控机床主要部位的故障树模型,依据此模型开发了一套基于故障树的故障诊断系统,该系统具有诊断速度快、诊断结果准确率高的特点,有效实现了数控机床故障的智能分析诊断。
关键词:故障树数控机床故障诊断
中图分类号:tp315 文献标识码:a 文章编号:1674-098x(2012)06(c)-0068-02
1 引言
随着工厂自动化程度的提高,数控机床已经成生产线上的关键设备,如果出现故障但维修不及时,往往会波及到整个生产过程,长时间停机将会造成巨大的经济损失[1]。
然而不管生产设备的可靠性有多高,其发生故障是不可避免的,因此提前进行诊断以及在发生故障后能及时进行维修,对于企业来说是非常有意义的。
数控机床是由主机、数控装置、驱动装置、辅助装置等多个子系统构成的复杂机电系统,其故障产生的原因往往比较复杂[2]。
由于数据机床的故障既有机械故障,又有电气故障,还有液压故障,故障种类多,故障级别也不同,因此,有必要采用故障树分析法对数控机床故障进行分析,按层级建立故障树,并以此作为专家系统的知识获取,能有效建立基于规则的故障诊断系统。
2 故障树的建立和分析
2.1 故障树分析法
故障树分析法采用逻辑方法,形象的进行故障分析,具有简单明了、思路清晰、逻辑性强等特点。
可做定性分析、定量分析。
体现了系统工程方法研究安全问题的系统性、准确性和预测性,是安全系统工程主要的分析方法。
将系统级的故障现象(顶事件)与最基本的故障原因(底事件)之间的内在关系表示成树形的网络图,逐层之间由数字逻辑关系构成。
它通常把系统的故障状态称为顶事件,通过树状结构搜索,然后找出系统故障和导致系统故障的诸多原因之间的逻辑关系。
并将这些逻辑关系用逻辑符号表示出来,由上而下逐层分解,直到不能分解为止,推导出各故障和各单元故障之间的
逻辑关系,利用这些逻辑关系最终找出对应的底层故障原因[3]。
以下是故障树的建立步骤。
1)顶事件的确定。
对于数控机床来说就是表现出来的故障现象。
2)分析顶事件,即对故障现象进行分析。
通过对数控机床的故障现象进行分析,寻找引起故障现象发生的直接的和必要的原因。
将故障现象作为输出事件,将所有直接原因作为输入事件,并根据这
些事件的逻辑关系用适当的逻辑门表示。
3)分析每一个与顶事件(故障现象)直接相联系的输入事件。
如果该事件还能进一步分解,则将其作为下一级的输出事件,如同步骤2)中对顶事件那样进行处理。
4)使用逆向思维。
已知输出事件,利用逻辑关系找出有问题的输
入事件,一棵倒置的故障树就这样形成了。
2.2 故障树的建立
数控机床是由plc电气控制、伺服、机械传动、液压静压、冷却、排屑、刀具等综合在一起的机电设备,其中包括床身机械、齿条齿轮丝杠传动、润滑静压冷却、电气控制、伺服模块、伺服电机及制动、测量系统、计算机控制及其他[4]。
把系统功能进行层次分解,通过表示数控系统中各个子模块之间关系的方法,将系统的功能用它的下级子系统的功能来表示,而其子模块的功能又用它本身的各功能模块的功能表示。
系统功能的这种层次分解,也就是系统故障分析过程中的模拟,功能分解的结果就是一棵故障树。
这个故障树共有四层:第0层顶事件,即系统故障;第1层中间事件是可能引起系统故障的各个子系统故障;第2层中间事件为可能引起子系统故障的各个功能模块故障;而第3层即底事件,是引起系统故障的最终不可分割的功能子模块故障。
图1所示为数控机床的伺服系统故障树(部分)。
3 数控机床故障诊断专家库
数控机床的专家知识库是依据数控机床的故障树建立的,专家系统是将人类专家的知识、经验输入到计算机中,使计算机能够“思考”和“推理”,从而解决问题的人工智能方法[5]。
一个专家系统由知识获取系统、知识库、推理机、解释器、输入输出系统组成。
故障树和专家系统知识库的联系在于:故障树的顶事件对用于专家系统要分析解决的任务,故障树的每个最小割集就是该系统的故
障原因,对应于专家系统要推理的最终结果,故障树由上到下的逻辑关系对用于专家系统的推理过程,故障树的树枝对应于专家系统中知识库中的规则,其树枝数对应于规则的规则数,知识库的获取来源于故障树。
专家系统用知识进行推理和判断,一般采用产生式规则模型,其基本形式为:if(条件)then(操作或结论),知识库的建立过程也就是将故障树中的知识转化为专家系统中规则的过程。
3.1 知识获取系统
知识的获取是专家系统的基础,对于故障诊断系统来说,发现故障并通过一定的手段进行解决,这就是知识,这些知识来源于操作人员、技术人员,再经过专家的提炼抽取,最终形成计算机系统能处理的知识。
知识获取是一个迭代的过程,通过多次迭代,实现知识库的建立,真正能够满足数控机床的故障诊断。
3.2 知识库设计
专家系统的工作过程是获得知识并加以应用的过程。
处理知识的首要问题就是如何表示知识的问题。
对于真正的专家来说,知识就是经验,是无形的,但是要形成计算机专业家系统,就必须用规范的语言将知识描述出来,这就需要对知识进行编码,也就是知识的符号化过程。
需要把知识编码成为一种合适的数据结构,可以在计算机系统中存储并处理。
数控机床故障诊断专家系统知识库,主要采用框架表示法,知识库中的每条知识又是采用规则来表示。
(1)规则表示法。
规则表示法将指定原因信息与某些故障相关联.对新信息或需要执行的故障过程做出断言。
规则表示的知识中,一般都引入阈值和权值。
其中阈值用来表示应该肯定还是否定的限度,权值表示同一规则中不同条件的重要程度,如果条件的置信度
大于阀值,则该条件表示一条肯定事实,否则该条件表示一条否定
事实。
而“权值”是反映其功能关键程度、故障概率和检测代价的参数,权值越大说明该条件越重要,在推理过程中更应作为优先考
虑的对象。
(2)框架表示法。
针对本文用故障树来分析数控机床故障,虽然其内容不同,但都可分成顶事件、中间事件和底事件,都有故障树节点,存在一些共同属性。
因此我们可以把这些共同属性分离出来,建成一个上层框架,再把各类事件独有的属性分别构成下层框架,并可
在下层框架间隔设立一个专用的中间层,反映上、下层之间的关系,指出其上层框架,以建立上下框架间联系,下层框架还可以继承其
上层的属性和值,既减少知识冗余和保持知识一致性,又节约了时
间和空间。
3.3 推理机设计
推理就是对数据机床故障进行识别,其过程就是将数据库中的事实与知识库中的规则进行匹配的过程。
推理机是故障诊断专家系统的核心。
该系统就是根据操作人员所感知到的故障现象,并将特征输入到系统中,利用知识库中的知识,并按照一定的推理策略逐步
求解问题。
故障诊断专家系统知识库的设计中,将故障树知识转化
成基于规则的专家系统知识。
本系统采用基于规则的推理,采用正向推理为主、反向推理相结合的混合推理模式。
其推理流程为:先初始化系统,根据编号初步确定故障树中各节点事件的优先级;然后根据系统中提供的故障模式,系统从规则库中选择规则对两者进行模式匹配,匹配成功则进行故障树下一节点的故障诊断,直到进行到底事件也就是叶节点;最后给出诊断结果。
3.4 解释器设计
解释器是对推理结果的解释,通常推理结果只是简单的描述,对于用户来说,还需要将结果转换成可以理解的语言。
3.5 输入输出系统
输入输出系统是数控机床故障诊断系统与用户间交互的平台,通过这个平台,操作人员可以进行故障知识的积累,也可以进行故障的诊断操作(如图1)。
4 系统实现
本系统基于.net平台,应用wpf技术进行开发,充分利用关系数据库,实现统一的数据存储。
在关系数据方面,该系统采用sqlserver 数据库,实现知识库数据以及推理规则的存储,保证了数据的安全性和系统的稳定性。
由于该系统采用.net平台开发,使用模块化的组织方式,整个系统具有良好的交互性、可用性和可扩展性,有利于系统的维护和升级。
应用故障树技术进行数控机床的故障诊断,极大地提高的故障诊
断效率,故障诊断系统主界面如图3所示。
5 结语
本文在深入分析了数控机床典型故障后,结合当前先进的故障诊断技术,将故障树分析法和专家系统应用于数控机床的故障诊断。
用层次分析法构建了数控机床的故障诊断模型,建立了专家系统的知识库和推理机,应用wpf技术完成了数据机床故障诊断专家系统的开发。
此系统方便用户对故障进行快速的诊断判别和维修。
参考文献
[1] 姜秀华.制造系统数控机床故障处理技术研究[j].制造业自动化,2011,33(12):30-32.
[2] 叶伯生,黄增双,李斌.故障树分析法在数控机床故障诊断系统中的应用[j].机械设计与制造,2006,(8):135-138.
[3] 孙永盛,朱保国,韩军.基于故障树的康明斯发动机故障诊断专家系统[j].机电产品开发与创新,2011,24(5):21-23.
[4] 贾育秦,张志刚,翟大鹏.基于故障树的数控机床故障诊断系统研究[j].太原科技大学学报,2009,30(5):401-404.
[5]黎奇志,胡国平.基于故障树和模糊推理的故障诊断研究[j].微计算机信息,2011,27(8):186-188.。