第五章晶闸管合理使用电路及其应用
- 格式:ppt
- 大小:1020.00 KB
- 文档页数:32
目 录第一章 电力电子技术简介及其器件发展 (1)第二章 晶闸管 (2)2.1 晶闸管的产生及符号 (2)2.2晶闸管的导通与关断条件 (3)2.3 晶闸管的工作原理 (4)2.4 晶闸管的阳极伏安特性 (5)2.5 晶闸管的主要参数 (6)2.5.1 晶闸管的重复峰值电压 (7)2.5.2晶闸管的额定通态平均电流额定电流T I (AV ) (7)2.6 通态平均电压T U (AV ) (8)2.7 门极触发电压GT U 和门极触发电流GT I (8)2.8 维持电流H T (9)2.8 掣住电流L I (9)2.9 断态电压临界上升率du /dt (9)2.10 通态电流临界上升率di /dt (10)第三章 双向晶闸管及其派生晶闸管 (11)3.1 双向晶闸管 (11)3.2 快速晶闸管 (12)3.4 光控晶闸管 (13)第四章 晶闸管的保护与串并联使用 (14)4.1 过电压保护 (14)4.1.1操作过电压 (14)4.1.2雷击过电压 (15)4.1.3换相过电压 (15)4.1.4关断过电压 (15)4.2 过电压保护措施 (15)4.2.1操作过电压的保护 (15)4.2.2浪涌(雷击)过电压的保护 (15)4.2.3 过电流保护 (17)4.4 晶闸管的串、并联 (18)第五章 晶闸管应用实例 (19)5.1 单相全控桥式整流电路 (19)5.2 三相全控桥式整流电路 (20)总结 (22)参考文献 (23)第一章电力电子技术简介及其器件发展第一章电力电子技术简介及其器件发展电力电子技术,即由国际电工委员会命名的,一门将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路进而实现电能的变换和控制的完整学科。
突出对“电力”的变换,变换的功率可以大到数百甚至数千兆瓦,也可以小到几瓦或更小。
电力电子技术包括电力电子器件、变流电路和控制技术3个部分,其中电力电子器件是基础,变流电路是电力电子技术的核心。
晶闸管调光电路晶闸管调光电路一、概述晶闸管调光电路是一种常用的家庭照明调光方式,其原理是通过改变晶闸管的导通角度来控制电流大小,从而达到调节灯光亮度的效果。
本文将详细介绍晶闸管调光电路的工作原理、电路结构、设计方法和应用场景。
二、工作原理1. 晶闸管基本原理晶闸管是一种半导体器件,具有单向导通性和双向控制性。
当晶闸管的控制极(G极)接收到一个正脉冲信号时,会使得晶闸管中的PN 结发生反向击穿,形成一个低阻态通道,使得电流能够流过。
当控制极上没有信号时,PN结处于正向偏置状态,此时晶闸管处于高阻态。
2. 晶闸管调光原理在晶闸管调光电路中,将交流电源接入到负载(如灯泡)上,并通过一个变压器将交流电源降压。
然后将一个触发器产生的正脉冲信号输入到晶闸管控制极上。
由于触发器输出的脉冲宽度和频率可以控制,因此可以通过改变脉冲信号的宽度和频率来控制晶闸管的导通角度,从而调节负载电流大小,实现灯光亮度的调节。
三、电路结构晶闸管调光电路主要由以下几部分组成:1. 降压变压器降压变压器是将交流电源降压到适合负载使用的电压水平。
在晶闸管调光电路中,通常采用单相降压变压器或双相中心点降压变压器。
2. 晶闸管控制电路晶闸管控制电路包括触发器、计时器、比较器等模块。
触发器产生正脉冲信号,计时器控制脉冲宽度和频率,比较器将计时器输出的信号与一个参考信号进行比较,并将结果反馈给触发器。
3. 晶闸管驱动电路晶闸管驱动电路是将控制信号转换为适合晶闸管导通的信号。
通常采用放大、隔离、整形等技术来实现。
4. 负载负载是晶闸管调光电路中需要调节的对象,通常为灯泡、荧光灯等。
四、设计方法1. 计算变压器参数在设计晶闸管调光电路时,首先需要计算变压器的参数。
变压器的输入电压为220V,输出电压根据负载需求进行选择。
例如,如果负载为50W的灯泡,输出电压可以选择为12V。
此时变比为220:12=18.3:1。
2. 选择晶闸管型号在选择晶闸管型号时,需要考虑其额定电流和额定电压。
晶闸管是一种具有双向导电特性的半导体器件,常用于电力电子领域中的整流电路。
下面是一个基本的晶闸管整流电路应用设计:
单相半波整流电路:
电路图:将负载(如电阻或电感)与一个晶闸管和一个二极管连接,晶闸管的控制端与触发电路相连,形成单相半波整流电路。
原理:晶闸管作为开关元件,通过控制其触发角来控制电路的导通和截止。
当晶闸管触发时,电流从正向流入负载,当电流减小到零时,晶闸管将自动截止,负载电压为零,从而实现了半波整流。
单相全波整流电路:
电路图:将负载与两个晶闸管和两个二极管组成一个桥式整流电路,晶闸管的控制端与触发电路相连。
原理:通过控制晶闸管的触发角来实现桥式整流。
当一个晶闸管导通时,电流从正向流入负载,另一个晶闸管被截止。
当触发角变化时,另一个晶闸管导通,电流方向改变,从而实现了全波整流。
三相桥式整流电路:
电路图:将负载与六个晶闸管和六个二极管组成一个三相桥式整流电路,晶闸管的控制端与触发电路相连。
原理:通过适时触发晶闸管,实现三相交流电源的整流。
通过控制各个晶闸管的导通和截止,实现对负载的电流方向和大小的控制。
需要注意的是,在实际设计中,还需考虑电路的保护、电压、电流的变化范围、触发电路的设计等因素,以确保电路的正常工作和安全性。
此外,还可根据具体需求添加滤波。
晶闸管整流电路在实际中的应用作者:阳根民来源:《现代职业教育·中职中专》2015年第01期[摘 ; ; ; ; ;要] ;随着我国科学技术的发展,电子电力技术也得到了一定程度的发展。
晶闸管作为电子电力技术中的一项重要的部分,其性能以及功能方面也逐渐地被人们所重视。
近年来,电力电子中的晶闸管整流技术在各方面都突飞猛进,取得了骄人的成绩。
本文就针对晶闸管整流电路在实际中应用的问题进行一次深入的探讨。
[关 ; 键 ; ;词] ;晶闸管;整流电路;应用;电力电子[中图分类号] ;TN710 ; ; ; ; ; ;[文献标志码] ;A [文章编号] ;2096-0603(2015)02-0018-02近年来,随着我国科学技术行业的迅猛发展,晶闸管整流电路作为电力电子技术重要的组成部分,被广泛应用于工业等各个行业中,同时,可控硅整流的发展更是促进了电力电子技术的发展和应用。
又因为晶闸管整流电路其特有的性质,能承受较高容量的电压和电流,并且整流电路可以根据其本质的不同来划分为单相桥式半控整流电路、单相桥式全控整流电、单相半波可控整流电路以及单相全波可控整流电路。
晶闸管整流电路在实际中起着重要的作用,因此对其研究具有重大的意义。
下面就针对晶闸管整流电路在实际中的应用极其相关方面进行详细的分析研究。
一、晶闸管的发展和原理晶闸管是一种大功率的整流原件,是一种半导体器件,在整流过程中,整流电压是可以控制的,也就是说当输入给整流电路的交流电压值一定时,那么其输出的电压就可以均匀地被调节控制。
近年来,随着我国科学技术行业的迅猛发展,晶闸管作为电力电子技术重要的组成部分,被广泛地应用于工业等行业中,而可控硅整流的发展更是促进了电力电子技术的发展和应用。
如我们所知,晶闸管整流电路在实际中起着重要的作用,在晶闸管的发展下,伴随着电子电力技术也得到了一定程度的发展;晶闸管作为电子电力技术中的一项重要的部分,其性能以及功能方面也逐渐地被人们所重视。
第五节晶闸管单相可控调压电路一、晶闸管的结构及其工作原理㈠晶闸管的结构常用的小功率晶闸管有螺旋式和塑封式两种,如图7-25(a)、(b)所示。
晶闸管内部是一个由硅半导体材料做成的管芯,由管芯引出三个极,称阳极A、阴极K和门极G(又称控制极),它的图形符号如图7-25(c),文字符号为T 。
晶闸管管芯内部结构示意图如图7-26(a)、(b)所示。
由图7-26(a)看出,去掉与三个引出线(三个极)有关的金属导体后,余下的是接在一起的P、N、P、N四层半导体。
将图进一步简化,其内部结构示意图就变成图7-26(b)的形式。
由该图看出,四层半导体有J1、、J2、和J3、三个PN结,三个电极分别由其最外层的P层,N层和中间的P层引出。
所以晶闸管是一个四层三端半导体器件。
㈡晶闸管的工作原理普通二极管是一个双层(P,N)半导体,只有一个PN结。
当二极管接电源使其P层电位高于N层时,二极管导通,称为正向接法,或叫作加正向电压;反之,称为反向接法,或叫作加反向电压。
当晶闸管上加的电压使其阳极A的电位高于阴极K的电位时,称晶闸管承受正向阳极电压,由图7-26(b)看出,该极性电压虽然使晶闸管两端的PN结J1、、J3承受正向电压,但中间的PN结J2承受反向电压,所以晶闸管不能导通,称为晶闸管的正向阻断状态,也称关断状态;当晶闸管上加的电压使其阳极A的电位低于阴极K的电位时,称晶闸管承受反向阳极电压,该极性电压使晶闸管两端的PN结J1、和J3承受反向电压,虽然中间的PN结J2、承受正向电压,晶闸管也不能导通,称为反向阻断状态,也称关断状态。
以上是晶闸管门极不加任何电压的情况,由此得出结论:晶闸管的门极不加电压时,不论晶闸管阳极和阴极间加何种极性的电压,正常情况下的晶闸管都不导通,这点与普通二极管不同,此时晶闸管具有正,反向阻断能力。
晶闸管的阳极与阴极之间加正向阳极电压,同时在门极G与阴极K之间加电压使门极的电位高于阴极时,称门极承受正向门极电压,则有门极电流流入门极,如图7-27所示。