角的比较和运算
- 格式:ppt
- 大小:741.00 KB
- 文档页数:40
《6.3.2 角的比较与运算》教学设计教学内容分析本节课主要学习角的比较,角的和差计算.角的比较,角的和差计算是重要的基础知识,也是后续学习图形与几何必备的知识基础。
学习者分析学生在学习本节课之前,已经了解了线段的比较、线段的和差等知识,为本节课的进行,在学习方法上做好了类比铺垫,同时,这些已有的知识经验也是学生学好这节课的基础和关键。
教学目标 1.通过类比线段的比较与运算的研究过程,构建角的比较与运算的研究思路,体会不同学习内容之间数学研究方法的一致性和可迁移性,体会类比思想。
2.能比较角的大小,会计算角的和与差,并会用文字、图形和符号语言进行描述,体会数形结合思想,发展几何直观、推理能力。
教学重点角的大小比较方法。
教学难点角的和差关系。
学习活动设计教师活动学生活动环节一:学习目标教师活动1:师出示学习目标:1.通过类比线段的比较与运算的研究过程,构建角的比较与运算的研究思路,体会不同学习内容之间数学研究方法的一致性和可迁移性,体会类比思想。
2.能比较角的大小,会计算角的和与差,并会用文字、图形和符号语言进行描述,体会数形结合思想,发展几何直观、推理能力。
学生活动1:学生齐声读本课的学习目标活动意图说明:明确本节课的学习目标,使教师的教和学生的学有效结合在一起,激发学生的学习动力,提高学生课堂参与的兴趣与积极性。
环节二:新知导入教师活动2:1.角的定义:静态定义:有___________的___________组成的图形叫做角,这个公共端点是角的_______,这两条射线是角的_________.动态定义:角也可以看作由___________绕着它的___________而形成的图形.答案:公共端点,两条射线,顶点,两条边,一条射线,端点旋转2.角度制:以________为单位的角的度量制,叫做角度制.1周角=______°,1平角=______°,1直角=______°,1°=______′,1′=______″.答案:度、分、秒,360,180,90,60,60 3.如何比较两条线段的大小?预设:度量法,叠合法学生活动2:学生快速回答老师提出的问题活动意图说明:通过复习角的概念、角的单位及换算,为角的比较与和、差运算做好准备。
4.角的比较和运算◆典例分析例:如图,(1)已知∠AOB 是直角,∠BOC=30°,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数。
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON 的度数。
(3)你从(1)、(2)的结果中能发现什么规律? 解:(1)∵ OM 平分∠AOC ,ON 平分∠BOC ,∴ ∠MOC=21∠AOC ,∠NOC=21∠BOC ∴ ∠MON=∠MOC-∠NOC=21∠AOC-21∠BOC=21∠AOB∵ ∠AOB=90°, ∴ ∠MON=45°(2)当∠AOB=α时,其他条件不变。
总有∠MON=21∠AOB=2(3)由(1)(2)的结果,可得出结论:∠MON 的大小总等于∠AOB 的一半。
评析:本例主要是利用角平分线的定义及角和差的意义来解。
由特殊从而推断出一般性的规律。
●拓展提高1、平面内两个角∠AOB=60°,∠AOC=20°,OA 为两角的公共边,则∠BOC 为( ) A 、40° B、80° C、40°或80° D、无法确定2、下面一些角中,可以只用一副三角尺(不用量角器)画出来的角是( ) (1)150的角 (2)650的角 (3)750的角 (4)1350的角 (5)1450的角 A 、(1)(3)(4) B 、(1)(3)(5) C 、(1)(2)(4) D 、(2)(4)(5) 3、已知:∠A=50º24’,∠B=50.24º,∠C =50º14’24”,那么下列各式正确的是( ) A 、∠A>∠B >∠C B 、∠A>∠B=∠C C 、∠B>∠C>∠A D 、∠B=∠C>∠A 4、如图,BO 、CO 分别平分∠ABC 和∠ACB ,已知任意三角形的3个内角的和都是180°,若∠A =80°,你能求出∠BOC 的度数吗?试试看。
角的比较和运算一、教学目标:1. 让学生理解角的概念,能够识别和比较不同类型的角。
2. 培养学生运用角度知识解决实际问题的能力。
3. 引导学生掌握角的运算方法,提高学生的逻辑思维能力。
二、教学内容:1. 角的概念及分类2. 角的比较方法3. 角的运算方法4. 实际问题解答5. 练习与巩固三、教学重点与难点:1. 教学重点:角的概念,角的分类,角的比较方法,角的运算方法。
2. 教学难点:角的运算方法在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探索和学习角的知识。
2. 运用实例分析法,让学生通过解决实际问题来掌握角的运算方法。
3. 采用小组合作学习法,培养学生的团队协作能力。
五、教学准备:1. 教学课件:角的图片、实例分析、练习题等。
2. 教学工具:直尺、量角器等。
3. 练习题:选择题、填空题、解答题等。
教案一角的概念及分类:教学时间:40分钟教学过程:1. 导入:引导学生回顾已学过的几何知识,为新课的学习做好铺垫。
2. 讲解:介绍角的概念,讲解角的分类,包括锐角、直角、钝角、平角、周角等。
3. 实例演示:展示各种角的图片,让学生直观地感受不同类型的角。
4. 课堂互动:让学生举例说明生活中常见的各种角,加深对角的理解。
5. 练习:布置练习题,让学生区分和识别不同类型的角。
六、角的比较方法教学时间:40分钟教学过程:1. 导入:复习上节课所学的内容,引导学生进入新课。
2. 讲解:介绍角的比较方法,包括度量法和图形比较法。
3. 演示:利用教具展示角的比较过程,让学生直观地理解比较方法。
4. 课堂互动:让学生互相比较角度大小,交流比较方法。
5. 练习:布置练习题,让学生运用比较方法判断角度大小。
七、角的运算方法教学时间:40分钟教学过程:1. 导入:复习上节课所学的内容,引导学生进入新课。
2. 讲解:介绍角的运算方法,包括加法、减法、乘法、除法等。
3. 演示:利用教具展示角的运算过程,让学生直观地理解运算方法。
6.3 角6.3.2 角的比较与运算主要师生活动一、复习导入师生活动:教师引导学生回忆与梳理线段的知识点,然后告诉学生这节课我们学习角可以类比线段学习,比如上节课学习的定义,到表示方法,这节课也会学习大小比较和运算,同学们可以思考能否也通过叠合法和度量法比较大小,运算是否也是计算角的和差倍分的关系.二、探究新知知识点一:角的比较类比线段长短的比较,你认为该如何比较两个角的大小?师生活动:学生先自主思考并小组交流,再由小组代表发言,预测会有两种方法,度量法和叠合法.教师引导和规范学生操作步骤,得出结果如下:度量法:因为55°>40°,所以∠1>∠2.叠合法:想一想:你能用图形和几何语言说明两个角的大小关系吗(两个角分别记作∠AOB,∠A'O'B' )?师生活动:学生画出图形,并用符号表示,指出两个角的大小关系有且仅有三种情况.知识点二:角的运算探究1:如图,图中共有几个角?它们之间有什么关系?师生活动:预测学生能确定角的个数,明确角之间的和差关系如下:3个:∠AOB、∠AOC、∠BOC∠AOC =∠AOB +∠BOC∠AOB =∠AOC-∠BOC∠BOC =∠AOC -∠AOB教师关注学生是否能发现角的和差关系,教师可引导学生类比线段的和与差,发现角的和差关系.然后教师引导学生总结:共顶点的几个角,可进行加减.探究2 :如图,借助三角尺画出15°,75°的角.用一副三角尺,你还能画出哪些度数的角?试一试.师生活动:学生动手操作,小组合作探究,师生归纳,如下:用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.凡是15的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.例题精析:例1 如图,O是直线AB上一点,∠AOC = 53°17′,求∠BOC的度数.师生活动:学生独立思考,请学生代表发言,教师予以适当的评价并整理板书.解:由题意可知,∠AOB是平角,∠AOB =∠AOC +∠BOC所以∠BOC =∠AOB-∠AOC= 180° - 53°17′= 126°43′总结:∠同单位加减(度与度、分与分、秒与秒分别相加、减);∠度分秒是60进制(相加时逢60要进位,相减时要借1作60).师生活动:教师引导学生思考与总结解题思路与过程.知识点3:角平分线探究3:你能在∠AOC内找一条射线OB,使∠AOB =∠BOC吗?师生活动:教师提问,学生自主思考,教师巡堂指导,预测会有不同方法,教师可让这些学生代表分别展示,预测两种方法(如下):对折法:生巩固角的和与差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角的大小的估计能力和动手操作能力,加深学生对角的认识.设计意图:通过题目锻炼学生运算能力,初步学习几何语言在解题中的运用,体会几何与代数之间的联系与不同,加深学生的数形结合思想.设计意图:从角的和差问题中,将射线OB的位置特殊化,并类比线段的中点,引出角的平分线的概念,不仅知识的产生、发展自然连续,也体现了由一般到特殊,由特殊到一般的研究方法,同时,也能建立知识间的联系,完善认知结构.度量法:教师追问:同学们知道图中三个角的数量关系吗?学生思考,学生代表回答,师生共同总结与填空.教师再以此引出角平分线的定义.定义总结:师生活动:教师讲解,再让学生朗读定义,加深印象.类比:仿照角平分线的结论,你能写出角的三等分线的结论吗?师生活动:学生独立思考,由学生代表发言,教师予以适当评价,帮助学生正确规范完成几何书写.例2 把一个周角7等分,每一份是多少度的角(精确到分)?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:解:360°÷7 = 51°+ 3°÷7= 51°+ 180′÷7≈51°26′答:每份是51°26′的角.教师引导学生总结:注意度、分、秒是60进制的,要把剩余的度数化成分.设计意图:进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.设计意图:通过类比让学生学会举一反三,体会几何知识的关联性,巩固几何语言的书写.设计意图:通过题目帮助学生巩固角平分线的知识与角的运算,提高学生的识图能力和运算能力.又通过思考题启发学生思考其他可能性,建立分类讨论思想,养成严谨思考的习惯.三、当堂练习例3 如图OC是∠AOB的平分线,OB是∠COD的三等平分线,∠BOD = 15°.则∠AOB等于( )A. 75B. 70C. 65D. 60师生活动:学生独立思考,学生代表发言,教师适时评价与引导.思考:除此题所给图片的情况,你还能想出其他情况与答案吗?师生活动:学生独立思考,学生代表上台展示,教师予以评价与指导,得出另一种结果,∠AOB = 15°.三、当堂练习1. 比较大小:60°25′60.25°(填“>”,“<”或“=”).2. 计算:(1) 180° - 98°24′30″(2) 62°24′17″×43. 如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOB = 50°,∠DOE = 30°,那么∠BOD是多少度?设计意图:通过练习巩固角的大小比较.设计意图:通过练习巩固角度的运算.设计意图:通过练习强化试图能力和运算能力.板书设计角的比较与运算一、角的概念二、角的表示三、角的度量和单位教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.数形结合,培养识图能力。
角的比较--重难点题型【知识点1 角的比较与运算】【题型1 角的大小比较】∠COD=50°;小丽用叠合法比较,将两个角的顶点重合,边OB与OD重合,边OA 和OC置于重合边的同侧,则边OA.(填序号:①“在∠COD的内部”;②“在∠COD的外部”;③“与边OC重合”)【变式1-1】(2021春•呼和浩特期末)如图,∠AOB=∠COD,则∠AOC与∠DOB的大小关系是()A.∠AOC>∠DOBB.∠AOC<∠DOBC.∠AOC=∠DOBD.∠AOC与∠DOB无法比较大小【变式1-2】(2021秋•开封期末)如图所示,其中最大的角是,∠DOC,∠DOB,∠DOA的大小关系是.【变式1-3】(2021秋•门头沟区期末)如图所示的网格是正方形网格,点A,B,C,D,O 是网格线交点,那么∠AOB∠COD.(填“>”,“<”或“=”)【题型2 角的和差】【例2】(2021秋•安庆期末)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【变式2-1】(2021秋•五常市期末)用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°【变式2-2】2021秋•北碚区期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.若∠ABE=30°,则∠DBC为度.【变式2-3】(2021秋•荔湾区期末)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°【题型3 n等分线】【例3】(2021秋•罗湖区校级期末)如图,已知O为直线AB上一点,过点O向直线AB 上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.【变式3-1】(2021秋•奉化区校级期末)OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D.1:4【变式3-2】(2021秋•江汉区期末)如图,射线OB、OC在∠AOD内部,其中OB为∠AOC 的三等分线,OE、OF分别平分∠BOD和∠COD,若∠EOF=14°,请直接写出∠AOC 的大小.【变式3-3】(2021秋•越秀区校级月考)如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=13∠AOC,∠BON=13∠BOD.(本题中所有角均大于0°且小于等于180°)(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,则∠MON =°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON 的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<180且n≠60a,其中a为正整数),直接写出所有使∠MON=2∠BOC的n值.【题型4 角平分线】【例4】(2021秋•武都区期末)如图所示,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,若∠AOC=68°,则∠BOF和∠EOF是多少度?【变式4-1】(2021秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=12∠AOBA.1个B.2个C.3个D.4个【变式4-2】(2021秋•曲阳县期末)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【变式4-3】(2021秋•裕华区校级期中)如图1,∠AOB=40°,∠AOB的一边OB与射线OM重合,现将∠AOB绕着点O按顺时针方向旋转180°.在旋转过程中,当射线OA、OB或者直线MN是某一个角(小于180°)的平分线时,旋转角的度数为.【题型5 余角与补角的定义】【例5】(2021春•金山区期末)如果一个角的补角的2倍减去这个角的余角恰好等于这个角的4倍,求这个角的度数.【变式5-1】(2021•寻乌县模拟)已知∠A是锐角,∠A与∠B互补,∠A与∠C互余,则∠B﹣∠C的值等于()A.45°B.60°C.90°D.180°【变式5-2】(2020秋•麦积区期末)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【变式5-3】(2021秋•沂水县期末)如图,已知∠AOB=130°,画∠AOB的平分线OC,画射线OD,使∠COD和∠AOC互余,并求∠BOD的度数.【题型6 利用余角或补角的性质得角相等】【例6】(2021秋•鹿邑县期末)如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC 的角平分线,若∠AOC=70°.(1)求∠BOD的度数.(2)试判断OE是否平分∠BOC,并说明理由.【变式6-1】(2021秋•旌阳区期末)如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠AOD+∠BOC=180°;④若OB平分∠AOC,则OC平分∠BOD;⑤∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的有.(填序号)【变式6-2】(2021秋•芮城县期末)综合与实践已知直线AB 经过点O ,∠COD =90°,OE 是∠BOC 的平分线.(1)如图1,若∠AOC =30°,求∠DOE ;(2)如图1,若∠AOC =α,求∠DOE ;(用含α的式子表示)(3)将图1中的∠COD 绕顶点O 顺时针旋转到图2的位置,其它条件不变,(2)中的结论是否还成立?试说明理由;(4)将图1中的∠COD 绕顶点O 逆时针旋转到图3的位置,其它条件不变,直接用含α的式子表示∠DOE .【变式6-3】(2019秋•东西湖区期末)如图1,平面内一定点A 在直线EF 的上方,点O 为直线EF 上一动点,作射线OA 、OP 、OA ',当点O 在直线EF 上运动时,始终保持∠EOP =90°、∠AOP =∠A 'OP ,将射线OA 绕点O 顺时针旋转60°得到射线OB .(1)如图1,当点O 运动到使点A 在射线OP 的左侧,若OA '平分∠POB ,求∠BOF 的度数;(2)当点O 运动到使点A 在射线OP 的左侧,且∠AOE =3∠A 'OB 时,求∠AOF ∠AOP 的值;(3)当点O 运动到某一时刻时,∠A 'OB =130°,请直接写出∠BOP = 度.【题型7 求几何图形中互余或互补角的个数】【例7】(2021•娄星区模拟)如图,C 是直线AB 上一点,CD 是∠ACB 的平分线. ② 图中互余的角有 ;②图中互补的角有 ;③图中相等的角有 .【变式7-1】(2021秋•南开区期末)如图所示,已知O 是直线AB 上一点,∠BOE =∠FOD =90°,OB 平分∠COD .(1)图中与∠DOE 相等的角有 ;(2)图中与∠DOE 互余的角有 ;(3)图中与∠DOE 互补的角有 .【变式7-2】(2021秋•成都期中)如图,O 是直线AB 上的一点,∠AOD =120°,∠AOC =90°,OE 平分∠BOD .写出图中所有互补的角和互余的角.【变式7-3】(2021春•吴中区月考)如果∠α和∠β互补,且∠α>∠β,则下列式子中:①90°﹣∠β;②∠α﹣90°;③12(∠α+∠β);④12(∠α﹣∠β).可以表示∠β的余角的有( )A .①②B .①②③C .①②④D .①②③④【题型8 数学思想方法与角】【例8】(2021秋•河东区期末)已知∠AOB=90°,OC为一射线,OM,ON分别平分∠BOC和∠AOC,则∠MON是()A.45°B.90°C.45°或135°D.90°或135°【变式8-1】(2021秋•成华区期中)(1)如图1,射线OC、OD在∠AOB的内部,射线OM、ON分别平分∠AOD、∠BOC、且∠BON=50°,∠AOM=40°,∠COD=30°,求∠AOB的度数;(2)如图2,射线OC、OD在∠AOB的内部,射线OM、ON分别平分∠AOD、∠BOC、且∠AOB=150°,∠COD=30°,求∠MON的度数【变式8-2】(2021秋•无锡期末)如图,∠AOB=150°,∠COD=40°,OE平分∠AOC,则2∠BOE﹣∠BOD=°.【变式8-3】(2021秋•镇海区期末)新定义问题如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为;【解决问题】(3)如图②,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.。
初一数学—角的度量及比较和运算一、知识要点1、角的定义:有公共端点的两条射线所组成的图形叫做角,角也可以看作由一条射线绕着它的端点,旋转而成的图形.2、角的度量:把一个周角360等分,每1份的角记作1°,1°=60分,1分=60秒.3、1周角=360°,1平角=180°, 1直角=90°.4、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图,OC是∠AOB的平分线,则有以下写法:∵OC是∠AOB的平分线∴(1)∠AOC=∠BOC(2)或(3)∠AOB=2∠AOC或∠BOA=2∠BOC5、角的特殊关系(1)余角、补角的概念如果两个角的和等于90°(直角),那么就说这两个角互为余角,简称互余.如果两个角的和等于180°(平角),那么就说这两个角互为补角,简称互补.(2)余角、补角的性质:余角和补角的性质. 同角或等角的余角相等.同角或等角的补角相等.6、对顶角的性质:对顶角相等.三、典例剖析例1、57.32°是几度几分几秒?例2、计算:(1)39°48′+41°37′(2)48°2′÷5例3、画出表示下列方向的射线:(如图)(1)东南方向射线OA;(2)北偏东60°的射线OB;(3)南偏西30°的射线OC;(4)北偏西30°的射线OD.例4、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、∠BOC.求∠DOE的度数.例5、已知一个角的补角与一个直角的和比这个角的余角的5倍少44°,求这个角.一、选择题1、用一副三角板画角,不能画出的角的度数是()A.15°B.75° C.145°D.165°2、如果一个角是36°,那么()A.它的余角是64° B.它的补角是64° C.它的余角是144°D.它的补角是144°3、如图所示是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80° C.120°D.150°4、下列算式中,正确的是()A.①和②B.①和③ C.②和③D.②和④①33.33°=33°3′3″②33.33°=33°19′48″③50°40′33″=50.43°④50°40′33″=50.675°5、如图,射线OA表示的方向是()A.西北方向B.东南方向 C.西偏南30°D.南偏西30°6、∠1,∠2互为补角,且∠1>∠2,那么∠2的余角是()A.B. C.D.7、如图,已知∠ACB=90°,∠1=∠B,∠2=∠A,则下列说法错误的是()A.∠A与∠B不互为余角;B.∠1与∠2互为余角;C.∠2与∠B互为余角;D.∠1与∠A互为余角8、如图,射线OQ平分∠POR,OR平分∠QOS,以下结论:①∠POQ=∠QOR=∠ROS;②∠POR=∠QOS;③∠POR=2∠ROS;④∠POS=2∠POQ,其中正确的是()A.①、②和③B.①、②和④C.①、③和④D.①、②、③、④9、如图,AOB是直线,OD平分∠BOC,OE平分∠AOC,则下列说法中错误的是()A.∠DOE为直角 B.∠DOC和∠AOE互余C.∠AOE和∠BOC互补D.∠AOD和∠DOC互补10、∠1和∠2互余,∠2和∠3互补,∠1=63°,则∠3等于()A.117°B.27° C.153°D.37°11、如果一个角的补角是120°,那么这个角的余角为()A.30° B.60° C.90° D.120°12、两个角的比是7︰3,它们的差是72°,则这两个角的关系是()A.互为余角B.互为补角C.相等D.和为144°二、填空题1、如图,已知A、O、B在一条直线上,OE平分∠BOC,则∠BOE=_____度.2、如果一个角的补角是这个角的余角的4倍,则这个角为___________.3、若∠AOB=40°,∠BOC=60°,则∠AOC=________4、1点15分,时针与分针的夹角是_______度。
6.3.2 角的比较与运算第1课时角的比较与运算教学目标课题 6.3.2 第1课时角的比较与运算授课人素养目标1.能比较两个角的大小,会计算角的和、差.2.会利用三角尺拼角,锻炼动手动脑能力,培养合作交流意识.教学重点学会比较角的大小的方法,并且能够进行简单的角度加减运算. 教学难点含度、分、秒的角度的和、差运算.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境引入】有一天李明和王芳各带了一把折扇(状态如下).同学们有办法帮他们进行判断吗?学习完今天这节课,大家就能轻松找到答案了!【教学建议】教师可准备好道具,现场示范,让学生有更生动的认识.设计意图从生活中的情境引入,激发学生的兴趣,为本节课的学习奠定基础.活动二:实践探究,获取新知探究点1角的大小比较问题我们已经知道了比较两条线段长短的方法,怎样比较两个角的大小呢?类比线段长短的比较,你能得出哪些比较方法?度量法和叠合法.(1)现有如图两个角∠1和∠2,请你用量角器量出它们的度数,并比较它们的大小.通过用量角器进行度量,得到∠1=55°,∠2=40°.因为55°>40°,所以∠1>∠2.(2)下面是用叠合法比较两个角的大小所得到的不同情况,请你结合图形,判断两个角的大小.【教学建议】(1)教师可适当引导学生回顾用量角器进行度量的步骤.(2)叠合法是教学的重点.教学时可先让学生观察一些角,如三角尺(也称三角板)上的角,使学生明确角是有大小的.教学中可利用一些硬纸板作成角的模型,安排一些操作,通过学生动手实验,掌握叠合法的步骤.设计意图类比线段的大小比较方法探究角的大小比较方法,渗透类比思想,加深学生对度量法和叠合法的理解.教学步骤师生活动【对应训练】如图,射线OC,OD分别在∠AOB的内部、外部,下列各式错误的是④(填序号).①∠AOB<∠AOD;②∠BOC<∠AOB;③∠COD<∠AOD;④∠AOB<∠AOC.解析:根据用叠合法比较两个角的大小分析可知①②③正确,④错误.设计意图探究点2角的和、差运算回顾:问题1(教材P173思考)类比两条线段的和与差,你能结合右图说明什么是两个角的和与差吗?教师总结:共顶点的几个角,可进行加减.问题2(教材P173探究)参考下图,借助一副三角尺的角,结合角的和、差运算,可以画出哪些度数的角?列表总结:【教学建议】这里对于角的和、差,主要是从形上说明它的意义,并用符号表示,在图形和等式之间建立一种关系,可让学生了解两个角的和或差仍是一个角.教学中,可要求学生能结合图形来分析数量关系,把几何意义与度数的数量表示结合起来,说明角的和、差的度数,就是它们度数的和、差,达到形与数的结合.【教学建议】教师给学生充足的讨论时间,并鼓励学生动手验证,尝试着多画些角.为避免在实操过程中存在问题,教师可用列表方式予以提示.(1)类比线段的和、差计算得到角的和、差计算. (2)设置让学生用一副三角尺画出一些特殊角,除了复习巩固角的和、差外,也可以使他们对这些角有直观的认识,有利于培养对角的大小的估计能力.教学步骤师生活动追问画出的角的度数有什么规律吗?教师总结:(1)用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.(2)凡是15°的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.【对应训练】教材P174练习第1,2题.活动三:典例精析,巩固提升例(教材P174例2)如图,O是直线AB上一点,∠AOC=53°17′,求∠BOC的度数.分析:AB是直线,∠AOB是平角,∠BOC与∠AOC的和是∠AOB.解:由题意可知,∠AOB是平角,∠AOB=∠AOC+∠BOC,所以∠BOC=∠AOB-∠AOC=180°-53°17′=126°43′.【对应训练】教材P174练习第3题.【教学建议】教师强调:①同单位加减(度与度、分与分、秒与秒分别相加、减);②度、分、秒是六十进制(相加时逢60要进位,相减时,如不够减要借1作60).本题中应借1°,先将180°化为179°60′再进行减法运算.设计意图设置例题是用来巩固角的和、差以及角度的加、减运算.活动四:随堂训练,课堂总结【随堂训练】见“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.比较两个角大小的方法有哪些?2.借助三角尺利用角的和、差可以画出哪些角?3.如何进行度、分、秒的加、减运算?【知识结构】【作业布置】1.教材P178习题6.3第2(5),3(3),9题2.相应课时训练.板书设计教学反思本节课的教学内容是角的大小的比较与角的和、差运算.可类比线段的学习方法引出角的大小的比较的两种方法:度量法、叠合法.对于本节教学要把握以下几点:1.首先在讲授知识的过程中,必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆;2.在角的形象比较中,要努力引导学生的思维方向;3.叠合法是重点,但此法比较适用于实际中的比较;4.对于角度的计算要设计各个类型的教学.解题大招一角度的加、减运算方法进行角度的加、减运算时,要将度与度、分与分、秒与秒分别相加、减.分、秒相加时逢60要进位;相减时,如不够减要借1作60.例1计算:(1)52°20′+39°58′21″;(2)180°-52°18′36″.解法一:(1)52°20′+39°58′21″=(52°+39°)+(20′+58′)+21″=91°+78′+21″=91°+1°+18′+21″=92°18′21″;(2)180°-52°18′36″=179°59′60″-52°18′36″=(179°-52°)+(59′-18′)+(60″-36″)=127°41′24″.解法二:(1)解题大招二利用三角尺叠合进行角度的计算三角尺的90°,60°,30°,45°是已知角,当所求的角无法直接计算得出时,可把所求的角转化成三角尺已知角的和或差.例2如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=(D)A. 120°B. 135°C. 150°D. 180°解析:由图可得∠AOC+∠DOB=∠AOB+∠BOC+∠DOB=∠AOB+∠COD=90°+90°=180°.故选D.培优点求折叠问题中的角度例请仔细观察如图所示的长方形纸片的折叠过程,回答下列问题:(1)∠2的度数为90°;(2)∠1与∠3的数量关系为∠1+∠3=90°;(3)∠1与∠AEC的数量关系为∠1+∠AEC=180°.解析:(1)由折叠的过程,知∠2=∠1+∠3.因为∠1+∠2+∠3=∠BEC ,B ,E ,C三点共线,所以∠2=12 ∠BEC =12×180°=90°.(2)因为∠2=90°,∠2=∠1+∠3,所以∠1+∠3=90°. (3)因为B ,E ,C 三点共线,所以∠1+∠AEC =180°.技巧点拨:图形折叠前后,同顶点的对应角相等,折痕平分两个角所拼成的大角.。
§4.3.2 角的比较与运算说课稿一、说教材一)说课内容:我说课的内容是初中数学课本七年级上册第四单元《几何图形初步》第三节。
二)教材分析《角的比较与运算》第一课时是初中数学课本七年级上册第四单元《几何图形初步》第三节,角的比较、角的和与差、角的平分线,这三个内容是本章重要的基础知识,也是后续学习图形与几何必备的基础。
比较两角的大小是本节知识的起点,角的和与差是问题的延伸,等分问题又是角的和与差的特殊化,这三个知识点相互之间是紧密联系的,而且与生活息息相关。
三)学情分析在前面已经学过线段的大小比较、线段的和与差,线段的中点,本节课可以采用类比的学习方法,便于理解与掌握。
这是学生的有利条件。
然而学生处于几何的启蒙阶段,如何正确的用图形语言、文字语言、符号语言综合描述所研究的对象将是他们的难处。
四)教学目标根据学生的年龄特点,认知规律及对教材的剖析与学生的分析,我确立了本课教学目标及重难点。
1、会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。
2、学生经历“观察——对比——归纳”的学习过程,培养用数学语言描述图形的能力及类比的数学思想方法。
3、培养学生爱思考的习惯,通过对角大小的比较,使学生体会数学的形象直观美,向学生渗透团结协作的合作精神,培养勇于探索的精神和解决问题的优化意识。
五)教学重难点重点:角的大小的比较方法,角平分线的定义难点:角的加减运算,角的平分线的运用六)教学具为了突出重点,突破难点,加大课堂练习密度,我采用了多媒体教学与教具。
二、说教学法教法:学生在前面学习过线段的大小比较,线段的和与差,线段的中点基础上,教师采用启发式教学,引导学生自主探索,合作交流,体会类比的数学思想。
学法:初一学生仍以形象思维能力为主,因此要充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展.三、教学流程(一)情景导入:以登山的情景导入新课,学生在选择登山路径的过程中,若考虑路径的长短,则是对线段的大小比较,若是考虑坡度的陡与缓,则是对角的大小比较。