高一数学必修四三角函数与向量结合知识点+练习题含答案

  • 格式:docx
  • 大小:62.68 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数与向量

题型一三角函数平移与向量平移的综合

三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.

【例1】把函数y=sin2x的图象按向量=(-,-3)平移后,得到函数y=Asin(ωx +?)(A>0,ω>0,|?|=)的图象,则?和B的值依次为()A.,-3 B.,3 C.,-3 D.-,3

【分析】根据向量的坐标确定平行公式为,再代入已知解析式可得.还可以由向量的坐标得图象的两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.

【解析1】由平移向量知向量平移公式,即,代入y=sin2x得y?+3=sin2(x?+),即到y=sin(2x+)-3,由此知?=,B=-3,故选C.

【解析2】由向量=(-,-3),知图象平移的两个过程,即将原函数的图象整体向左平移个单位,再向下平移3个单位,由此可得函数的图象为y=sin2(x+)-3,即y=sin(2x +)-3,由此知?=,B=-3,故选C.

【点评】此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键,也是易出错的地方是确定平移的方向及平移的大小.

题型二三角函数与平面向量平行(共线)的综合

此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.

【例2】已知A、B、C为三个锐角,且A+B+C=π.若向量=(2-2sinA,cosA+sinA)与向量=(sinA-cosA,1+sinA)是共线向量.

(Ⅰ)求角A;

(Ⅱ)求函数y=2sin2B+cos的最大值.

【分析】首先利用向量共线的充要条件建立三角函数等式,由于可求得A角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A、B、C三个角的关系,结合三角民恒等变换公式将函数转化为关于角B的表达式,再根据B的范围求最值.

【解】(Ⅰ)∵、共线,∴(2-2sinA)(1+sinA)=-(cosA+sinA)(cosA-sinA),则sin2A=,

又A为锐角,所以sinA=,则A=.

(Ⅱ)y=2sin2B+cos=2sin2B+cos

=2sin2B+cos(-2B)=1-cos2B+cos2B+sin2B

=sin2B-cos2B+1=sin(2B-)+1.

=2.

∵B∈(0,),∴2B-∈(-,),∴2B-=,解得B=,y

max

【点评】本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.

题型三三角函数与平面向量垂直的综合

此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.

【例3】已知向量=(3sinα,cosα),=(2sinα,5sinα-4cosα),α∈(,2π),且⊥.

(Ⅰ)求tanα的值;

(Ⅱ)求cos(+)的值.

【分析】第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan的值,再利用两角和与差的三角公式求得最后的结果.

【解】(Ⅰ)∵⊥,∴·=0.而=(3sinα,cosα),=(2sinα,5sinα-4cosα),故·=6sin2α+5sinαcosα-4cos2α=0.

由于cosα≠0,∴6tan2α+5tanα-4=0.解之,得tanα=-,或tanα=.

∵α∈(,2π),tanα<0,故tanα=(舍去).∴tanα=-.

(Ⅱ)∵α∈(,2π),∴∈(,π).

由tanα=-,求得tan=-,tan=2(舍去).∴sin=,cos=-,

∴cos(+)=coscos-sinsin=-×-×=-

【点评】本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方法,这是解决在一道试题中同时出现“切函数与弦函数”关系问题常用方法.

题型四三角函数与平面向量的模的综合

此类题型主要是利用向量模的性质||2=2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.

【例4】已知向量=(cosα,sinα),=(cosβ,sinβ),|-|=.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-<β<0<α<,且sinβ=-,求sinα的值.

【分析】利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cosβ即可.

【解】(Ⅰ)∵|-|=,∴2-2·+2=,

将向量=(cosα,sinα),=(cosβ,sinβ)代入上式得

12-2(cosαcosβ+sinαsinβ)+12=,∴cos(α-β)=.

(Ⅱ)∵-<β<0<α<,∴0<α-β<π,

由cos(α-β)=-,得sin(α-β)=,

又sinβ=-,∴cosβ=,

∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=.

点评:本题主要考查向量的模、数量积的坐标运算、和角公式、同角三角函数的基本关系.本题解答中要注意两点:(1)化|-|为向量运算|-|2=(-)2;(2)注意解α-β的范围.整个解答过程体现方程的思想及转化的思想.

题型五三角函数与平面向量数量积的综合

此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.