2019华杯赛决赛小学高年级组试题A答案详解
- 格式:doc
- 大小:152.00 KB
- 文档页数:8
第十八届华罗庚金杯少年邀请赛决赛试题A (小学高年级组)(时间2019年4月20日10:00~11:30)一、填空题(每小题 10分, 共80分)1.计算: 19×0.125+281×81-12.5=________. 解析:原式=(19+281-100)×0.125=200×0.125=252.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2019年12月21日是冬至, 那么2019年的元旦是________九的第________天.解析:31-21+1+1=12,12÷9=1…3,2019年的元旦是二九的第3天.3.某些整数分别被119977553,,,除后, 所得的商化作带分数时, 分数部分分别是92725232,,,, 则满足条件且大于1的最小整数是________.解析:设整数为A, 分别被119977553,,,除后, 所得的商分别为A A A A 911795735,,,; )1(911921911)1(7972179)1(5752157)1(3532135-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[3,5,7,9]的时候满足题意。
所以A-1=315,A=316。
4.如右图, 在边长为12厘米的正方形ABCD 中, 以AB 为底边作腰长为10厘米的等腰三角形PAB . 则三角形PAC 的面积等于________平方厘米.解析:过P 点做PE ⊥AB,由于三角形PAB 为等腰三角形,所以AE=EB=6cm 。
根据勾股定理:PE 2=102-62=64=82,所以PE=8cm 。
S △PAB=12×8÷2=48cm 2,S △PCB=12×6÷2=36cm 2,S △PAC=48+36-12×12÷2=12 cm 2。
第十八届华罗庚金杯少年邀请赛初赛试题A(小学高年级组)(时间2019年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.2019.25×2019.75-2010.25×2015.75=()。
A.5 B.6 C.7 D.8解析:巧算问题原式=(2010.25+2)×(2015.75-2)-2010.25×2015.75=2015.75×2-2010.25×2-4=7答案为C。
2.2019年的钟声敲响了, 小明哥哥感慨地说: 这是我有生以来第一次将要渡过一个没有重复数字的年份。
已知小明哥哥出生的年份是19的倍数, 那么2019年小明哥哥的年龄是()岁。
A.16 B.18 C.20 D.22解析:简单数论。
从1990年~2019年,年份中都有重复数字,其中是19的倍数的数只有1900+95=1995,2019—1995=18(岁),所以选B。
3.一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一。
8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为()分钟。
A.22 B.20 C.17 D.16解析:周期问题。
下滑1米的时间是向上爬3米所用时间的三;爬一米和滑一米的时间相同,以爬三米,滑一米为一个周期;(3-1)×3+3=9m,青蛙第一次爬至离井口3米之处,(3-1)×4+1=9m,青蛙第二次爬至离井口3米之处,此时,青蛙爬了4个周期加1米,用时17分钟,所以青蛙每爬1m或滑1m所用时间为1分钟。
(12—3)÷(3-1)=4…1,青蛙从井底爬到井口经过5个周期,再爬2m,用时5×(3+1)+2=22分钟,选A。
第二十二届华杯赛小高年级组决赛试题A 解析1. 用[x]表示不超过x 的最大整数,例如[3.14]=3,则:201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 。
【考点】取整运算 【专题】计算 【难度】☆【解析】直接计算即可 比较麻烦的简算方法: 先看第一项20173(200215)361001454545[][][][691]691[]1111111111⨯+⨯⨯+===⨯+=⨯+ 第二项:20173(200215)481001606060[][][][891]891[]1111111111⨯+⨯⨯+===⨯+=⨯+ 所以原式=45607590105120691[]891[]1091[]1291[]1491[]1691[]111111111111⨯++⨯++⨯++⨯++⨯++⨯+=(6810121416)914568910+++++⨯++++++ =60482. 从4个整数中任意选出3个, 求出它们的平均值, 然后再求这个平均值和余下1个数的和, 这样可以得到4个数:8,12,2103和193, 则原来给定的4个整数的和为 。
【考点】平均数与求和 【专题】计算 【难度】☆【解析】假设这四个数为,,,a b c d每三个数的平均值为:()3,()3,()3,()3a b c a b d a c d b c d ++÷++÷++÷++÷ 分别与余下的数的和为:21()38,()312,()310,()3933a b c d a b d c a c d b b c d d ++÷+=++÷+=++÷+=++÷+=将这四个式子左右两边分别相加得到:21()3()3()3()381210933a b c d a b d c a c d b b c d d ++÷++++÷++++÷++++÷+=+++()340a b c a b d a c d b c d a b c d +++++++++++÷++++=3()3()40a b c d a b c d ⨯+++÷++++=2()40a b c d ⨯+++=20a b c d +++=3. 在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子, 共有 种不同的摆放方法.(如果两种放法能够由旋转而重合, 则把它们视为同一种摆放方法).【考点】 【专题】杂题【难度】☆【解析】这种题目因为情况不多,所以一一列举就是一种很好的办法,但是要注意不能重复和遗漏。
2019华罗庚金杯研学行夏令营测评小学高年级组(时间:2019年7月16日15:00~16:30)填空题(每小题10分,共150分)1.右图是由6个相同的正方形所拼成的一个长方形,那么∠ABC 的度数为________度.【答案】452.设b a 679|72,则有=b a 679________.【答案】367923.一个四位数,它的个位数字与百位数字相同.如果将这个四位数的数字顺序颠倒过来(即个位数字与千位数字互换,十位数字与百位数字互换),得到一个新的数,用新的数减原数,所得的差是7812,则原来的四位数是________.【答案】19794.有一类四位数4321a a a a ,它们的4个数字的乘积4321a a a a 是n m ,且这4个数字的和)(4321a a a a +++为5-m m ,已知m 为质数,n 为正整数,这类四位数有________个.【答案】125.已知1x ,2x 是正整数,且4121=+x x ,则2221x x +的最大值是________.【答案】16016.M n 1210099321=⨯⨯⨯⨯⨯ ,其中M 为自然数,n 为使得等式成立的最大的自然数.下面有4个答案:A.M 能被2整数,但不能被3整除;B.M 能被3整除,但不能被2整除;C.M能被4整除但不能被3整除;D.M不能被3整除,也不能被2整除,其中________正确.【答案】A7.一个班有51个同学,每个同学都有一个信息希望通过短信告诉别人,若每次一个同学可以给另一同学发短信告诉他(她)自己已经知道的所有信息,同学们至少一共要发送______条短信才能使每个同学都知道所有信息.【答案】1008.从一个正9边形的9个顶点中选3个,使得他们是一个等腰三角形的三个顶点的方法数是________.【答案】309.从18个自然数1、2、3、7、8、9、13、14、15、19、20、21、25、26、27、31、32、33中,至少取出______个,才能确保其中必定存在两个数,差等于5.【答案】1310.李华从家里去机场,第一个小时走了6千米,按此速度他觉得要迟到45分钟,便以每小时10千米的速度赶路.结果提前15分钟到达机场,则李华家到机场的距离等于______千米.【答案】2111.一条船从上游甲地到下游乙地需要5天,从下游乙地到上游甲地需要7天,那么一块木板从甲地漂浮到乙地需要______天.【答案】3512.已知A、B均为三位数,A的各位数字和为4,B的各位数字和为23,且A、B的和的各位数字之和为9.那么A、B的和的最大值为______.【答案】130513.从连续自然数1,2,3,……,99,100中任取k个,其中必有2个数的差是9,k的最小值是______.【答案】5514.某日,可可到动物园里去观赏动物.他看了猴子、熊猫和狮子三种动物,这三种动物的总量在26到32只之间.根据下面的情况:①熊猫和狮子的总数要比猴子的两倍还多;②猴子和熊猫的总数要比狮子的三倍还多;③熊猫的数量没有狮子数量的两倍那么多,可知猴子有_______只,熊猫有________只,狮子有________只.【答案】9;13;715.右图中,平行四边形ABCD 的面积是126,AF=2BF ,CE=2BE ,CG=2DG ,O 是AE 和FG 的交点,则四边形CGOE 的面积是______.【答案】5250。
第十九届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级A组)一、选择题(每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.平面上的四条直线将平面分割成八个部分, 则这四条直线中至多有()条直线互相平行.(A)0(B)2(C)3(D)42.某次考试有50道试题, 答对一道题得3分, 答错一道题扣1分, 不答题不得分.小龙得分120分, 那么小龙最多答对了()道试题.(A)40(B)42(C)48(D)503.用左下图的四张含有4个方格的纸板拼成了右下图所示的图形. 若在右下图的16个方格分别填入1, 3, 5, 7(每个方格填一个数), 使得每行、每列的四个数都不重复, 且每个纸板内四个格子里的数也不重复, 那么A, B, C, D四个方格中数的平均数是()..(A)4(B)5(C)6(D)74.小明所在班级的人数不足40人, 但比30人多, 那么这个班男、女生人数的比不可能是().(A)2:3(B)3:4(C)4:5(D)3:7第 1 页共2页5. 某学校组织一次远足活动, 计划 10 点 10 分从甲地出发, 13 点 10 分到达乙地, 但出发晚了 5 分钟, 却早到达了 4 分钟. 甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是().(A )11 点 40 分(B )11 点 50 分 (C )12 点(D )12 点 10 分6. 如右图所示,AF = 7 cm,DH = 4 cm,BG = 5 cm,AE =1 cm. 若正方形 ABCD 内的四边形 EFGH 的面积为 78 cm 2, 则正方形的 边长为()cm.(A )10(B )11(C )12(D )13二、填空题 (每小题 10 分, 满分 40 分)7. 五名选手 A, B, C, D, E 参加“好声音”比赛, 五个人站成一排集体亮相. 他们胸前有每人的选手编号牌, 5 个编号之和等于 35.已知站在 E 右边的选手的编号和为 13;站在 D 右边的选手的编号和为 31;站在 A 右边的选手的编号和为 21;站在 C 右边的选手的编号和为 7.那么最左侧与最右侧的选手编号之和是_____.8. 甲乙同时出发, 他们的速度如下图所示, 30 分钟后, 乙比甲一共多行走了 ________米.米/分米/分1001008080606040402020分分5 10 15 20 25 30 5 10 15 20 25 30甲乙9. 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________ 种不同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况).10. 在一个圆周上有 70 个点, 任选其中一个点标上 1, 按顺时针方向隔一个点的点上标 2, 隔两个点的点上标 3, 再隔三个点的点上标 4, 继续这个操作, 直到 1, 2,3, …, 2014 都被标记在点上.每个点可能不只标有一个数, 那么标记了 2014 的点上标记的最小整数是________.第 2 页 共 2 页。
第十九届华罗庚金杯少年数学邀请赛决赛试题A (小学高年级组)一、填空题(每小题 10 分, 共80 分)1. 如右图, 边长为12米的正方形池塘的周围是草地, 池塘边A , B , C , D 处各有一根木桩, 且AB =BC =CD =3米. 现用长4米的绳子将一头羊拴在其中的某根木桩上. 为了使羊在草地上活动区域的面积最大, 应将绳子拴在 处的木桩上. 【考点】圆与扇形 【答案】B【解析】拴在B 处活动区域最大,为43圆。
2. 在所有是20的倍数的正整数中, 不超过2019并且是14的倍数的数之和是 . 【考点】最小公倍数,等差数列 【答案】14700【解析】[]14014,20=,141402014=⎥⎦⎤⎢⎣⎡,()1470014321140=+++⨯Λ.3. 从1~8这八个自然数中任取三个数, 其中没有连续自然数的取法有 种. 【考点】计数 【答案】20【解析】解法一:枚举法(1)三奇数:135、137、157、357,4个; (2)三偶数:246、248、268、468,4个;(3)两奇一偶:136、138、158、147、358、257,6个; (4)两偶一奇:247、258、146、148、168、368,6个; 共4+4+6+6=20种.解法二:排除法1~8中任取三个数,有5638 C 种不同的取法其中三个连续数有6种(123~678)两个连续数有5+4+4+4+4+4+5=30种(如124、125、126、127、128等) 则满足题意的取法有56—6—30=20种.4. 如右图所示, 网格中每个小正方格的面积都为1平方厘米. 小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成, 小线段的端点在格子点上或在格线上), 则这个剪影的面积为 平方厘米.【考点】格点与面积 【答案】56.5【解析】如图(见下页),通过分割和格点面积公式可得小马总面积为56.5个正方形,即面积为56.5平方厘米。
总分第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2019年12月10日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.(A )16(B )17(C )18(D )19解析:设这两个有限小数为A 、B ,则7×10=70<AB<8×11=88,很明显,积的整数部分可以是70-87的整数,所以这两个有限小数的积的整数部分有87-70+1=18种。
答案选C 。
2.小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟.某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟.(A )6(B )8(C )10(D )12解析:方法一:单位“1”和假设法,设小明家距学校的路程为“1”,乘地铁的速度为301,乘公交车速度为501,40-6=34分钟,假设全程都做地铁,能走301×34=1517,所以坐公交车用了(1517-1)÷(301-501)=10分钟。
方法二:设数法和假设法,设小明家距学校的路程为[30,50]=150m ,乘地铁的速度为150÷50=3m/min ,乘公交车速度为150÷30=5m/min ,40-6=34分钟,假设全程都做地铁,能走5301×34=170m ,所以坐公交车用了(170-150)÷(5-3)=10分钟。
方法三:时间比和比例。
同一段路程,乘地铁和乘公交车时间比为3:5,全程乘地铁需要30分钟,有一段乘公交车则用40-6=34分钟,所以乘公交车的那段路比乘地铁多用34-30=4分钟,所以坐公交车用了4÷(5-3)×5=10分钟。
第十九届华罗庚金杯少年数学邀请赛
决赛试题A (小学高年级组)
一、填空题(每小题 10 分, 共80 分)
1. 如右图, 边长为12米的正方形池塘的周围是草地, 池塘边A , B , C , D 处各有一根木桩, 且AB =BC =CD =3米. 现用长4米的绳子将一头羊拴在其中的某根木桩上. 为了使羊在草地上活动区域的面积最大, 应将绳子拴在 处的木桩上. 【考点】圆与扇形 【答案】B 【解析】拴在B 处活动区域最大,为43圆。
2. 在所有是20的倍数的正整数中, 不超过2019并且是14的倍数的数之和是 .
【考点】最小公倍数,等差数列
【答案】14700 【解析】[]14014,20=,141402014=⎥⎦
⎤⎢⎣⎡,()1470014321140=+++⨯Λ.
3. 从1~8这八个自然数中任取三个数, 其中没有连续自然数的取法有 种.
【考点】计数
【答案】20
【解析】解法一:枚举法
(1)三奇数:135、137、157、357,4个;
(2)三偶数:246、248、268、468,4个;
(3)两奇一偶:136、138、158、147、358、257,6个;
(4)两偶一奇:247、258、146、148、168、368,6个;
共4+4+6+6=20种.
解法二:排除法
1~8中任取三个数,有5638 C 种不同的取法
其中三个连续数有6种(123~678) 两个连续数有5+4+4+4+4+4+5=30种(如124、125、126、127、128等) 则满足题意的取法有56—6—30=20种.
4. 如右图所示, 网格中每个小正方格的面积都为1平方厘米. 小明在网
格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成, 小线段的
端点在格子点上或在格线上), 则这个剪影的面积为 平方厘
米.
【考点】格点与面积
【答案】56.5
【解析】如图(见下页),通过分割和格点面积公式可得小马总面积为
56.5个正方形,即面积为56.5平方厘米。